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Abstract

A subset S of vertices of a graph G is called a k-path vertex cover if every
path of order k in G contains at least one vertex from S. Denote by ψk(G) the
minimum cardinality of a k-path vertex cover in G. In this paper improved
lower and upper bounds for ψk of the Cartesian and the direct product of
paths are derived. It is shown that for ψ3 those bounds are tight. For
the lexicographic product bounds are presented for ψk, moreover ψ2 and
ψ3 are exactly determined for the lexicographic product of two arbitrary
graphs. As a consequence the independence and the dissociation number of
the lexicographic product are given.
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1. Introduction

For a graph G and a positive integer k, the subset S ⊆ V (G) is a k-path
vertex cover of G, if every path of order k in graph G contains a vertex from
S. The cardinality of a minimum k-path vertex cover is denoted by ψk(G).
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We say that a vertex is covered (uncovered) if it belongs (does not belong)
to S.

The motivation for this invariant, which was introduced in [4], arises
from communications in wireless sensor networks, where the data integrity
is ensured by using the Novotný’s k-generalized Cavas scheme [11]. Another
motivation is in traffic control as presented in [14].

It is shown [4] that the problem of computing ψk(G) is in general NP-hard
for each k ≥ 2, but polynomial for trees.

One way to look at the k-path vertex cover is as a generalization of the
vertex cover. Note that ψ2(G) is equal to the size of a minimum vertex cover,
moreover

ψ2(G) = |V (G)| − α(G),

where α(G) is the independence number of G. This gives an interesting
connection to the well studied independence number [8, 9, 15, 13].

Also, the concept of the dissociation number of a graph [16] is in relation
to the value of ψ3(G). A subset of vertices in a graph G is called a dissociation
set if it induces a subgraph with maximum degree 1. The number of vertices
in a maximum cardinality dissociation set in G is called the dissociation
number of G and is denoted by diss(G). The relation between ψ3(G) and
diss(G) is

ψ3(G) = |V (G)| − diss(G).

Determining the dissociation number of a graph is shown to be NP-hard in
the class of bipartite graphs [16]. The dissociation number problem was also
studied in several papers [1, 2, 5, 7], see [12] for a survey. A 2-approximation
algorithm for 3-path vertex cover problem (for the weighted case of the prob-
lem) was presented by Tu and Zhou in [14]. In [10] an exact algorithm for
computing ψ3(G) in running time O(1.5171n) for a graph of order n was
presented.

Recently [3] it was shown that for an arbitrary graph G of order n and
size m, with 1 ≤ k ≤ m

n
≤ k + 1, the following holds ψ3(G) ≤ kn

k+2
+

m
(k+1)(k+2)

. Some results on d-regular graphs are also presented, for instance
for an arbitrary integer k ≥ 2 and d-regular graph G, d ≥ k − 1, we have
ψk(G) ≥ d−k+2

2d−k+2
|V (G)|.

2. Preliminaries and known results

Recall that the Cartesian product G�H of graphs G = (V (G), E(G))
and H = (V (H), E(H)) has the vertex set V (G) × V (H), and vertices
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(u, v), (x, y) are adjacent whenever u = x and vy ∈ E(H), or ux ∈ E(G) and
v = y.

The strong product G⊠H of graphs G = (V (G), E(G)) and H = (V (H),
E(H)) has the vertex set V (G)×V (H), and vertices (u, v), (x, y) are adjacent
whenever u = x and vy ∈ E(H), or ux ∈ E(G) and v = y, or ux ∈ E(G)
and vy ∈ E(H).

The lexicographic product G ◦ H of graphs G = (V (G), E(G)) and H =
(V (H), E(H)) has the vertex set V (G)×V (H), and vertices (u, v), (x, y) are
adjacent whenever ux ∈ E(G), or u = x and vy ∈ E(H).

Let G and H be arbitrary graphs, and v ∈ V (H). We refer to the set
V (G)×{v} as G-layer. Similarly {u}×V (H), u ∈ V (G) is an H-layer. When
referring to a specific G orH layer, we denote them by Gv or uH, respectively.
Layers can also be regarded as the graphs induced on these sets. Obviously,
in the Cartesian, strong and lexicographic products, a G-layer or H-layer is
isomorphic to G or H, respectively.

