A 2-parametric generalization of Sierpiński gasket graphs

Marko Jakovac
Faculty of Natural Sciences and Mathematics
University of Maribor
Koroška cesta 160, 2000 Maribor, Slovenia
marko.jakovac@uni-mb.si

Abstract

Graphs $S[n, k]$ are introduced as the graphs obtained from the Sierpiński graphs $S(n, k)$ by contracting edges that lie in no complete subgraph K_{k}. The family $S[n, k]$ is a generalization of a previously studied class of Sierpiński gasket graphs S_{n}. Several properties of graphs $S[n, k]$ are studied in particular, hamiltonicity and chromatic number.

Key words: Sierpiński graphs; Sierpiński gasket graphs; Hamiltonicity; Chromatic number

AMS subject classification (2000): 05C15, 05C45

1 Introduction

Sierpiński-like graphs appear in many different areas of graph theory, topology, probability $([8,11])$, psychology ($[16])$, etc. The special case $S(n, 3)$ turns out to be only a step away of the famous Sierpiński gasket graphs S_{n}-the graphs obtained after a finite number of iterations that in the limit give the Sierpiński gasket, see [10]. This connection was introduced by Grundy, Scorer and Smith in [23] and later observed in [24].

Graphs $S(n, 3)$ are also important for the Tower of Hanoi game since they are isomorphic to Hanoi graphs with n discs and 3 pegs. Metric properties, planarity, vertex and edge coloring were studied by now, see, for instance $[1,5,6,7,14,22]$. Furthermore, in [12] it is proved that graphs $S(n, 3)$ are uniquely 3-edge-colorable and have unique Hamiltonian cycles.

Graphs $S(n, 3)$ can be generalized to Sierpiński graphs $S(n, k), k \geq$ 3, which are also called Klavžar-Milutinović graphs and denoted $K M_{n k}$
[17]. The motivation came from topological studies of the Lipscomb's space [18, 19]. Graphs $S(n, k)$ independently appeared in [21]. These graphs have many interesting properties, for instance, coding [4] and metric properties [20]. Moreover, in [13] it is shown that graphs $S(n, k)$ are Hamiltonian and that there are at most two shortest paths between any pair of their vertices. The length between any two vertices can be determined in $O(n)$ time.

Sierpiński graphs are almost regular. In a natural way, two new families of regular Sierpiński-like graphs $S^{+}(n, k)$ and $S^{++}(n, k)$ were introduced in [15] and their crossing numbers determined (in terms of the crossing number of complete graphs).

Since Sierpiński gasket graphs S_{n} are important and are naturally derived from Sierpiński graphs $S(n, 3)$, we can apply the same construction for $S(n, k)$, where $k \geq 3$. We do this in section 2 and denote the new graphs $S[n, k]$. In [26] one can find a more algorithmic definition of S_{n} based on trilinear coordinates, whereas in [3] one can find the definition of the Sierpiński gasket $S G_{d}$ in any Euclidean space of dimension d with the number of vertices and number of edges. Their graphs $S G_{d+1}(n)$ are the generalized Sierpiński gasket graphs $S[n, k]$ introduced in this paper.

It is well known that graphs $S(n, k), k \geq 3$, are Hamiltonian [13], as are graphs $S_{n} \quad[25]$. We shall prove the same result for graphs $S[n, k]$. The chromatic number, chromatic index and total chromatic number of the Sierpiński graphs $S(n, k)$ were already determined [20, 9]. In [9], a question was posted for the total chromatic number, where k is even. The question was answered in [7]. The same chromatic properties were studied for the Sierpiński gasket graphs. The chromatic number was determined in [25], chromatic index in [12] and total chromatic number in [9]. In this paper, we study the chromatic number of graphs $S[n, k]$.

2 Graphs $S[n, k]$ and their basic properties

First we recall the definition of the Sierpiński graphs $S(n, k)$. They are defined for $n \geq 1$ and $k \geq 1$ as follows. The vertex set of $S(n, k)$ consists of all n-tuples of integers $1,2, \ldots, k$, that is, $V(S(n, k))=\{1,2, \ldots, k\}^{n}$. Two different vertices $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ are adjacent if and only if there exists an $h \in\{1, \ldots, n\}$ such that
(i) $u_{t}=v_{t}$, for $t=1, \ldots, h-1$;
(ii) $u_{h} \neq v_{h}$; and
(iii) $\quad u_{t}=v_{h}$ and $v_{t}=u_{h}$ for $t=h+1, \ldots, n$.

