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Abstract

Graphs S[n, k] are introduced as the graphs obtained from the
Sierpiński graphs S(n, k) by contracting edges that lie in no complete
subgraph Kk. The family S[n, k] is a generalization of a previously
studied class of Sierpiński gasket graphs Sn. Several properties of
graphs S[n, k] are studied in particular, hamiltonicity and chromatic
number.
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1 Introduction

Sierpiński-like graphs appear in many different areas of graph theory, topol-
ogy, probability ([8, 11]), psychology ([16]), etc. The special case S(n, 3)
turns out to be only a step away of the famous Sierpiński gasket graphs
Sn—the graphs obtained after a finite number of iterations that in the
limit give the Sierpiński gasket, see [10]. This connection was introduced
by Grundy, Scorer and Smith in [23] and later observed in [24].

Graphs S(n, 3) are also important for the Tower of Hanoi game since
they are isomorphic to Hanoi graphs with n discs and 3 pegs. Metric
properties, planarity, vertex and edge coloring were studied by now, see,
for instance [1, 5, 6, 7, 14, 22]. Furthermore, in [12] it is proved that graphs
S(n, 3) are uniquely 3-edge-colorable and have unique Hamiltonian cycles.

Graphs S(n, 3) can be generalized to Sierpiński graphs S(n, k), k ≥
3, which are also called Klavžar-Milutinović graphs and denoted KMnk
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[17]. The motivation came from topological studies of the Lipscomb’s space
[18, 19]. Graphs S(n, k) independently appeared in [21]. These graphs have
many interesting properties, for instance, coding [4] and metric properties
[20]. Moreover, in [13] it is shown that graphs S(n, k) are Hamiltonian and
that there are at most two shortest paths between any pair of their vertices.
The length between any two vertices can be determined in O(n) time.

Sierpiński graphs are almost regular. In a natural way, two new families
of regular Sierpiński-like graphs S+(n, k) and S++(n, k) were introduced
in [15] and their crossing numbers determined (in terms of the crossing
number of complete graphs).

Since Sierpiński gasket graphs Sn are important and are naturally de-
rived from Sierpiński graphs S(n, 3), we can apply the same construction
for S(n, k), where k ≥ 3. We do this in section 2 and denote the new
graphs S[n, k]. In [26] one can find a more algorithmic definition of Sn

based on trilinear coordinates, whereas in [3] one can find the definition of
the Sierpiński gasket SGd in any Euclidean space of dimension d with the
number of vertices and number of edges. Their graphs SGd+1(n) are the
generalized Sierpiński gasket graphs S[n, k] introduced in this paper.

It is well known that graphs S(n, k), k ≥ 3, are Hamiltonian [13], as
are graphs Sn [25]. We shall prove the same result for graphs S[n, k].
The chromatic number, chromatic index and total chromatic number of
the Sierpiński graphs S(n, k) were already determined [20, 9]. In [9], a
question was posted for the total chromatic number, where k is even. The
question was answered in [7]. The same chromatic properties were studied
for the Sierpiński gasket graphs. The chromatic number was determined
in [25], chromatic index in [12] and total chromatic number in [9]. In this
paper, we study the chromatic number of graphs S[n, k].

2 Graphs S[n, k] and their basic properties

First we recall the definition of the Sierpiński graphs S(n, k). They are
defined for n ≥ 1 and k ≥ 1 as follows. The vertex set of S(n, k) consists
of all n-tuples of integers 1, 2, . . . , k, that is, V (S(n, k)) = {1, 2, . . . , k}n.
Two different vertices u = (u1, . . . , un) and v = (v1, . . . , vn) are adjacent if
and only if there exists an h ∈ {1, . . . , n} such that

(i) ut = vt, for t = 1, . . . , h− 1;
(ii) uh 6= vh; and

(iii) ut = vh and vt = uh for t = h+ 1, . . . , n.

We will shortly write u1u2 . . . un for (u1, u2, . . . , un). See Fig. 1 for S(2, 4).
By fixing u1 ∈ {1, . . . , k}, we get S(n − 1, k). In other words, S(n, k)

is constructed of k different S(n − 1, k). We label each with Si(n, k), for
every i ∈ {1, . . . , k}. Note that Si(n, k) and Sj(n, k), i 6= j, are connected
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with a single edge between vertices ij . . . j and ji . . . i. As in [9] we call
these edges the linking edges of S(n, k).