Since the next section deals with products of paths, we state the following
formula for ψk of paths. For the path Pn on n vertices, the value of ψk(Pn) =
⌊

n
k

⌋

.
The following theorem, containing the formulas for ψ3 of the Cartesian

product of paths, was presented in [3].

Theorem 2.1. (i) ψ3(P2n+1 �P2k) = 2nk + ⌊2k
3
⌋, where n, k ≥ 1,

(ii) ψ3(P2n �P2k) = 2nk, where n, k ≥ 1,

(iii) ψ3(P2n+1 �P2k+1) = n(2k + 1) + ⌊2k+1
3

⌋, where 1 ≤ n ≤ k.

For an arbitrary k the following results are given.

Lemma 2.1. [3] For each k ≥ 4, ψk(P2⌈√k⌉�P3⌈√k⌉) ≥
⌈√

k
⌉

.

Proposition 2.1. [3] For k ≥ 4, n ≥ 2
⌈√

k
⌉

,m ≥ 3
⌈√

k
⌉

, the following

holds
nm

24
⌈√

k
⌉ ≤ ψk(Pn �Pm).

Proposition 2.2. [3] For k ≥ 4 the following holds

ψk(Pn �Pm) ≤
2nm
⌊√

k
⌋ − 2nm

k
.
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In this paper we present results on the ψk on several graph products. In
the next section we improve the previously stated bounds for the Cartesian
product of paths and extend these to the strong product of paths. In the
last section the results on the lexicographic product of arbitrary graphs are
presented. Among the upper and lower bounds for ψk, the exact values for
ψ2 and ψ3 are determined. As a corollary of these results, a new proof for
the independence number of the lexicographic product of arbitrary graphs is
stated.

3. The Cartesian and the strong product

Before we present a new upper bound for ψk(Pn �Pm), we will introduce
some notions. Let Di denote the set of all divisors of i. Choose a, b ∈ Di,
where a ≤ b, in such way that a · b = i and the sum a + b is the smallest
possible. Note, that a is the largest element of Di smaller or equal to

√
i,

and b is the smallest element of Di larger or equal to
√
i. We will call the

pair (a, b) the middle Di pair. The importance of a + b being the smallest
possible is evident, since the number of covered vertices depends on this sum,
so taking other pairs (a′, b′) ∈ Di, a

′ · b′ = i, of divisors would give a worse
bound.

Proposition 3.1. Let k ≥ 3 and (a, b) be the middle Dk−1 pair. Then the
following holds

ψk(Pn �Pm) ≤ min

{⌊

n

a+ 1

⌋

m+

⌊

m

b+ 1

⌋

n− 2

⌊

n

a+ 1

⌋⌊

m

b+ 1

⌋

,

⌊

n

b+ 1

⌋

m+

⌊

m

a+ 1

⌋

n− 2

⌊

n

b+ 1

⌋⌊

m

a+ 1

⌋}

Proof. We will construct a k-path vertex cover with at most ⌊ n
a+1

⌋m +
⌊ m
b+1

⌋n− 2⌊ n
a+1

⌋⌊ m
b+1

⌋ vertices.
Let S1 = {(i, j) ∈ Pn �Pm | i ≡ 0 (mod a+ 1)} (for all applicable indi-

cies i and j) and similarly S2 = {(i, j) ∈ Pn �Pm | j ≡ 0 (mod b+ 1)}. It
is easy to see that S = (S1 ∪ S2)\(S1 ∩ S2) is a k-path vertex cover, since
the largest connected subgraph of Pn �Pm with all vertices uncovered is iso-
morphic to Pa�Pb. The constructed k-path vertex cover can be seen in Fig.
1.

In a Pn-layer we cover each (a+1)-st vertex, since there arem such layers,
the size of S1 is at most |S1| ≤ nm

a+1
. Similarly, |S2| ≤ nm

b+1
. The vertices (i, j) ∈
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S1∩S2 can be left uncovered, because all the vertices (i±1, j) and (i, j±1) are
in S. Since the size of |S1∩S2| ≤ ⌊ n

a+1
⌋⌊ m

b+1
⌋ and we counted every vertex in

the intersection twice, the size of S is |S| ≤ ⌊ n
a+1

⌋m+ ⌊ m
b+1

⌋n− 2⌊ n
a+1

⌋⌊ m
b+1

⌋.

a

b

Figure 1: A k-path vertex cover of Pn �Pm.

