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Abstract

The b-chromatic index ϕ′(G) of a graph G is the largest integer k such that
G admits a proper k-edge coloring in which every color class contains at least
one edge incident to some edge in all the other color classes. The b-chromatic
index of trees is determined and equals either to a natural upper bound m′(T )
or one less, where m′(T ) is connected with the number of edges of high degree.
Some conditions are given for which graphs have the b-chromatic index strictly
less than m′(G), and for which conditions it is exactly m′(G). In the last part of
the paper regular graphs are considered. It is proved that with four exceptions,
the b-chromatic number of cubic graphs is 5. The exceptions are K4, K3,3, the
prism over K3, and the cube Q3.

Key words: b-chromatic index, regular graphs, trees;
AMS subject classification (2010): 05C15, 05C76

1 Introduction and preliminaries

A b-vertex coloring of a graph G is a proper vertex coloring of G such that each color
class contains a vertex that has at least one vertex in every other color class in its
neighborhood. The b-chromatic number ϕ(G) of a graph G is the largest integer k
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for which G has a b-vertex coloring with ϕ(G) colors. This concept was introduced
in [15] by Irving and Manlove by the certain partial ordering on all proper colorings
in contrast to chromatic number χ(G). Namely, χ(G) is the minimum of colors used
among all minimal elements of this partial ordering, while ϕ(G) is the maximum of
colors used among all minimal elements of the same partial ordering.

Since then the b-chromatic number has drawn quite some attention among the
scientific community. Already Irving and Manlove [15] have shown, that computing
ϕ(G) is an NP -complete problem in general. Hence an approximation approach
described in [7] seems natural. The b-chromatic number of some special graph
classes has been studied in [9, 8, 10, 3]. The bounds for the b-chromatic number
have been studied in [19] in general and for some graph classes in [6, 21, 1, 2].
The b-chromatic number has been considered with respect to subgraphs in [12, 18],
while the b-chromatic number under graph operations was considered in [20] for
the Cartesian product and in [17] for the other three standard products. In [4] an
interesting concept of b-continuous graphs was introduced as graphs for which there
exists a t-b-vertex coloring for every integer t between χ(G) and ϕ(G).

Intuitively, we need to have enough vertices of high enough degree, at least one
in each color class. Let v1, . . . , vn be such a sequence of vertices, that d(v1) ≥ · · · ≥
d(vn). Then m(G) = max{i : d(vi) ≥ i − 1} is an upper bound for ϕ(G). From
this point of view, d-regular graphs are of special interest, since m(G) = d + 1 for
a d-regular graph G and every vertex is a candidate to have each color class in its
neighborhood. Indeed, in [22] it was shown that if a d-regular graph G has at least
d4 vertices, then the equality ϕ(G) = d + 1 holds. This bound was later improved
to 2d3 in [5]. In particular it was shown in [16], that there are only four exceptions
among cubic graphs with ϕ(G) < 4, one of them being the Petersen graph.

We introduce in this work an edge version of the b-vertex coloring and the
b-chromatic number, namely the b-edge coloring and the b-chromatic index, respec-
tively. It is a natural approach to study vertex concepts on edges and vice versa.
The classical example is the chromatic number and its edge version the chromatic
index. But we can also find more recent dates. For instance in [14] the edge Wiener
index was defined in four different ways. One of these approaches, via the line graph,
we also use here.

A b-edge coloring of a graph G is a proper edge coloring of G such that each
color class contains an edge that has at least one incident edge in every other color
class and the b-chromatic index of a graph G is the largest integer ϕ′(G) for which
G has a b-edge coloring with ϕ′(G) colors. An edge e of color i that has all other
colors on its incident edges is called color i dominating edge or we say that color i is
realized on e. There is no evidence for any publications regarding the b- chromatic
index, but we managed to find the manuscript [23] in which authors show that this
problem is NP-complete.

In the rest of this section we recall some standard notation that will be used
later. In the second section we first describe some bounds, compute ϕ′(T ) for every
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tree T , and show that general bounds with respect to ∆(G) cannot be improved.
In the third section we show that for many regular graphs ϕ′(G) attains the trivial
upper bound. Next section is devoted to graphs where ϕ′(G) is strictly less than the
trivial upper bound and in the last section we describe the complete list of cubic
graphs for which the trivial upper bound is not achieved.

Let G be a graph. The line graph L(G) of a graph G is the graph with V (L(G)) =
E(G), and two edges of G are adjacent in L(G) if they share a common vertex.
Clearly ϕ′(G) = ϕ(L(G)). The number of vertices incident with the vertex v is
called the degree of v and is denoted by d(v). If all vertices have the same degree d,
we say that G is a d-regular graph.

The Cartesian product G�H of graphsG andH has the vertex set V (G)×V (H).
Two vertices (g, h) and (g′, h′) are adjacent if they are adjacent in one coordinate
and equal in the other, i.e. g = g′ and hh′ ∈ E(H) or gg′ ∈ E(G) and h = h′.
The Cartesian product is associative (see [11]) and hence we can write more factors
without brackets: G1� · · ·�Gk. If every factor Gi, i ∈ {1, . . . , k}, is isomorphic
to a complete graph, then we call such a Cartesian product a Hamming graph. For
more about Cartesian product graphs in general or Hamming graphs in particular
see the books [11, 13].

2 Bounds, trees, and realizability

Every proper edge coloring of a graph G with χ′(G) colors is also a b-edge coloring.
If not, then every edge of a color class with no realizable edge can be recolored by
some other color. This yields a proper edge coloring with less than χ′(G) colors,
which is a contradiction. Hence χ′(G) is the trivial lower bound of ϕ′(G).