Figure 1: Graph S(2, 4)

In [12] in a natural way the Sierpiński gasket Sn is constructed from the
Sierpiński graph S(n, 3) by contracting all of its edges that lie in no triangle
K3. We can apply the same construction method for any Sierpiński graph
S(n, k) by contracting all of its edges that lie in no induced subgraph Kk.

Let u1u2 . . . urjl . . . l and u1u2 . . . urlj . . . j, 0 ≤ r ≤ n − 2, be two
adjacent vertices of graph S(n, k). We identify them in one vertex and
write u1u2 . . . ur{j, l} or shortly u(r){j, l}, j 6= l and j, l ∈ {1, . . . , k},
where u(0){j, l}means {j, l}. We get a 2-parametric Sierpiński gasket graph
S[n, k] (shortly k-Sierpiński gasket graph). We already know the case for
k = 3, namely the Sierpiński gasket Sn = S[n, 3]. An example of S[2, 4] is
shown in the Fig. 2.

Since S(n, k) is built of k copies of S(n− 1, k), the graph S[n, k] is also
built of k copies of S[n − 1, k]. We denote each copy with Si[n, k]. Note
that Si[n, k] and Sj [n, k], i 6= j, share one vertex, that is {i, j}.

It is known, that S(1, k) is isomorphic to Kk. Hence, S[1, k] is also
isomorphic to Kk.

Adjacency of vertices in S[n, k] is given in the next proposition.

Proposition 2.1 Let n ≥ 2 and u = u1 . . . ur{i, j} be a vertex in S[n, k],
i, j ∈ {1, . . . , k}, i 6= j.
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Figure 2: Graph S[2, 4]

(i) If 0 ≤ r ≤ n− 3, then u is adjacent to

u(n−2){j, l}, l ∈ {1, . . . , k}\{j},

and
u(n−2){i, l}, l ∈ {1, . . . , k}\{i}.

(ii) If r = n− 2, then u is adjacent to

u(n−2){i, l}, l ∈ {1, . . . , k}\{i, j},

u(n−2){j, l}, l ∈ {1, . . . , k}\{i, j},

{
u(t−1){i, ut}, t largest index with ut 6= i, 1 ≤ t ≤ n− 2,

i . . . i, else,

and{
u(s−1){j, us}, s largest index with us 6= j, 1 ≤ s ≤ n− 2,

j . . . j, else.
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Proof. (i) Let r ≤ n − 3. Take two vertices u = u1 . . . urij . . . jj and
u = u1 . . . urji . . . ii, where u ends with at least two j’s and u with at least
two i’s. Then u is in S(n, k) adjacent to u1 . . . urij . . . jl, l ∈ {1, . . . , k}\{j}.
In the construction procedure this vertex contracts to u(n−2){j, l}, l ∈
{1, . . . , k}\{j} in S[n, k]. Similarly, u is adjacent to u1 . . . urji . . . il, l ∈
{1, . . . , k}\{i}, which contracts to u(n−2){i, l}, l ∈ {1, . . . , k}\{i} in S[n, k].
The argument also holds for r = 0.

(ii) Let r = n − 2. Then u = u1 . . . un−2ij and u = u1 . . . un−2ji. In
S(n, k), the vertex u is adjacent to u1 . . . un−2il, l ∈ {1, . . . , k}\{i, j}, which
contracts to u(n−2){i, l}, l ∈ {1, . . . , k}\{i, j} in S[n, k]. It is also adjacent
to x = u1 . . . un−2ii. If u1 = . . . = un−2 = i, then u is adjacent to the
extreme vertex i . . . i in S[n, k]. If not all of u1, . . . , un−2 are equal to i, then
let t be the largest index that ut 6= i. Then the vertex u is adjacent to x =
u1 . . . uti . . . i, t ∈ {1, . . . , n−2}. In this case, u is adjacent to u(t−1){i, ut}.
Similarly, the vertex u is adjacent to u1 . . . un−2jl, l ∈ {1, . . . , k}\{i, j},
which contracts to u(n−2){i, l}, l ∈ {1, . . . , k}\{i, j} in S[n, k]. The vertex
u is also adjacent to x = u1 . . . un−2jj. If u1 = . . . = un−2 = j, then u is
adjacent to the extreme vertex j . . . j in S[n, k]. If not all of u1, . . . , un−2
are equal to j, then let s be the largest index that us 6= j. Then the vertex
u is adjacent to y = u1 . . . usj . . . j, s ∈ {1, . . . , n − 2}. Therefore, u is
adjacent to u(t−1){i, ut}. �

It is easy to see that the graphs S[n, k] have k extreme vertices of degree
k − 1 and |V (S[n, k])| − k remaining vertices of degree (k − 1) + (k − 1) =
2(k − 1). We immediately get:

Proposition 2.2 Graphs S[n, k] are Eulerian if and only if k is odd.

To gain more knowledge of the structure of S[n, k], we give the number
of vertices and edges of S[n, k].

Proposition 2.3 Graphs S[n, k] have k
2

(
kn−1 + 1

)
vertices and k−1

2 · k
n

edges.

Proof. A vertex in S[n, k] is of the form u1u2 . . . ur{j, l}. We have k pos-
sibilities for every ui, i ∈ {1, . . . , r}, and

(
k
2

)
possibilities for the unordered

pair {j, l}. There are also k extreme vertices left. We get:

|V (S[n, k])| = k +

n−2∑
r=0

kr ·
(
k

2

)
=
k

2
(kn−1 + 1).
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We determine the number of edges by using the formula:

|E(S[n, k])| = 1

2

∑
u∈S[n,k]

deg(u)

=
1

2

(
k(k − 1) +

(
k

2

(
kn−1 + 1

)
− k
)
· 2(k − 1)

)
=

(
k

2

)
kn−1 =

k − 1

2
· kn.

�

Remark 2.4 Alternatively, for all k ≥ 1, a proof can be based on the recur-
rence relations |V (S[n+ 1, k])| = k · |V (S[n, k])|−

(
k
2

)
, n ≥ 1, |V (S[1, k])| =

k, since
(
k
2

)
vertices are merged and S[1, k] is isomorphic to Kk. Further,

|E(S[n+ 1, k])| = k · |E(S[n, k])|, n ≥ 1, |E(S[1, k])| =
(
k
2

)
, since the graph

S[n+ 1, k] consists of k copies of S[n, k].

Corollary 2.5 For all n, k ∈ N: |E(S[n, k])| = (k− 1) · |V (S[n, k])| −
(
k
2

)
.

Applying Proposition 2.3 and setting k = 3 we get:

Corollary 2.6 Graphs Sn have 3
2 (3n−1 + 1) vertices and 3n edges.

3 Hamiltonicity

In [25], Tequia and Godbole proved that graphs Sn are Hamiltonian. In this
section we generalize their statement to S[n, k]. First, we need a lemma.

Lemma 3.1 Graphs S[n, k], k ≥ 2, have a Hamiltonian path connecting
two arbitrary extreme vertices.

Proof. The statement holds for k = 2 because S[n, 2] is isomorphic to a
path on 2n−1 + 1 vertices.

Let k ≥ 3. This statement is true for n = 1, since S[1, k] is isomorphic
to Kk. Let n ≥ 2. Without lose of generality we start in vertex 1 . . . 1.
Since S1[n, k] is isomorphic to S[n − 1, k] we can find a Hamiltonian path
from 1 . . . 1 to the vertex {1, 2}. With the same argument, we can find a
Hamiltonian path in S2[n, k] from the vertex {1, 2} to the vertex {2, 3}.
Next we find a Hamiltonian path in S3[n, k] from the vertex {2, 3} to the
vertex {3,4} by avoiding {1,3} (since we locally have an induced complete
graph, avoiding is possible). We continue the procedure in S4[n, k] by
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finding a Hamiltonian path between vertices {3, 4} and {4, 5} by avoid-
ing vertices {1, 4} and {2, 4}. In general we find a Hamiltonian path in
Si[n, k], i ∈ {3, . . . , k− 1}, from the vertex {i− 1, i} to the vertex {i, i+ 1}
by avoiding vertices {1, i}, {2, i}, . . . , {i − 2, i}. Finally, we find a Hamil-
tonian path in Sk[n, k] from vertex {k − 1, k} to vertex k . . . k by avoiding
vertices {1, k}, {2, k}, . . . , {k − 2, k}. All together we have constructed a
Hamiltonian path between vertices 1 . . . 1 and k . . . k.