We will shortly write $u_{1} u_{2} \ldots u_{n}$ for $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. See Fig. 1 for $S(2,4)$.
By fixing $u_{1} \in\{1, \ldots, k\}$, we get $S(n-1, k)$. In other words, $S(n, k)$ is constructed of k different $S(n-1, k)$. We label each with $S_{i}(n, k)$, for every $i \in\{1, \ldots, k\}$. Note that $S_{i}(n, k)$ and $S_{j}(n, k), i \neq j$, are connected
with a single edge between vertices $i j \ldots j$ and $j i \ldots i$. As in [9] we call these edges the linking edges of $S(n, k)$.

Figure 1: Graph $S(2,4)$
In [12] in a natural way the Sierpiński gasket S_{n} is constructed from the Sierpiński graph $S(n, 3)$ by contracting all of its edges that lie in no triangle K_{3}. We can apply the same construction method for any Sierpiński graph $S(n, k)$ by contracting all of its edges that lie in no induced subgraph K_{k}.

Let $u_{1} u_{2} \ldots u_{r} j l \ldots l$ and $u_{1} u_{2} \ldots u_{r} l j \ldots j, 0 \leq r \leq n-2$, be two adjacent vertices of graph $S(n, k)$. We identify them in one vertex and write $u_{1} u_{2} \ldots u_{r}\{j, l\}$ or shortly $u_{(r)}\{j, l\}, j \neq l$ and $j, l \in\{1, \ldots, k\}$, where $u_{(0)}\{j, l\}$ means $\{j, l\}$. We get a 2-parametric Sierpiński gasket graph $S[n, k]$ (shortly k-Sierpiński gasket graph). We already know the case for $k=3$, namely the Sierpiński gasket $S_{n}=S[n, 3]$. An example of $S[2,4]$ is shown in the Fig. 2.

Since $S(n, k)$ is built of k copies of $S(n-1, k)$, the graph $S[n, k]$ is also built of k copies of $S[n-1, k]$. We denote each copy with $S_{i}[n, k]$. Note that $S_{i}[n, k]$ and $S_{j}[n, k], i \neq j$, share one vertex, that is $\{i, j\}$.

It is known, that $S(1, k)$ is isomorphic to K_{k}. Hence, $S[1, k]$ is also isomorphic to K_{k}.

Adjacency of vertices in $S[n, k]$ is given in the next proposition.
Proposition 2.1 Let $n \geq 2$ and $u=u_{1} \ldots u_{r}\{i, j\}$ be a vertex in $S[n, k]$, $i, j \in\{1, \ldots, k\}, i \neq j$.

Figure 2: Graph $S[2,4]$
(i) If $0 \leq r \leq n-3$, then u is adjacent to

$$
\bar{u}_{(n-2)}\{j, l\}, l \in\{1, \ldots, k\} \backslash\{j\},
$$

and

$$
\overline{\bar{u}}_{(n-2)}\{i, l\}, l \in\{1, \ldots, k\} \backslash\{i\} .
$$

(ii) If $r=n-2$, then u is adjacent to

$$
\begin{aligned}
& \bar{u}_{(n-2)}\{i, l\}, l \in\{1, \ldots, k\} \backslash\{i, j\}, \\
& \overline{\bar{u}}_{(n-2)}\{j, l\}, l \in\{1, \ldots, k\} \backslash\{i, j\},
\end{aligned}
$$

$\begin{cases}\bar{u}_{(t-1)}\left\{i, u_{t}\right\}, & t \text { largest index with } u_{t} \neq i, 1 \leq t \leq n-2, \\ i \ldots i, & \text { else, }\end{cases}$
and

$$
\begin{cases}\overline{\bar{u}}_{(s-1)}\left\{j, u_{s}\right\}, & s \text { largest index with } u_{s} \neq j, 1 \leq s \leq n-2, \\ j \ldots j, & \text { else. }\end{cases}
$$