Let e = uv be an edge of G. Denote with Nu(e) the set of edges in G different
from e that share u with e, and Nv(e) the set of edges in G different from e that
share v with e. By N(e) we denote the neighborhood of an edge e, which is N(e) =
Nu(e)∪Nv(e). The degree of an edge e is denoted with d(e) and is equal to |N(e)|. A
(realizable) edge e can have at most 2∆(G)−2 colors in its neighborhood (∆(G)−1
in every end vertex). Together with the color of e, this gives a trivial upper bound
for ϕ′(G), namely 2∆(G) − 1. The trivial upper bound is meaningful only if there
exist enough (≥ 2∆(G)−1) edges in G of degree 2∆(G)−2, such that every color is
realized. Otherwise we can lower the trivial upper bound as follows. Let e1, . . . , em
be edges of G and d(e1) ≥ . . . ≥ d(em) the degree sequence of these edges. Then
m′(G) = max{i : d(ei) ≥ i− 1} is an improved upper bound for ϕ′(G). Hence

∆(G) ≤ χ′(G) ≤ ϕ′(G) ≤ m′(G) ≤ 2∆(G)− 1 .

Note that for regular graphs m′(G) = 2∆(G)−1 and for stars K1,` we have m
′(G) =

∆(G). Every realizable edge of a b-edge coloring must have degree at leastm′(G)−1.
Hence we call an edge e with d(e) ≥ m′(G)− 1 a dense edge.
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The distance between edges e, f ∈ E(G) is defined as the number of edges on a
shortest path between e and f (excluding e and f).

We now present the exact value for the b-chromatic index of trees. We use a
similar approach than the one used by Irving and Manlove in [15] for the b-chromatic
number of trees.

Definition 2.1 A tree T is called pivoted if it has exactly m′(T ) dense edges and
an edge e such that:

1. Edge e is not dense.

2. There exist two dense edges that are incident with edge e and are not incident
with each other.

3. Each dense edge is incident to e or to a dense edge incident to e.

4. Any dense edge incident to e and to another dense edge which is not incident
to e has degree m′(T )− 1.

We call e the pivot of T (for an example see Figure 1).

Clearly, the pivot is unique if it exists.

Theorem 2.2 If T is a pivoted tree then ϕ′(T ) = m′(T )− 1.

Proof. Let e be the pivot of the tree T and E(T ) = {e1, . . . , e|E(T )|} its edges.
Let E′(T ) = {e1, . . . , em′(T )}, m

′(T ) ≤ |E(T )|, be dense edges of T . In addition,
let e1, . . . , ep, p ≤ m′(T ), be dense edges incident with e and e1, . . . , eq, q ≤ p,
dense edges incident with e that have at least one dense edge not incident to e as a
neighbor. Clearly p ≥ 2 by Property 2 of Definition 2.1 and q ≥ 1, since e is not a
dense edge.

Let us first show that ϕ′(T ) < m′(T ). Suppose that there exists a b-edge coloring
c of T with m′(T ) colors. Without loss of generality assume that c(ei) = i, i ∈
{1, . . . ,m′(T )}. Since d(ej) = m′(T )−1, j ∈ {1, . . . , q}, edges e1, . . . , eq are incident
to exactly one edge of any other color. Moreover, every dense edge ep+1, . . . , em′(T )

is incident with exactly one edge from e1, . . . , eq. Now e cannot receive color j ∈
{1, . . . , p}. Also it cannot receive color j ∈ {p + 1, . . . ,m′(T )}, or else some ek,
k ∈ {1, . . . , q}, is incident to two edges of that color and is not realizable. Hence
there is no available color for e.

Next we prove that ϕ′(T ) = m′(T )− 1 by constructing a proper b-edge coloring
c of T with m′(T )− 1 colors. By Property 2 of Definition 2.1 there exist two edges
e1 and ei, 2 ≤ i ≤ p, which are incident to e and are not incident with each other.
Also for some r ∈ {q+1, . . . ,m′(T )} there exists a dense edge er which is incident to
e1 but not to e. Set c(ej) = j−1, j ∈ {2, . . . ,m′(T )}, c(e) = r−1, and c(e1) = i−1.
With this all dense edges are colored together with e.
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Next we consider uncolored edges that are incident to some dense edge ei, i ∈
{1, . . . ,m′(T )}. Let f be such an edge. Clearly f is not dense. There are at most
m′(T ) − 2 colored edges that are incident to f . Hence, we can choose a free color
for edge f . Now we repeat the described procedure by choosing another uncolored
edge incident to ei. Each time we choose a color that was not in the neighborhood
of ei. Hence, after coloring all the neighbors of ei, edge ei becomes a dominating
edge. This argument applies to each ei, i ∈ {1, . . . ,m′(T )}, in turn.

Finally suppose that e` is uncolored for some ` ∈ {m′(T ) + 1, . . . , |E(T )|}. As
d(e`) < m′(T ) − 1, not all of colors 1, . . . ,m − 1 appear on neighbors of e`. Hence
there is some color available for e`. It follows that the constructed coloring is a
b-edge coloring of T and ϕ′(T ) = m′(T )− 1. �

In order to deal with trees that are not pivoted we give the following definition
which is closely related to pivoted trees.

Definition 2.3 Let T be a tree and let E′ be the set of dense edges of T . Suppose
that E′′ is a subset of E′ of cardinality m′(T ). Then E′′ encircles some edge e ∈
E\E′′ if:

1. There exist two dense edges in E′′ that are incident with edge e and are not
incident with each other.

2. Each dense edge in E′′ is incident to e or to a dense edge in E′′ incident to e.

3. Any dense edge in E′′ incident to e and to another dense edge in E′′ which is
not incident to edge e has degree m′(T )− 1.

We refer to e as an encircled edge with respect to E′′ (for an example see Figure 1).

Figure 1: A pivoted tree T with m′(T ) = 6, encircled edge e, and ϕ′(T ) = 5

Clearly the pivot is encircled by the set of dense edges in a pivoted tree, but
encircled edge of some tree T is not necessarily the pivot of T . For this observe
a tree T with the encircled edge but more than m′(T ) dense edges. We give the
additional definition that incorporates the concept of encirclement.
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Definition 2.4 Let T be a tree and let E′ be the set of dense edges of T . Suppose
that E′′ is a subset of E′ of cardinality m′(T ). Then E′′ is a good set with respect
to T if:

1. Set E′′ does not encircle any edge in E\E′′.

2. Any edge e /∈ E′′ with d(e) ≥ m′(T ) is incident to some f ∈ E′′ with d(f) =
m′(T )− 1.

Lemma 2.5 Let T be a tree. If T is not a pivoted tree, then there exists a good set
for T .