Similarly, one can construct a k-path vertex cover with at most ⌊ n
b+1

⌋m+
⌊ m
a+1

⌋n− 2⌊ n
b+1

⌋⌊ m
a+1

⌋ vertices. The assertion then follows immediately.

Note, that for k = 3 this bound is sharp, since using the middle D2

pair and the above procedure, the described k-path vertex cover corresponds
to the one from Theorem 2.1, presented in [3]. Note that the bound from
Proposition 2.2 for k = 3 is worse than the presented improved result, since
it states we need to cover all the vertices.

The same approach as in Proposition 3.1 gives us an upper bound for the
strong product of graphs.

Proposition 3.2. Let k ≥ 3 and (a, b) be the middle Dk−1 pair. Then the
following holds

ψk(Pn ⊠ Pm) ≤ min

{⌊

n

a+ 1

⌋

m+

⌊

m

b+ 1

⌋

n,

⌊

n

b+ 1

⌋

m+

⌊

m

a+ 1

⌋

n

}

.
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Proof. We will construct a k-path vertex cover with at most ⌊ n
a+1

⌋m+⌊ m
b+1

⌋n
vertices in the same manner as in the proof of Proposition 3.1.

Let S1 = {(i, j) ∈ Pn ⊠ Pm | i ≡ 0 (mod a+ 1)} (for all applicable indi-
cies i and j) and similarly S2 = {(i, j) ∈ Pn ⊠ Pm | j ≡ 0 (mod b+ 1)}. It
is easy to see that S = S1 ∪ S2 is a k-path vertex cover (see Fig. 2), since
the largest connected subgraph of Pn ⊠ Pm with all vertices uncovered is
isomorphic to Pa ⊠ Pb. Note that we cannot leave the vertices in S1 ∩ S2

uncovered (as in the case of Pn �Pm) due to diagonal edges in the strong
product.

a

b

Figure 2: A k-path vertex cover of Pn ⊠ Pm.

Similarly, one can construct a k-path vertex cover with at most ⌊ n
b+1

⌋m+
⌊ m
a+1

⌋n vertices. Following the same line of thought as in the proof of Propo-
sition 3.1 the assertion follows.

As for a lower bound for the strong product of paths, we will first prove
the following Lemma.

Lemma 3.1. Let k ≥ 4 and let (a, b) be the middle Dk−1 pair. Then ψk(P2b ⊠

Pb+1) ≥ b+ 1.

Proof. Assume to the contrary that S is a k-path vertex cover of the graph
P2b ⊠ Pb+1, with |S| ≤ b. Then P2b ⊠ Pb+1 has at least b of all Pb+1-layers

6



not containing any vertex of S. All of the Pb+1-layers that do have at least
one vertex in S, also have at least one vertex not in S. Then there exists
such a vertex v 6∈ S in the layer P ui

b+1, where 1 < i < 2b, that one can connect
this vertex with a vertex v′ 6∈ S in the neighboring layers P

ui±1

b+1 . Now, using
the Pb+1-layers not containing any vertex of S and moving from/to the other
layers on uncovered vertices only, one can easily construct a path on at least
b · b + 1 vertices, not containing any vertex of S. Since b · b + 1 ≥ ab + 1 =
ab+1 = k−1+1 = k, we have a path of order at least k without any vertices
in S, which is a contradiction to the assumption that S is a k-path vertex
cover.

Proposition 3.3. Let k ≥ 4, let (a, b) be the middle Dk−1 pair and n ≥
2b,m ≥ b+ 1. Then the following holds

nm

8b
≤ ψk(Pn ⊠ Pm).

Proof. We split the whole graph Pn ⊠Pm into r disjoint subgraphs isomorphic
to P2b ⊠ Pb+1 such that r(2b)(b + 1) ≥ 1

4
nm. By Lemma 3.1 a k-path

vertex cover must have at least b+1 vertices in each subgraph isomorphic to
P2b ⊠ Pb+1 in G, hence:

ψk(Pn ⊠ Pm) ≥ r(b+ 1) ≥ nm

8b
.

4. The lexicographic product

As seen in the previous section it is hard to determine exact results even
for fixed graphs G and H. In this section we give more general results for
the lexicographic product of graphs. It turns out that many of this results
are a generalization of some previously known results for other invariants.

Proposition 4.1. Let G and H be two arbitrary graphs. Then

ψk(G ◦H) ≤ |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψk(H)) .