Proof. (i) Let $r \leq n-3$. Take two vertices $\bar{u}=u_{1} \ldots u_{r} i j \ldots j j$ and $\overline{\bar{u}}=u_{1} \ldots u_{r} j i \ldots i \bar{i}$, where \bar{u} ends with at least two j 's and $\overline{\bar{u}}$ with at least two i 's. Then \bar{u} is in $S(n, k)$ adjacent to $u_{1} \ldots u_{r} i j \ldots j l, l \in\{1, \ldots, k\} \backslash\{j\}$. In the construction procedure this vertex contracts to $\bar{u}_{(n-2)}\{j, l\}, l \in$ $\{1, \ldots, k\} \backslash\{j\}$ in $S[n, k]$. Similarly, $\overline{\bar{u}}$ is adjacent to $u_{1} \ldots u_{r} j i \ldots i l, l \in$ $\{1, \ldots, k\} \backslash\{i\}$, which contracts to $\overline{\bar{u}}_{(n-2)}\{i, l\}, l \in\{1, \ldots, k\} \backslash\{i\}$ in $S[n, k]$. The argument also holds for $r=0$.
(ii) Let $r=n-2$. Then $\bar{u}=u_{1} \ldots u_{n-2} i j$ and $\overline{\bar{u}}=u_{1} \ldots u_{n-2} j i$. In $S(n, k)$, the vertex \bar{u} is adjacent to $u_{1} \ldots u_{n-2} i l, l \in\{1, \ldots, k\} \backslash\{i, j\}$, which contracts to $\bar{u}_{(n-2)}\{i, l\}, l \in\{1, \ldots, k\} \backslash\{i, j\}$ in $S[n, k]$. It is also adjacent to $x=u_{1} \ldots u_{n-2} i i$. If $u_{1}=\ldots=u_{n-2}=i$, then \bar{u} is adjacent to the extreme vertex $i \ldots i$ in $S[n, k]$. If not all of u_{1}, \ldots, u_{n-2} are equal to i, then let t be the largest index that $u_{t} \neq i$. Then the vertex \bar{u} is adjacent to $x=$ $u_{1} \ldots u_{t} i \ldots i, t \in\{1, \ldots, n-2\}$. In this case, \bar{u} is adjacent to $\bar{u}_{(t-1)}\left\{i, u_{t}\right\}$. Similarly, the vertex $\overline{\bar{u}}$ is adjacent to $u_{1} \ldots u_{n-2} j l, l \in\{1, \ldots, k\} \backslash\{i, j\}$, which contracts to $\overline{\bar{u}}_{(n-2)}\{i, l\}, l \in\{1, \ldots, k\} \backslash\{i, j\}$ in $S[n, k]$. The vertex $\overline{\bar{u}}$ is also adjacent to $x=u_{1} \ldots u_{n-2} j j$. If $u_{1}=\ldots=u_{n-2}=j$, then $\overline{\bar{u}}$ is adjacent to the extreme vertex $j \ldots j$ in $S[n, k]$. If not all of u_{1}, \ldots, u_{n-2} are equal to j, then let s be the largest index that $u_{s} \neq j$. Then the vertex $\overline{\bar{u}}$ is adjacent to $y=u_{1} \ldots u_{s} j \ldots j, s \in\{1, \ldots, n-2\}$. Therefore, $\overline{\bar{u}}$ is adjacent to $\overline{\bar{u}}_{(t-1)}\left\{i, u_{t}\right\}$.

It is easy to see that the graphs $S[n, k]$ have k extreme vertices of degree $k-1$ and $|V(S[n, k])|-k$ remaining vertices of degree $(k-1)+(k-1)=$ $2(k-1)$. We immediately get:

Proposition 2.2 Graphs $S[n, k]$ are Eulerian if and only if k is odd.
To gain more knowledge of the structure of $S[n, k]$, we give the number of vertices and edges of $S[n, k]$.

Proposition 2.3 Graphs $S[n, k]$ have $\frac{k}{2}\left(k^{n-1}+1\right)$ vertices and $\frac{k-1}{2} \cdot k^{n}$ edges.