Proof. Let E′ be the set of dense edges of T . By the definition of m′(T ), we
may choose E′′ ⊆ E′ with |E′′| = m′(T ) such that every edge in E\E′′ has degree
less than m′(T ). Let E = {e1, . . . , e|E(T )|} be ordered in such a way that E′′ =
{e1, . . . , em′(T )}.

If E′′ does not encircle an edge, we are done since E′′ satisfy Properties 1 and
2 of Definition 2.4. So we may assume that E′′ encircles some edge e /∈ E′′. Let
e1, . . . , ep be edges of E′′ incident to e, p ≤ m′(T ), and e1, . . . , eq, q ≤ p, edges of
E′′ incident to e each having at least one other member of E′′, which is not incident
to e, as a neighbor. Clearly p ≥ 2 by Property 1 of Definition 2.3. Also q ≥ 1,
otherwise p = m′(T ) by Property 2 of Definition 2.3, and hence d(e) ≥ m′(T ), which
contradicts the choice of E′′. Thus there exists an edge er, p + 1 ≤ r ≤ m′(T ),
incident to e1 but not to e. Let ei, 2 ≤ i ≤ p, be an edge incident to e but not to e1
(such an edge exists according to Property 1 of Definition 2.3).

Case 1: Suppose that edge e is dense. By the choice of E′′ we have d(e) =
m′(T ) − 1. Let W = (E′′\{ei}) ∪ {e}. Also by the choice of E′′, the only edge
not in W that can have degree at least m′(T ) is ei. But ei is incident to e ∈ W ,
and d(e) = m′(T ) − 1. So W satisfies Property 2 of Definition 2.4. Let f ∈ E\W
be an edge different from ei which is incident to some edge of W . Property 1 of
Definition 2.3 is not fulfilled for f by W and f is not encircled by W . Also ei is not
encircled by Property 2 of Definition 2.3, since er is to far away from ei. All other
edges from E\W are not incident with any edge from W and can not be encircled
by W . Hence Property 1 of Definition 2.3 is also fulfilled and W is a good set.

Case 2: Now suppose that e is not dense. If |E′| = m′(T ), then tree T is pivoted
for e which is a contradiction. Hence |E′| > m′(T ) and there exists a dense edge
f ∈ E\E′′. Let W = (E′′\{e1}) ∪ {f}. Suppose that W encircles some edge g. At
most one edge not in W lies on the path between two arbitrary non-incident edges
of W , namely g. But edges e1 /∈ W and e /∈ W lie on the path between edges ei ∈ W
and er ∈ W . This contradiction implies that W satisfies Property 1 of Definition 2.4.
Also, W satisfies Property 2 of Definition 2.4, since d(e1) = m′(T )− 1 by Property
3 of Definition 2.3, and therefore every dense edge outside W has degree less than
m′(T ). �
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We establish next the b-chromatic index of trees that are not pivoted.

Theorem 2.6 If T is a tree that is not pivoted, then ϕ(T ) = m′(T ).

Proof. By Lemma 2.5, we may suppose that W = {e1, . . . , em′(T )} is a good set
of m′(T ) dense edges of T . Such a choice is possible, since T is not pivoted. Attach
color i to edge ei, i ∈ {1, . . . ,m′(T )}. We will show that this partial coloring can be
extended to a partial b-edge coloring of T with m′(T ) colors, in such a way that each
ei is a dominating edge, and then to a b-edge coloring of T with the same number
of colors.

Let U = N(W )\W . We partition the set U into two subsets as follows: an edge
e ∈ U is called inner if there exist two edges ei, ej ∈ W , at distance at most 2 from
each other, with e on the path between them; e ∈ U is called outer otherwise. We
first extend the coloring to all inner edges, then to outer edges and finally to all the
remaining edges.

Suppose without loss of generality that e1, . . . , em′(T ) are numbered in such a
way that, if i < j, then ei is incident to at least as many inner edges as ej . Let
e1, . . . , ep have at least two inner neighbors, ep+1, . . . , eq have one inner neighbor,
and eq+1, . . . , em′(T ) have no inner neighbors. Note that P = {e1, . . . , ep} or Q =
{ep+1, . . . , eq} may be empty.

We begin by coloring uncolored inner neighbors of ei for each i from 1 to q.
Firstly, we deal with inner neighbors of e1, . . . , ep (assuming that P 6= ∅). For the
induction step, suppose that i ≤ p, and that inner neighbors of e1, . . . , ei−1 have
been colored in such a way that:

(a) if an inner edge e is assigned its current color, say color k, during the coloring
of the inner neighbors of ej , then the path from e to ek passes through at least
one endvertex of ej ,

(b) no two neighbors of any edge ej have the same color,

(c) no two incident edges have the same color.

Note that basis of induction for e1 follows by nothing. We show how to color
uncolored inner neighbors of ei so that these three properties continue to hold.

Let edges x1, . . . , xs be inner neighbors of ei. For each j ∈ {1, . . . , s}, because
xj is inner, there exists an edge ecj ∈ W , cj 6= i, ecj is at distance at most 1 from
xj , and xj is on the path from ei to ecj . Furthermore, edges ec1 , . . . , ecs are distinct
since there are no cycles in a tree.

Case 1: Suppose that s > 1. Note that ci is the color of eci . Let d1, . . . , ds be s
different colors with {d1, . . . , ds} = {c1, . . . , cs} and di 6= ci for all i. Apply color dj
to xj , j ∈ {1, . . . , s}. It is straightforward to verify that Properties (a), (b), and (c)
hold.
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Case 2: Let s = 1. Because ei has at least two inner neighbors, there is some
neighbor f , which is already colored, say by the color d. Attach d to x1 and c1 to
f . Again, it is not difficult to verify that (a), (b), and (c) hold.

Now we deal with uncolored inner neighbors of ep+1, . . . , eq (assuming that Q 6=
∅). Let z1, . . . , zk be those inner neighbors. Clearly ei, i ∈ {p + 1, . . . , q}, has at
most one neighbor zj . Thus assigning colors to z1, . . . , zk, at most one neighbor of
each ei is colored. It therefore suffices to ensure that, in assigning a color to each
zj , the following holds:

(d) the partial coloring remains proper,

(e) no ei of degree exactly m′(T )− 1 has two neighbors of the same color.