Similarly, we can find a Hamiltonian path between any two different
extreme vertices in S[n, k]. �

Figure 3: A Hamiltonian cycle in S[2, 4]

Theorem 3.2 Graphs S[n, k] are Hamiltonian, for any n ≥ 1 and k ≥ 3.

Proof. The statement is true for n = 1, since S[1, k] is a complete graph.
Let n ≥ 2. By Lemma 3.1, we can find a Hamiltonian path from

the vertex {k, 1} to the vertex {1, 2} in S1[n, k]. Similarly, we can find
a Hamiltonian path between vertices {1, 2} and {2, 3} in S2[n, k]. Now
we find a Hamiltonian path in S3[n, k] from between vertices {2, 3} and
{3, 4} by avoiding vertex {1, 3}. In general, we find a Hamiltonian path
in Si[n, k] between vertices {i − 1, i} and {i, i + 1}, i ∈ {3, . . . , k − 1}, by
avoiding vertices {1, i}, {2, i}, . . . , {i− 2, i}. Finally, we find a Hamiltonian
path in Sk[n, k] from the vertex {k− 1, k} to the vertex {k, 1} by avoiding
vertices {2, k}, . . . , {k − 2, k}. Again, all the avoiding is possible because
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locally we have an induced complete graph. All the paths together form a
Hamiltonian cycle in S[n, k]. �

Fig. 3 shows a Hamiltonian cycle in S[2, 4] obtained with the above
construction. Once again, by setting k = 3 we get:

Corollary 3.3 [25] Graphs Sn are Hamiltonian.

4 The chromatic number

Since S[n, k] is built of complete graphs Kk, it is obvious that χ(S[n, k]) ≥
k. We prove the following.

Theorem 4.1 For any n ≥ 1 and any k ≥ 1, χ(S[n, k]) = k.

Proof. For k = 1 and k = 2 we get a vertex and a path on 2n−1+1 vertices
respectively for which the statement is true. Let k ≥ 3. For n = 1 we have
a complete graph on k vertices. It is well known that χ(Kk) = k. Let
n ≥ 2.

Graph S[n, k] consists of k copies of S[n − 1, k], each denoted with
Si[n, k], i ∈ {1, . . . , k}. Two copies, say Si[n, k] and Sj [n, k], i 6= j, share a
common vertex {i, j}. For every i, j ∈ {1, . . . , k}, i 6= j, expand this vertex
into two vertices ij . . . j and ji . . . i connected with a linking edge.

Note that for n ≥ 3 the expansion process described above is not the
inverse process of getting S[n, k] from the S(n, k), since we do not expand
all the vertices that were contracted in S(n, k).

By induction assumption graph S1[n, k] can be colored with k colors.
Denote the color of the vertex 1j . . . j, j ∈ {1, . . . , k}, with c1+j−2 (mod k),
where c1+j−2 (mod k) ∈ {1, . . . , k}. Then graphs Si[n, k], i ∈ {2, . . . , k},
can also be colored in such a way that a vertex ij . . . j receives color
ci+j−2 (mod k) ∈ {1, . . . , k}. This coloring is the same as the coloring used
to color graph S1[n, k], only to be rotated clockwise. In other words we
color graph S[n− 1, k] like S1[n, k] and rotate it clockwise (i− 1)-times to
get the coloring of graph Si[n, k]. See Fig. 4 for the visualization of the
rotated colorings.

A quick observation is that we obviously do not get a proper vertex col-
oring of the expanded graph S[n, k] since vertices ij . . . j and ji . . . i, i 6= j,
receive the same color, that is ci+j−2 (mod k). By contracting the previ-
ously expanded linking edges, and getting S[n, k], the merged vertex {i, j}
receives color ci+j−2 (mod k). Therefore, we get a proper vertex coloring of
S[n, k]. �

By setting k = 3 we immediately get the next result:
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Figure 4: Vertex coloring of graph S[n, k]

Corollary 4.2 [25] For any n ≥ 1, χ(Sn) = 3.

We conclude the paper by asking what is the chromatic index and the
total chromatic number of S[n, k]?
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