Proof. A vertex in $S[n, k]$ is of the form $u_{1} u_{2} \ldots u_{r}\{j, l\}$. We have k possibilities for every $u_{i}, i \in\{1, \ldots, r\}$, and $\binom{k}{2}$ possibilities for the unordered pair $\{j, l\}$. There are also k extreme vertices left. We get:

$$
|V(S[n, k])|=k+\sum_{r=0}^{n-2} k^{r} \cdot\binom{k}{2}=\frac{k}{2}\left(k^{n-1}+1\right)
$$

We determine the number of edges by using the formula:

$$
\begin{aligned}
|E(S[n, k])| & =\frac{1}{2} \sum_{u \in S[n, k]} \operatorname{deg}(u) \\
& =\frac{1}{2}\left(k(k-1)+\left(\frac{k}{2}\left(k^{n-1}+1\right)-k\right) \cdot 2(k-1)\right) \\
& =\binom{k}{2} k^{n-1}=\frac{k-1}{2} \cdot k^{n}
\end{aligned}
$$

Remark 2.4 Alternatively, for all $k \geq 1$, a proof can be based on the recurrence relations $|V(S[n+1, k])|=k \cdot|V(S[n, k])|-\binom{k}{2}, n \geq 1,|V(S[1, k])|=$ k, since $\binom{k}{2}$ vertices are merged and $S[1, k]$ is isomorphic to K_{k}. Further, $|E(S[n+1, k])|=k \cdot|E(S[n, k])|, n \geq 1,|E(S[1, k])|=\binom{k}{2}$, since the graph $S[n+1, k]$ consists of k copies of $S[n, k]$.

Corollary 2.5 For all $n, k \in \mathbb{N}:|E(S[n, k])|=(k-1) \cdot|V(S[n, k])|-\binom{k}{2}$.
Applying Proposition 2.3 and setting $k=3$ we get:
Corollary 2.6 Graphs S_{n} have $\frac{3}{2}\left(3^{n-1}+1\right)$ vertices and 3^{n} edges.

3 Hamiltonicity

In [25], Tequia and Godbole proved that graphs S_{n} are Hamiltonian. In this section we generalize their statement to $S[n, k]$. First, we need a lemma.

Lemma 3.1 Graphs $S[n, k], k \geq 2$, have a Hamiltonian path connecting two arbitrary extreme vertices.

Proof. The statement holds for $k=2$ because $S[n, 2]$ is isomorphic to a path on $2^{n-1}+1$ vertices.

Let $k \geq 3$. This statement is true for $n=1$, since $S[1, k]$ is isomorphic to K_{k}. Let $n \geq 2$. Without lose of generality we start in vertex $1 \ldots 1$. Since $S_{1}[n, k]$ is isomorphic to $S[n-1, k]$ we can find a Hamiltonian path from $1 \ldots 1$ to the vertex $\{1,2\}$. With the same argument, we can find a Hamiltonian path in $S_{2}[n, k]$ from the vertex $\{1,2\}$ to the vertex $\{2,3\}$. Next we find a Hamiltonian path in $S_{3}[n, k]$ from the vertex $\{2,3\}$ to the vertex $\{3,4\}$ by avoiding $\{1,3\}$ (since we locally have an induced complete graph, avoiding is possible). We continue the procedure in $S_{4}[n, k]$ by
finding a Hamiltonian path between vertices $\{3,4\}$ and $\{4,5\}$ by avoiding vertices $\{1,4\}$ and $\{2,4\}$. In general we find a Hamiltonian path in $S_{i}[n, k], i \in\{3, \ldots, k-1\}$, from the vertex $\{i-1, i\}$ to the vertex $\{i, i+1\}$ by avoiding vertices $\{1, i\},\{2, i\}, \ldots,\{i-2, i\}$. Finally, we find a Hamiltonian path in $S_{k}[n, k]$ from vertex $\{k-1, k\}$ to vertex $k \ldots k$ by avoiding vertices $\{1, k\},\{2, k\}, \ldots,\{k-2, k\}$. All together we have constructed a Hamiltonian path between vertices $1 \ldots 1$ and $k \ldots k$.

Similarly, we can find a Hamiltonian path between any two different extreme vertices in $S[n, k]$.