Let C be the set of colors defined as follows:

c ∈ C ⇔ (ec ∈ N (zj)) ∨
(
∃d : ec ∈ N (ed) ∧ ed ∈ N (zj) ∧ d (ed) = m′(T )− 1

)
,

where c, d ∈ {1, . . . ,m′(T )}. If we choose a color c /∈ C, then (d) and (e) continue
to hold. If C = {1, . . . ,m′(T )}, then zj is encircled by W , which is a contradiction
since W is a good set. Hence there is always a choice of color for zj . Note that
each er, r ∈ {p+ 1, . . . , q}, has only one inner neighbor colored in this way. Thus if
d(er) ≥ m′(T ), then at most two edges incident to er have the same color. All inner
edges are now colored.

Next we deal with outer edges of U . Outer neighbors of ei, i ∈ {1, . . . ,m′(T )}
can be colored independently. Let f be an outer neighbor. The only colored edges
incident to f are some dense edges and some inner edges. But they are all incident
in the same endvertex of edge f , which means that every outer neighbor has at
most ∆(T ) − 1 colored neighbors. Hence, we can choose a free color for edge f
since m′(T ) > ∆(T ) − 1. Now we repeat the described procedure by choosing
another uncolored edge incident to ei. Each time we choose a color that is not in
the neighborhood of ei. Hence, after coloring all neighbors of ei, edge ei becomes a
dominating edge. This argument applies to each ei, i ∈ {1, . . . ,m′(T )} in turn.

We may extend this partial b-edge coloring withm′(T ) colors to a b-edge coloring
of T with m′(T ) colors as follows. Any remaining uncolored edge e must satisfy
d(e) ≤ m′(T ) − 1. For, if d(e) ≥ m′(T ), then by Property 2 of Definition 2.4, e
is incident to some edge f ∈ W , where d(f) = m′(T ) − 1, so that e was already
colored. An edge e of degree less than m′(T ) cannot have neighbors colored with all
colors 1, . . . ,m′(T ). Hence, there is some color available for edge e. This completes
the construction of a b-edge chromatic coloring of T with m′(T ) colors. �

Testing whether a tree is pivoted may be carried out in polynomial time (one
needs to check for dense edges the neighborhood and the second neighborhood of
each edge that is not dense). From Theorems 2.2 and 2.6 it follows that we can
compute the b-chromatic index of a tree in polynomial time.
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Corollary 2.7 If T is a tree and L(T ) is its line graph, then ϕ(L(T )) can be deter-
mined in polynomial time.

As we will see next, trees are already enough to show that the lower bound and
the upper bound are tight with respect to the maximum degree. For this let k be
a fixed positive integer and let T be a tree on n vertices with ∆(T ) ≤ k. Clearly
T has n − 1 edges. We construct tree T ′ from T as follows. Attach k − deg(u)
pendant vertices to every vertex u of T . Hence T ′ has exactly n vertices of degree
k and all other vertices of T ′ have degree 1. Moreover all vertices of degree k in T ′

form a connected subtree of T ′ which is T . All edges of T ′ that are also in T have
degree 2k − 1 and we have n − 1 such edges. Moreover, T ′ is clearly not a pivoted
tree. If n ≤ ∆(T ′) = k, we have m′(T ′) = ∆(T ′) and with this also ϕ′(T ′) = ∆(T ′)
by Theorem 2.6. For ∆(T ′) < n ≤ 2∆(T ′), we have n − 1 edges in T ′ of degree
2∆(T ′) − 2, while all other edges have degree k − 1. Thus m′(T ′) = n − 1 and so
ϕ′(T ′) = n− 1 by Theorem 2.6. We have constructed a tree T ′ with ϕ′(T ′) = n− 1
for an arbitrary n with ∆(T ′) ≤ n− 1 ≤ 2∆(T ′)− 1. We have proved the following
theorem.

Theorem 2.8 There exists a tree T ′ with maximum degree ∆(T ′), such that ϕ′(T ′) =
` for every integer ` and ∆(T ′) ≤ ` ≤ 2∆(T ′)− 1.

3 Graphs with ϕ′(G) = m′(G)

As in the case of the b-chromatic number regular graphs play an important role also
for the b-chromatic index. First reason for this is that m′(G) = 2∆(G)− 1 for any
regular graph. Another reason is that we can always end the coloring by a greedy
algorithm once we have a partial coloring of G in which all 2∆(G) − 1 colors are
realized. Thus we have ϕ′(G) = 2∆(G) − 1 for a regular graph G, if we can find
such a partial coloring of G.

First recall that a graph G is of class 1 if χ′(G) = ∆(G) and of class 2 if
χ′(G) = ∆(G) + 1. For a vertex v of G, let S2(v) be the set of all vertices of G that
are at distance 2 to v. We define the graph G[v] as the subgraph of G induced by
N(v) ∪ S2(v).

Theorem 3.1 Let G be a d-regular graph with diam(G) ≥ 4 and let u and v be two
vertices at distance at least 4. If G[u] and G[v] are class 1 graphs with ∆(G[u]) =
∆(G[v]) = d− 1, then

ϕ′(G) = 2d− 1.

Proof. We split colors into two sets A = {1, . . . , d} and B = {d+1, . . . , 2d−1}. Let
N(u) = {u1, . . . , ud} and N(v) = {v1, . . . , vd}. We define edge coloring c : E(G) →
{1, . . . , 2d − 1} as follows. Let c(uiu) = i for i ∈ {1, . . . , d} and c(viv) = d + i for
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i ∈ {1, . . . , d − 1}. In addition let c(vdv) = 1. Next we color all edges of G[u] and
G[v]. Since they are both class 1 graphs, there exists an edge coloring of each with
∆(G[u]) = ∆(G[v]) = d − 1 colors. We use colors from B for G[u] and colors from
A − {1} for G[v]. Note that every ui, i ∈ {1, . . . , d}, has degree d − 1 in G[u] and
thus have all colors from B on its incident edges. But then color i is realized on
uui for every i ∈ {1, . . . , d}. Similarly every vi, i ∈ {1, . . . , d}, has degree d − 1 in
G[v] and thus have all colors from A− {1} on its incident edges. But then color j,
j ∈ {d + i, . . . , 2d − 1}, is realized on vvi for every i ∈ {1, . . . , d}. Hence all colors
are realized and this partial coloring is a proper coloring since d(u, v) ≥ 4. Since all
colors are realized and we have 2d− 1 colors we can end the coloring by the greedy
coloring. Hence c′ is a b-edge coloring and ϕ′(G) = 2d− 1. �

Note that condition ∆(G[v]) = d − 1 implies that each vertex from S2(v) has a
neighbor at distance 3 from v. Also for every bipartite graph G and any vertex v
of G, the graph G[v] is bipartite (bipartition is induced with N(v) and S2(v)) with
∆(G[v]) = d− 1. Since every bipartite graph is class 1 graph by König’s Theorem,
we have the next corollary.