Proof. Let I = {v1, . . . , vα(G)} be a maximum independent set of graph
G, J = V (G)\I = {vα(G)+1, . . . , v|V (G)|}. Denote by Si the set of cov-
ered vertices in the subgraph Hi = {vi} ◦ H. Cover the subgraph Hi,
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i ∈ {1, . . . , α(G)}, with exactly ψk(H) vertices and cover the subgraph Hj,
j ∈ {α(G)+1, . . . , |V (G)|}, with exactly |V (H)| vertices, hence |Si| = ψk(H),
i ∈ {1, . . . , α(G)}, and |Sj| = |V (H)|, j ∈ {α(G)+1, . . . , |V (G)|}. This cover
is by definition a proper k-path vertex cover of graph G ◦H. It follows that

ψk(G ◦H) ≤
|V (G)|
∑

i=1

|Si| = α(G)ψk(H) + (|V (G)| − α(G))|V (H)|

= |V (G)||V (H)|+ α(G)ψk(H)− α(G)|V (H)|
= |V (G)||V (H)| − α(G)(|V (H)| − ψk(H))

= |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψk(H))

Theorem 4.1. Let G be an arbitrary graph and H a graph different from
the vertex graph. Then

ψ3(G ◦H) = |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψ3(H)) .

Proof. Let S be the optimal 3-path vertex cover of graph G ◦H and Si ⊆ S

the set of covered vertices in the subgraph {vi} ◦ H, i ∈ {1, . . . , |V (G)|}.
Hence |S| =

∑|V (G)|
i=1 |Si|. Let H1, H2, . . . , Hl be those H-layers that contain

uncovered vertices and Ti the set of uncovered vertices in Hi, i ∈ {1, . . . , l}.
It is obvious that |Ti| ≥ 1 for all i. We consider two cases.

Case 1: let |Ti| ≥ 2 for all i. Then the subgraph Hi = {vi} ◦ H has at
least two vertices that are not in S. The neighboring H-layers of layer Hi

must have all its vertices in S as seen in Fig. 3.

Hi

Ti Si

Figure 3: Two uncovered vertices in Hi
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Note that the maximum number of all such Ti sets equals to the indepen-
dence number of G, α(G). Therefore S must contain at least α(G)ψ3(H) +
(|V (G)| − α(G))|V (H)| vertices in this optimal 3-path vertex cover, hence

ψ3(G ◦H) ≥ α(G)ψ3(H) + (|V (G)| − α(G))|V (H)|
= |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψ3(H))

According to Proposition 4.1 this is also the upper bound and therefore

ψ3(G ◦H) = |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψ3(H)) .

Case 2: Let |Ti| = 1 for some i. Then one of the neighboring H-layers of
Hi, say layer Hj, must also contain exactly one uncovered vertex, otherwise
S would not be an optimal 3-path vertex cover since we could without extra
cost uncover another vertex in layer Hi and make a better 3-path vertex
cover. Moreover every other neighboring layer of both layers Hi and Hj

must contribute all their verties to S otherwise S would not be a proper
3-path vertex cover, see Fig. 4. Now we cover the only uncovered vertex in

Hi

Ti

Si

Hj

Tj

Sj

Figure 4: One uncovered vertex in Hi

layer Hj and uncover an arbitrary covered vertex in layer Hi. This is possible
since graph H (therefore also Hi) has at least two vertices. In this way we
get another optimal 3-path vertex cover of G ◦H and moreover Hi now has
two uncovered vertices, hence |Ti| = 2. Next we move to another Hi layer
that has only one uncovered vertex and repeat the above procedure. In this
way we end up with Case 1 which proves the theorem.

For H = K1 the solution is trivial. According to the theorem above we
would get ψ3(G◦K1) = |V (G)|− (|V (G)|−ψ2(G)) = ψ2(G) which in general
is not true, since ψ3(G ◦K1) = ψ3(G) ≤ ψ2(G).
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One would think of a similar theorem for general k: Let G be an arbitrary
graph and H a graph with |V (H)| ≥ k − 1. Then

ψk(G ◦H) = |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψk(H)) .

But the above assertion is not true already for k = 4. Take for example G =
P3 and for H the independent set on n vertices, Sn. Then ψ4(P3◦Sn) = n−1
which is less then |V (P3)||V (Sn)| − (|V (P3)| − ψ2(P3))(|V (Sn)| − ψ4(Sn)) =
3n− 2n = n

We get a nice corollary from Theorem 4.1 which gives the exact value for
the dissociation number of the lexicographic product of two arbitrary graphs.