Figure 3: A Hamiltonian cycle in $S[2,4]$

Theorem 3.2 Graphs $S[n, k]$ are Hamiltonian, for any $n \geq 1$ and $k \geq 3$.
Proof. The statement is true for $n=1$, since $S[1, k]$ is a complete graph.
Let $n \geq 2$. By Lemma 3.1, we can find a Hamiltonian path from the vertex $\{k, 1\}$ to the vertex $\{1,2\}$ in $S_{1}[n, k]$. Similarly, we can find a Hamiltonian path between vertices $\{1,2\}$ and $\{2,3\}$ in $S_{2}[n, k]$. Now we find a Hamiltonian path in $S_{3}[n, k]$ from between vertices $\{2,3\}$ and $\{3,4\}$ by avoiding vertex $\{1,3\}$. In general, we find a Hamiltonian path in $S_{i}[n, k]$ between vertices $\{i-1, i\}$ and $\{i, i+1\}, i \in\{3, \ldots, k-1\}$, by avoiding vertices $\{1, i\},\{2, i\}, \ldots,\{i-2, i\}$. Finally, we find a Hamiltonian path in $S_{k}[n, k]$ from the vertex $\{k-1, k\}$ to the vertex $\{k, 1\}$ by avoiding vertices $\{2, k\}, \ldots,\{k-2, k\}$. Again, all the avoiding is possible because
locally we have an induced complete graph. All the paths together form a Hamiltonian cycle in $S[n, k]$.

Fig. 3 shows a Hamiltonian cycle in $S[2,4]$ obtained with the above construction. Once again, by setting $k=3$ we get:

Corollary 3.3 [25] Graphs S_{n} are Hamiltonian.

4 The chromatic number

Since $S[n, k]$ is built of complete graphs K_{k}, it is obvious that $\chi(S[n, k]) \geq$ k. We prove the following.

Theorem 4.1 For any $n \geq 1$ and any $k \geq 1, \chi(S[n, k])=k$.
Proof. For $k=1$ and $k=2$ we get a vertex and a path on $2^{n-1}+1$ vertices respectively for which the statement is true. Let $k \geq 3$. For $n=1$ we have a complete graph on k vertices. It is well known that $\chi\left(K_{k}\right)=k$. Let $n \geq 2$.

Graph $S[n, k]$ consists of k copies of $S[n-1, k]$, each denoted with $S_{i}[n, k], i \in\{1, \ldots, k\}$. Two copies, say $S_{i}[n, k]$ and $S_{j}[n, k], i \neq j$, share a common vertex $\{i, j\}$. For every $i, j \in\{1, \ldots, k\}, i \neq j$, expand this vertex into two vertices $i j \ldots j$ and $j i \ldots i$ connected with a linking edge.

Note that for $n \geq 3$ the expansion process described above is not the inverse process of getting $S[n, k]$ from the $S(n, k)$, since we do not expand all the vertices that were contracted in $S(n, k)$.

By induction assumption graph $S_{1}[n, k]$ can be colored with k colors. Denote the color of the vertex $1 j \ldots j, j \in\{1, \ldots, k\}$, with $c_{1+j-2}(\bmod k)$, where $c_{1+j-2}(\bmod k) \in\{1, \ldots, k\}$. Then graphs $S_{i}[n, k], i \in\{2, \ldots, k\}$, can also be colored in such a way that a vertex $i j \ldots j$ receives color $c_{i+j-2(\bmod k)} \in\{1, \ldots, k\}$. This coloring is the same as the coloring used to color graph $S_{1}[n, k]$, only to be rotated clockwise. In other words we color graph $S[n-1, k]$ like $S_{1}[n, k]$ and rotate it clockwise $(i-1)$-times to get the coloring of graph $S_{i}[n, k]$. See Fig. 4 for the visualization of the rotated colorings.

A quick observation is that we obviously do not get a proper vertex coloring of the expanded graph $S[n, k]$ since vertices $i j \ldots j$ and $j i \ldots i, i \neq j$, receive the same color, that is $c_{i+j-2}(\bmod k)$. By contracting the previously expanded linking edges, and getting $S[n, k]$, the merged vertex $\{i, j\}$ receives color $c_{i+j-2}(\bmod k)$. Therefore, we get a proper vertex coloring of $S[n, k]$.

By setting $k=3$ we immediately get the next result:

Figure 4: Vertex coloring of graph $S[n, k]$
Corollary 4.2 [25] For any $n \geq 1, \chi\left(S_{n}\right)=3$.
We conclude the paper by asking what is the chromatic index and the total chromatic number of $S[n, k]$?