Corollary 3.2 If G is a bipartite d-regular graph with diam(G) ≥ 4, then ϕ′(G) =
2d− 1.

In particular, for n ≥ 4, the hypercube Qn = �
n
i=1K2 has diameter n and is a

bipartite n-regular graph. Hence ϕ′(Qn) = 2n − 1. However ϕ′(Q2) = 2 < 3 and
ϕ′(Q3) = 4 < 5 as we will see in the next section.

One of the most important questions about the b-chromatic number is whether
the Petersen graph P is the only regular graph G of girth 5 with its b-chromatic
number strictly lower than m(G). We will see that this is not a problem for the
b-chromatic index.

Theorem 3.3 If G is a d-regular graph with girth g ≥ 5, then

ϕ′(G) = 2d− 1.

Proof. Let e = uv be an edge in a graph G with girth g ≥ 5 and let Nu(e) =
{uu2, . . . , uud} and Nv(e) = {vvd+1, . . . , vv2d−1}. We define a partial edge coloring
c : E(G) → {1, . . . , 2d− 1} in the following way:

• c(uv) = 1,

• c(uui) = i, i ∈ {2, . . . , d},

• c(vvj) = j, j ∈ {d+ 1, . . . , 2d− 1}.
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Vertices ui cannot be adjacent to vertices vj , otherwise we would get a 4-cycle
contrary to the assumption. Since N(ui) ∩ N(uj) = ∅ and N(vi) ∩ N(vj) = ∅
for all applicable indices i and j, we can continue the coloring procedure in the
following way. Assign colors {d + 1, . . . , 2d − 1} to all non-colored edges incident
with ui, i ∈ {2, . . . , d}, and colors {2, . . . , d} to all non-colored edges incident with
vj , j ∈ {d+ 1, . . . , 2d− 1}. With this partial edge coloring all colors are realized on
edges uv, uui, and vvj for every i ∈ {2, . . . , d} and j ∈ {d + 1, . . . , 2d − 1}. Color
the rest of the graph with the greedy algorithm to get a proper b-edge coloring of
G with 2d− 1 colors. �

4 Graphs with ϕ′(G) < m′(G)

We have shown in the previous section that for many graphs equality ϕ′(G) = m′(G)
holds. One can get the impression that finding ϕ′(G) is not a hard problem. However
as we will see in this section, things can be different when ϕ′(G) < m′(G). Indeed,
once this inequality holds, it seems to be very hard to find the exact value for ϕ′(G).

A graph G is an edge regular graph or d-edge regular graph if all edges of G have
degree d. Clearly every d-regular graph is also a 2(d − 1)-edge regular graph and
Km,n is a (m+ n− 2)-edge regular graph.

Lemma 4.1 If G is a d-edge regular graph with minimum degree δ ≥ 4 and ϕ′(G) =
d + 1, then at most two edges of any 4-cycle and at most two edges of any triangle
realize their color in a (d+ 1)-b-edge coloring of G.

Proof. Let G be a d-edge regular graph with ϕ′(G) = d + 1 and let c : E(G) →
{1, . . . , d + 1} be a b-edge-coloring of E(G). Suppose that {u1, u2, u3, u4} form a
four cycle C4 and that u1u2 realizes color 1. We split colors in two sets A = {i :
c(u1v) = i} and B = {i : c(u2w) = i}. Hence in A and in B are colors of all
edges that are incident with u1 and u2, respectively. Since ϕ′(G) = d + 1, we have
A ∩ B = {1} and A ∪ B = {1, . . . , d + 1}. In particular c(u2u3) ∈ B, c(u4u1) ∈ A,
and c(u2u3) 6= c(u4u1). Let c(u2u3) = 2 and c(u4u1) = 4. Moreover, if c(u2u3) = 1,
then u2u3 and u4u1 do not realize colors 2 and 4, respectively, since u1u2 and u3u4
have color 1. Therefore we can assume that c(u3u4) = 3.

It is enough to show that three (or more) consecutive edges of C4 cannot all
realize their color. Suppose first that u2u3 realizes color 2. Color 3 must then
be in A and the set C that contains colors of all edges incident with u3 equals
{2} ∪ (A− {1}). Thus u3u4 does not realize color 3, since it has two edges of color
4 in its neighborhood. Also u4u1 does not realize color 4, since it has two edges of
color 3 in its neighborhood.

Let now u1u2u3 be a triangle in G. Set c(u1u2) = 1, c(u2u3) = 2, and c(u3u1) =
3. Suppose that u1u2 and u2u3 realize colors 1 and 2, respectively. Let A and B be
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as before. Then C = {i : c(u3w) = i} equals to {2} ∪ (A− {1}) since ϕ′(G) = d+ 1
and u1u2 and u2u3 realize their colors. Hence u1u3 does not realize its color since
no colors from B − {1, 2} are in the neighborhood of u1u3. �

Note, from the above proof, that we have two possibilities. Namely, realizable
edges of C4 are either two consecutive edges of C4 or two opposite edges of C4.
Also C4 is not necessarily an induced cycle. But if C4 is not induced, we need the
additional condition δ ≥ 4 of Lemma 4.1. If u1u3 ∈ E(G), then c(u1u3) 6= 3 and we
need an additional edge incident with u1 so that color 3 is in A. Hence if we demand
an induced cycle C4, we do not need the condition δ ≥ 4 anymore.