Corollary 4.1. Let G and H be two arbitrary graphs. Then

diss(G ◦H) =

{

α(G)diss(H) for H 6= K1

diss(G) for H = K1
.

Proof. LetH 6= K1. For any two graphs G andH it follows that diss(G◦H) =
|V(G)||V(H)| −ψ3(G ◦H). The assertion follows immediately from Theorem
4.1. If H = K1 the result is trivial.

Next we introduce some lower bounds for ψk of the lexicographic product
of two arbitrary graphs. The following Proposition is straight forward to
prove.

Proposition 4.2. Let G and H be two arbitrary graphs. Then

ψk(G ◦H) ≥ |V (G)|ψk(H) .

Proof. In every H-layer we need at least ψk(G) vertices covered. There are
exactly |V (G)| such layers. Therefore we need at least |V (G)|ψk(H) covered
vertices in every k-path vertex cover of graph G ◦H.

The trivial lower bound proven in Proposition 4.2 is tight for the graph on
n independent vertices Sn. It is easy to show that ψk(Sn◦H) = |V (G)|ψk(H)
for any k ≥ 2. One can also see that the equality is achived for some graphs
G with ψk(G) = 0.

We can indeed find a lower bound which improves the trivial bound.

Theorem 4.2. Let G and H be two arbitrary graphs. Then

ψk(G ◦H) ≥ |V (G)||V (H)| − (|V (G)| − ψk(G))(|V (H)| − ψk(H)) .
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Proof. Let S be a k-path vertex cover of graph G ◦ H and Si ⊆ S the set
of covered vertices in the subgraph {vi} ◦ H, i ∈ {1, . . . , |V (G)|}, hence

|S| =
∑|V (G)|

n=1 |Si|.
It is clear that ψk(Hi) ≤ |Si| ≤ |V (Hi)| for any i ∈ {1, . . . , |V (G)|}. We

consider two cases.
Case 1: If |Si| < |V (Hi)|, for all i, then each H-layer has at least one

uncovered vertex in S. This means that we can find a subgraph G′ of graph
G ◦H, which consists only of uncovered vertices, each vertex being in their
own H-layer of graph G ◦ H, and is isomorphic to G, see Fig. 5. Since S

G'

Figure 5: Subgraph G′ with uncovered vertices

is a k-path vertex cover ψk(G) must be zero. Then the lower bound holds
immediately according to Proposition 4.2.

Case 2: Let |Si| = |V (Hi)| for some i and let H1, . . . , Hl be those H-
layers for which this equality holds. We can find a subgraph G′′ of graph
G ◦ H, which is isomorphic to graph G, has each of its vertices in their
own H-layer of graph G ◦H, and has exactly l covered vertices, see Fig. 6.
This means that l ≥ ψk(G) otherwise S would not be a k-path vertex cover.
Then we have exactly l such H-layers that have all their vertices in S and
(|V (G)| − l) such H-layers that have at least ψk(H) vertices in S. Hence

|S| ≥ l|V (H)|+ (|V (G)| − l)ψk(H)

= |V (G)|ψk(H) + l(|V (H)| − ψk(H))

≥ |V (G)|ψk(H) + ψk(G)(|V (H)| − ψk(H))

= |V (G)|ψk(H) + ψk(G)|V (H)| − ψk(G)ψk(H)

= |V (G)||V (H)| − (|V (G)| − ψk(G))(|V (H)| − ψk(H)).
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G''

Figure 6: Subgraph G′′ with some covered vertices

Using Proposition 4.1 and Theorem 4.2 we get the following proposition.

Proposition 4.3. Let G and H be two arbitrary graphs. Then

ψ2(G ◦H) = |V (G)||V (H)| − (|V (G)| − ψ2(G))(|V (H)| − ψ2(H)) .

Proposition 4.3 immidiately implies a well known result of Geller and
Stahl (see [6]) who determined the independence number of the lexicographic
product.

Corollary 4.2. Let G and H be two arbitrary graphs. Then

α(G ◦H) = α(G)α(H) .

Proof. For any graphs G and H it follows that α(G ◦H) = |V (G)||V (H)| −
ψ2(G ◦H). The assertion follows immediately from Proposition 4.3.
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the vertex k-path cover, submitted.
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