Acknowledgment

I am grateful to the referee for several useful suggestions, to Sandi Klavžar for many useful comments and for turning my attention to the new family of graphs.

References

[1] D. Berend and A. Sapir, The diameter of Hanoi graphs, Inform. Process. Lett. 98 (2006) 79-85.
[2] C. N. Campos and C. P. de Mello, A result on the total colouring of powers of cycles, Discrete Appl. Math. 155 (2007) 585-597.
[3] Shu-Chiuan Chang and Lung-Chi Chen, Number of connected spanning subgraphs on the Sierpiński gasket, Discrete Mathematics and Theoretical Computer Science vol. 11:1 (2009) 55-78.
[4] S. Gravier, S. Klavžar and M. Mollard, Codes and $L(2,1)$-labelings in Sierpiński graphs, Taiwan. J. Math. 9 (2005) 671-681.
[5] A. Hinz, S. Klavžar, U. Milutinović, D. Parisse and C. Petr, Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence, European J. Combin. 26 (2005) 693-708.
[6] A. M. Hinz and D. Parisse, On the planarity of Hanoi graphs, Expo. Math. 20 (2002) 263-268.
[7] A. M. Hinz and D. Parisse, Coloring Hanoi and Sierpiński graphs, manuscript, 2006.
[8] A. M. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab. Theory Related Fields 87 (1990) 129-138.
[9] M. Jakovac and S. Klavžar, Vertex-, edge-, and total-colorings of Sierpiński-like graphs, Discrete Math. 309 (2009) 1548-1556.
[10] A. Jonsson, A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z. 250 (2005) 599-609.
[11] V. A. Kaimanovich, Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization, Fractals in Graz 2001, 145-183, Trends Math., Birkhäuser, Basel, 2003.
[12] S. Klavžar, Coloring Sierpiński graphs and Sierpiński gasket graphs, Taiwan. J. Math. 12 (2008) 513-522
[13] S. Klavžar and U. Milutinović, Graphs $S(n, k)$ and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997) 95104.
[14] S. Klavžar, U. Milutinović and C. Petr, Hanoi graphs and some classical numbers, Expo. Math. 23 (2005) 371-378.
[15] S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, J. Graph Theory 50 (2005) 186-198.
[16] F. Klix and K. Rautenstrauch-Goede, Struktur- and Komponentenanalyse von Problemlösungsprozessen, Z. Psychol. 174 (1967) 167-193.
[17] S. L. Lipscomb, Fractals and Universal Spaces in Dimension Theory, Springer Science+Business Media, LLC, 233 Spring Street, NY, 2009.
[18] S. L. Lipscomb and J. C. Perry, Lipscomb's $L(A)$ space fractalized in Hilbert's $l^{2}(A)$ space, Proc. Amer. Math. Soc. 115 (1992) 1157-1165.
[19] U. Milutinović, Completeness of the Lipscomb space, Glas. Mat. Ser. III 27(47) (1992) 343-364.
[20] D. Parisse, On some metric properties of the Sierpiński graphs $S(n, k)$, Ars Combin. 90 (2009) 145-160.
[21] T. Pisanski and T. W. Tucker, Growth in repeated truncations of maps, Atti Sem. Mat. Fis. Univ. Modena 49 (2001) 167-176.
[22] D. Romik, Shortest paths in the Tower of Hanoi graph and finite automata, SIAM J. Discrete Math. 20 (2006) 610-622.
[23] R. S. Scorer, P. M. Grundy and C. A. B. Smith, Some binary games, Math. Gaz. 28 (1944) 96-103.
[24] H. Sydow, Zur metrischen Erfassung von subjektiven Problemzuständen und zu deren Veränderung im Denkprozeß, Z. Psychol. 177 (1970) 145-198.
[25] A. M. Teguia and A. P. Godbole, Sierpiński gasket graphs and some of their properties, Australas. J. Combin. 35 (2006) 181-192.
[26] E. Teu and S. Wagner, The number of spanning tree of finite Sierpiński graphs, Discrete Mathematics and Theoretical Computer Science 2006 proc. AG (2006) 411-414.
[27] D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.