By observing ϕ′(Kn) for small n it seems that it equals to χ′(Kn). Namely,
it is not hard to see that ϕ′(K3) = 3, ϕ′(K4) = 3 and ϕ′(K5) = 5. However we
have ϕ′(K6) = 6 which breaks the above suggestion. Indeed, the following 6-b-
edge-coloring of K6 is due to Stephan Brandt (personal communication). Color
consecutive edges of C6 by 1,2,3,1,2,3. The remaining edges of K6 − E(C6) form a
triple perfect matching. Edges of each of this matching receive the same color 4,5,
and 6.

Proposition 4.2 If n ≥ 4, then ϕ′(Kn) < m′(Kn).

Proof. As mentioned above ϕ′(K4) = 3 < 5 = m′(K4). Now let n ≥ 5. Suppose
that ϕ′(Kn) ≥ m′(Kn) = 2n−3 and let c be a b-edge coloring of E(Kn) with 2n−3
colors. Let H be a spanning subgraph of Kn whose edges are realizable edges of
c. By Lemma 4.1 H has no triangle and no four cycle. Moreover, H is a forest.
Namely, if Ck, k > 4, is in H, then three consecutive edges of Ck are all realizable
on a four cycle in contradiction to Theorem 4.1. This forest has the most edges if it
is a tree T . But a spanning tree T has at most n− 1 edges which is a contradiction.
�

For complete bipartite graphs, recall the well-known result (see [13, Proposi-
tion 1.2]) that L(Kp,r) = Kp�Kr. Kouider and Mahéo have shown in [19] that
ϕ(Kp�Kr) = r whenever r ≥ p(p − 1) and for p ≤ r < p(p − 1) we have
r ≤ ϕ(Kp�Kr) ≤ p(p − 1). Hence we have ϕ′(Kp,r) = r for r ≥ p(p − 1) and
r ≤ ϕ′(Kp,r) ≤ p(p − 1) for p ≤ r < p(p − 1). In particular, for p = 2, we have
ϕ′(K2,r) = r for every r ≥ 2. We can immediately improve the upper bound in
many cases since Kp,r is an edge regular graph with m′(Kp,r) = p+ r − 1. Hence

ϕ′(Kp,r) ≤ min{p(p− 1), p+ r − 1} for p ≤ r < p(p− 1).

To improve this we need some further arguments.

Proposition 4.3 If r ≥ p ≥ 3, then ϕ′(Kp,r) < m′(Kp,r).
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Proof. If r ≥ p(p− 1) we are done by results from [19] (see the above discussion).
Thus suppose that ϕ′(Kp,r) = m′(Kp,r) = p+ r− 1 and let c be a b-edge-coloring of
E(Kp,r) with p + r − 1 colors. Let H be a spanning subgraph of Kp,r whose edges
are realizable edges of c. Again H is a forest, since every cycle Ck, k ≥ 4, induce a
four cycle in Kp,r with three realizable edges, which is not possible by Lemma 4.1.
Moreover, if edges uv and vw are realizable for some colors, then no edge ux or wx
is realizable, since it is on a common four cycle uvwxu. Hence we must find a cover
of Kp,r by stars with maximum number of edges and every edge of this stars can
be a realizable edge. Clearly this number is p + r − 2 if we take two stars K1,r−1

and K1,p−1. Thus we have p + r − 2 candidates for realizable edges, which is a
contradiction, since we need at least p+ r − 1 candidates. �

We believe that this upper bound can be lowered by one in general, but not more
as can be seen from the following schemes. On the scheme we present the b-edge
colorings of K3,3, K4,4, and K5,5 with 3, 5, and 7 colors, respectively:

K3,3 :
1̃2̃3̃ 231 312

1̃23 2̃31 3̃12
; K4,4 :

1̃2̃3̃4 4̃523 5̃342 2451

1̃4̃5̃2 2̃534 3̃245 4321
;

K5,5 :
1̃2̃3̃4̃7 5̃6734 6̃7413 73162 2567̃1

1̃5̃6̃72 2̃6735 3̃7416 4̃3167̃ 54321
.

Here 12347 in first line and first column of K5,5 represents colors of u1w1, u1w2,
u1w3, u1w4, and u1w5, respectively, and k̃ means that this edge realizes color k.
Unfortunately we could not find a pattern for every graph Kn,n. Next we show that
there exists no 4-b-edge coloring of K3,3, which is a difficult task already, since we
cannot use Lemma 4.1 anymore.

Proposition 4.4 ϕ′(K3,3) = 3.

Proof. Suppose that there exists a 4-b-edge coloring of K3,3 and let c be a b-edge-
coloring of E(K3,3) with 4 colors. Let H be a spanning subgraph of K3,3 whose
edges are realizable edges of c. We will analyze all different possibilities for H. If
H is isomorphic to a forest of two stars K1,2, we have a contradiction, since the
edge between the centers of these two stars cannot be colored by any of the four
colors. If H contains C4 as a subgraph, we have a contradiction since the edges
between vertices of K3,3 that are not in C4 cannot be colored. If H is isomorphic
to P4 ∪K2, the middle edge of P4 is not realizable, since the color of K2 cannot be
in its neighborhood. If there exists a path P5 in H and an isolated vertex x, we
first concentrate on the first and last edge e and f , respectively, of P5. It is easy to
see that all edges, except the edge between the middle vertex of P5 and x, must be
colored, so that e and f are realizable edges. In that case the middle edges of P5 are
not realizable, since only one edge remains and each of them needs one additional
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color. Finally, suppose that H contains one component that is isomorphic to K1,3 in
which one edge is subdivided, and one isolated vertex. It is easy to see, that edges of
K1,3 that where not subdivided cannot both be realizable, since only one can have
the color of the other pendant edge in its neighborhood. �

It is straightforward to see that a k-partite complete graph Kn1,...,nk
is an edge

regular graph if and only if n1 = . . . = nk = n. Then Kn1,...,nk
is (k − 1)n-regular

graph and we will use notation Kk
n for this graph.

Proposition 4.5 If k ≥ 3 and n ≥ 2 are positive integers then ϕ′(Kk
n) < m′(Kk

n).

Proof. Suppose that ϕ′(Kk
n) = m′(Kk

n) = 2(k − 1)n − 1 and let c be a b-edge-
coloring of E(Kk

n) with 2(k − 1)n− 1 colors. Let H be a spanning subgraph of Kk
n

whose edges are realizable edges of c. By Lemma 4.1 H is a forest. In contrast to the
proof of Proposition 4.3, here we can have a component different than a star. Clearly
we have more edges if the number of components of H is smaller. Nevertheless, even
if H is a tree, we have kn− 1 edges in H, which is not enough, since k ≥ 3. �

Let G be a regular graph. In view of Theorem 3.1, one can expect more graphs
with ϕ′(G) < m′(G) among those with small diameter (< 4). Such are Hamming
graphs with two or three factors. It seems that it is quite hard to give an exact
answer for ϕ′(Kp�Kr). The impression is that, if p and r are “large” enough,
we have equality between ϕ′ and m′. For this note that from Lemma 4.1 it easily
follows that ϕ′(K2�K3) < m′(K2�K3) = 5, but in the following scheme there is
a 4-b-edge coloring of K2�K3, which yields ϕ′(K2�K3) = 4. On this scheme also
an 11-b-edge coloring of K3�K5 is presented (note that m′(K3�K5) = 11).

K2�K3 :
2̃4 3̃ −
1̃ 1 1

34̃ 2 −
; K3�K5 :

1̃2̃3̃4̃ 7 11 8 8 11 7 −
3 10 10 10 10

5̃6̃7̃8̃ 3 4 11 11 4 3 −
1 2 2 2 2

9̃1̃01̃13 4 8 7 7 8 4 −
5 6 6 6 6

.

Again k̃ is the edge that realizes color k. Every odd line represents colors of edges
of a layer of the second factor (K3 or K5), while every even line represents colors of
edges of the first factor (K2 or K3) that projects to the same edge. Furthermore,
for V (Kn) = {1, . . . , n}, in every odd line numbers that are written in i-th column
present consecutive colors of edges (i, i+ 1), . . . , (i, n) for i ∈ {1, . . . , n− 1}.

For Q3 = K2�K2�K2 it is easy to see, with the use of Lemma 4.1, that
ϕ′(Q3) < m′(Q3) = 5. Also it is easy to construct a 4-b-edge coloring of Q3 (ev-
ery perfect matching receives all four colors). Hence ϕ′(Q3) = 4. In general for
Kp�Kq �Kr, p ≤ q ≤ r, it seems that if q > 2 we can expect equality between ϕ′
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and m′. On the other hand we do not dare to predict what happens if p = q = 2.
Namely, if ϕ′ is always less than m′, or there exists an integer k, such that equality
holds for every r ≥ k, or equality holds for some integers and for some not.

5 3-regular graphs

We already know that if G is a d-regular graph, then ϕ′(G) ≤ 2d − 1. Many of
d-regular graphs achieve this trivial upper bound by Theorems 3.1 and 3.3. Deter-
mining ϕ′(G) is equivalent to determining ϕ(L(G)) which is also a regular graph.
According to the theorem of Kratochv́ıl, Tuza, and Voigt [22] there are only a finite
number of regular graphs with ϕ smaller then the trivial upper bound. Hence there
are only a finite number of d-regular graphs G with ϕ′(G) < 2d − 1. Can we find
them all? In [16] all exceptions for the b-chromatic number were described for the
smallest nontrivial d-regular graphs, namely for cubic graphs. We follow their ap-
proach also for the b-chromatic index of cubic graphs. The following lemma provides
a useful tool to decrease the number of cases to be treated.

Lemma 5.1 Let G be a cubic graph. If G has an induced cycle C5 or an induced
path P6, then ϕ′(G) = 5.

Proof. Suppose that a cubic graph G has an induced cycle C5 = x1x2x3x4x5.
Color edges of C5 by colors 1, . . . , 5. Since C5 is induced, there are no edges between
its vertices. For any i ∈ {1, 2, 3, 4, 5} denote with yi the third vertex to which the
vertex xi is adjacent, see Figure 2. Note that some yis might represent the same
vertex. According to Figure 2 it is obvious that all edges of C5 are realizable. We
can complete the coloring to whole G by the greedy algorithm.

x1

x2

x3
x4

x5

y
1

y
2

y
3

y
4

y
5

1 5

4

3

2

3

2

15

4

Figure 2: Induced subgraph C5

Suppose now that G has an induced path P6 = x1x2x3x4x5x6. Color edges of
P6 by colors 1, . . . , 5. Since P6 is induced, there are no edges between its vertices.
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Let y0 and y1 be two additional neighbors of vertex x1. Further, let y6 and y7
two addition neighbors of vertex x6. For i ∈ {2, 3, 4, 5} the vertex xi has only one
addition neighbor yi. See Figure 3 for this notations. Note that some yis might
represent the same vertex. Note that at most one of y0 and y1 can be equal to y3
and at most one of y6 and y7 can be equal to y4. If this is the case, then incident
edges receive different colors (see the lower graph on Figure 3). Now even if one of
y0 or y1 equals to y6 or y7 (see the lower graph on Figure 3), we can properly color
edges so that all colors on P6 are realizable. The rest of G can again be colored by
the greedy algorithm. �
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Figure 3: Induced subgraph P6

Now we can prove the main theorem of this section.

Theorem 5.2 Let G be a connected cubic graph. Then ϕ′(G) = 5 if and only if G is
not isomorphic to K4, K3�K2, K3,3, or Q3. Moreover, ϕ′(K4) = 3, ϕ′(K3,3) = 3,
ϕ′(K3�K2) = 4, and ϕ′(Q3) = 4.

Proof. We have already seen that ϕ′(K4) = 3, ϕ′(K3,3) = 3, ϕ′(K3�K2) = 4, and
ϕ′(Q3) = 4.

Let now G be a cubic graph not isomorphic to K4, K3�K2, K3,3, or Q3. The
proof of this direction is constructive and leads to an algorithm that finds appropriate
subgraphs. Moreover, according to Lemma 5.1 we wish to find an induced cycle C5

or an induced path P6 in analyzed cases.
We will analyze cases with respect to the girth of a given cubic graph G. Let g

be its girth and let C be a g-cycle of G. For i ≥ 1, let

Di = {v ∈ V (G) : d(v, C) = i}

be the i-th distance level from C. According to Theorem 3.3 we only need to consider
cases where g = 3 and g = 4. In the following figures we usually present only a part
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of the graph in which we find an induced C5 or P6, since the rest can be colored
by the greedy algorithm. Also we do not draw all possibilities that have the same
induced C5 or P6, but just one representative.

Case 1: g = 3.
In this case C is a triangle. We distinguish subcases with respect to the size of D1.

Case 1.1: |D1| = 1.
In this subcase G ∼= K4 which is forbidden.

Case 1.2: |D1| = 2.
Let D1 = {x, y}. Note that there is a unique way (up to the isomorphism) how x
and y are adjacent with the vertices of C. Assume without loss of generality that x
has two neighbors in C (and hence y has one).

Suppose first that xy /∈ E(G). If x and y have a common neighbor in D2, then
we have an induced C5, see the left graph on Figure 4. If x and y have no common
neighbor in D2, then |D2| = 3. If vertices of D2 induce a triangle, then there is
no vertex in D3 and this graph has no induced C5 or P6, but there is a 5-b-edge
coloring on the second graph of Figure 4. If D2 does not induce a triangle, then
|D3| ≥ 1 and one neighbor of y has a neighbor in D3. This yields an induced P6,
see the third graph of Figure 4. Finally if xy ∈ E(G), then |D2| = 1, |D3| = 2, and
|D4| ≥ 1. In all cases there exists an edge from D3 to D4 as denoted on the right
graph of Figure 4, and therefore we have an induced P6.

2

1

4
5

5

5

1

4
3 2

3

3

x y y y yx x x

Figure 4: Subgraphs with g = 3 and |D1| = 2

Case 1.3: |D1| = 3.
In this subcase each vertex from C has its own private neighbor in D1. If vertices
of D1 induced a triangle, we get the forbidden graph K3�K2. Hence suppose that
D1 does not induce a triangle and we always have two nonadjacent vertices in D1.
If two nonadjacent vertices of D1 have a common neighbor in D2, then there exists
an induced C5, see the left graph of Figure 5. If D1 induces 3K1 and no two vertices
of D1 have a common neighbor in D2, then we have |D2| = 6, and there exists two
nonadjacent vertices in D2 with different neighbors in D1. They form an induced P6,
see the second graph of Figure 5 for one possibility. Suppose now that D1 induces
K2 ∪K1 and denote K1 by x. If a neighbor of x in D2 coincides with a neighbor of
some other vertex of D1, we get an induced C5, see the third graph of Figure 5. If
a neighbor of x in D2 is nonadjacent with a vertex of D2, which is nonadjacent to
x, we have an induced P6, see the fourth graph of Figure 5 (doted line means there
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is no edge). Otherwise both neighbors of x in D2 are adjacent to both neighbors in
D2 of K2 in D1. This graph contains an induced C5, see the fifth graph of Figure 5.
Finally, if D1 induces P3, we have an induced C5, see the last graph of Figure 5.

x x x

Figure 5: Subgraphs with g = 3 and |D1| = 3

Case 2: g = 4.
Now C is a square. Note that two adjacent vertices of C have no common neighbor
in D1. Once more we distinguish subcases with respect to the size of D1. It is
obvious that the case |D1| = 1 is not possible.

Case 2.1: |D1| = 2.
If vertices ofD1 are adjacent, we obtainK3,3 which is forbidden. We have an induced
C5 if vertices of D1 have a common neighbor in D2, see the left graph of Figure 6.
If vertices of D1 have no common neighbor in D2, we have |D2| = 2. If these two
vertices are not adjacent, we have an induced P6, see the middle graph of Figure 6.
Otherwise, they are adjacent and |D3| ≥ 1, which again results in an induced P6,
see the right graph of Figure 6.

Figure 6: Subgraphs with g = 4 and |D1| = 2

Case 2.2: |D1| = 3.
Here two nonadjacent vertices of C must have a common neighbor x in D1, while
the other two have exactly one neighbor y and w in D1. If yw ∈ E(G), we have
an induced C5, see the first graph of Figure 7. If xy ∈ E(G) (and analogue when
xw ∈ E(G)), we have |D2| ≥ 2. This yields an induced P6, since w has two neighbors
in D2 and only one of them can be equal to the neighbor of y in D2, see the second
graph of Figure 7. Hence no two vertices of D1 are adjacent. If x and y have
a common neighbor in D2, then these vertices form an induced C5, see the third
graph of Figure 7. If a neighbor of x in D2 is nonadjacent to some other vertex of
D2, we have an induced P6, see the fourth graph of Figure 7. Otherwise we have
the last graph of Figure 7 which also contains an induced P6.

Case 2.3: |D1| = 4.
Every vertex of C has his own private neighbor in D1. Denote them by x1, x2, x3,
and x4. If x1x3 ∈ E(G) (or analogue x2x4 ∈ E(G)), we have an induced C5, see the
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Figure 7: Subgraphs with g = 4 and |D1| = 3

left graph of Figure 8. Now D1 does not induce a cycle C4, since we have either the
previous possibility or Q3 which is forbidden. If D1 induces paths P2, P3, 2P2, or
P4, see the second, third, forth, and fifth graph, respectively, of the Figure 8 for an
induced P6, which starts and ends in nonadjacent vertices of D1. Thus it remains
to deal with the cases when there are no edges between vertices of D1. If xi and
x(i+1)mod4 have a common neighbor, for some i ∈ {1, 2, 3, 4}, we have an induced
C5, see the right lower graph of Figure 8 for one possibility. If xi and x(i+2)mod4

do not have a common neighbor, for some i ∈ {1, 2, 3, 4}, we have an induced P6,
see the left lower graph of Figure 8 for one possibility. Otherwise x1 and x3 have a
common neighbor in D2. Note that x1 and x2, x2 and x3 have no common neighbor
in D2. Again we have an induced P6, see the middle lower graph of Figure 8.

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

x1 x2 x3 x4x1 x2 x3 x4x1 x2 x3 x4

Figure 8: Subgraphs with g = 4 and |D1| = 4
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