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Abstract

A subset S of vertices of a graph G is called a k-path vertex cover if every
path of order k in G contains at least one vertex from S. Denote by ψk(G)
the minimum cardinality of a k-path vertex cover in G. In this article a lower
and an upper bound for ψk of the rooted product graphs are presented. Two
characterizations are given when those bounds are attained. Moreover ψ2

and ψ3 are exactly determined. As a consequence the independence and the
dissociation number of the rooted product are given.
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1. Introduction and preliminaries

Let G be a simple, undirected graph. For a positive integer k ≥ 2 the
subset S ⊆ V (G) is a k-path vertex cover of G, if every path of order k in
graph G contains a vertex from S. The set S is also called the set of covered
vertices in a k-path vertex cover of G and we call T = V (G) − S the set
of uncovered vertices. The cardinality of a minimum k-path vertex cover is
denoted by ψk(G).

The motivation for this invariant was introduced in [4] and arises from
communications in wireless sensor networks, where the data integrity is en-
sured by using the Novotný’s k-generalized Canvas scheme [15]. There are
many other motivations, for instance in traffic control as presented in [20].
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The problem of computing ψk(G) is in general NP-hard for each k ≥
2, but it was also shown that it is polynomial for trees. In [19, 20, 21]
some approximation algorithms for ψ3(G) were derived and in [13] an exact
algorithm for computing ψ3(G) in running time O(1.5171n) for a graph of
order n was presented.

The k-path vertex cover is a generalization of the vertex cover. It is easy
to see that ψ2(G) equals the size of a minimum vertex cover. Moreover,

ψ2(G) = |V (G)| − α(G) ,

where α(G) denotes the maximum stable set and is called the independence

number of G. This gives an interesting connection to the well studied inde-
pendence number [10, 11, 18, 22].

The value ψ3(G) is in close relation to the concept of the dissociation

number of a graph [23]. A subset of vertices in a graph G is called a disso-

ciation set if it induces a subgraph with maximum degree at most 1. The
number of vertices in a maximum cardinality dissociation set in G is called
the dissociation number ofG and is denoted by diss(G). The relation between
ψ3(G) and diss(G) is

ψ3(G) = |V (G)| − diss(G) .

Determining the dissociation number of a graph is NP-hard in the class of
bipartite graphs [23]. The dissociation number problem was also studied in
several other articles [1, 2, 5, 9]. This results were also united in a survey,
see [16].

Recently, in [3] some results on d-regular graphs were presented. For
instance for an arbitrary integer k ≥ 2 and a d-regular graph G, d ≥ k − 1,
it follows that

ψk(G) ≥
d− k + 2

2d− k + 2
|V (G)| .

The concept of the k-path vertex cover was also studied in different graph
products. In [3] the exact value for ψ3 was determined for the Cartesian prod-
uct of paths. Also, some bounds for the same products were determined for
ψk. These bounds were later improved in [12] and extended to the strong
product of paths. In the same article [12] some results for the lexicographic
product were presented, which were the first results in graph products for ar-
bitrary graphs. A good lower and upper bound for the lexicographic product
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of arbitrary graphs was given and the exact value for ψ2 and ψ3 was deter-
mined. As a consequence, the independence and the dissociation number of
the lexicographic product were derived. Those results imply a well-known
result of Geller and Stahl [7] who determined the independence number of
the lexicographic product.

We continue our research in the rooted product which is closely related to
the Cartesian product. The rooted product of graphs was studied on many
occasions, see for instance [6, 8, 14, 17, 24]. Since no results for the k-path
vertex cover of the Cartesian product of arbitrary graphs were presented it
would be interesting to see if some general results can be derived in the rooted
product of graphs.

Let V (G) = {g1, g2, . . . , gm} and V (H) = {h1, h2, . . . , hn}. We choose a
vertex from V (H) to be the root vertex of H, say h1. The rooted product

G ◦H of graphs G = (V (G), E(G)) and H = (V (H), E(H)) has the vertex
set

V (G ◦H) = {(gi, hj) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} ,

and the edge set

E(G◦H) = {(gi, h1)(gk, h1) | gigk ∈ E(G)}∪
m
⋃

i=1

{(gi, hj)(gi, hk) |hjhk ∈ E(H)} .

If G is also rooted at g1, one can view the product itself as rooted at (g1, h1).
The rooted product is a subgraph of the Cartesian product of the same two
graphs. An example of the rooted product C3 ◦ P4, where P4 is rooted at an
inner vertex, can be seen in Figure 1.

Figure 1: A rooted product C3 ◦ P4

Let G and H be arbitrary graphs and H rooted at h. We refer to the
set V (G) × {h} as the G-layer of graph G ◦ H. Similarly, for any vertex
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u ∈ V (G), the set {u} × V (H) is an H-layer. Note that there is only one
G-layer, but there might be many H-layers. Layers can also be regarded as
the graphs induced on the sets that define them. Obviously, in the rooted
product the G-layer and an H-layer are isomorphic to G and H, respectively.

Since the main motivation for the k-path vertex cover is securing net-
works with as few sensors as possible one can view the rooted product as a
combination of many local networks (copies of graph H) having a server (the
root vertex of graph H). These servers are connected through a global net-
work (the graph G). Hence, we get another motivation why it is interesting
to study the k-path vertex cover of rooted product graphs.

2. Main results

We start this section with the following results of a lower and an upper
bound of ψk(G ◦H). Note that in the figures the vertices which belong to a
k-path vertex cover S are colored black.

Proposition 2.1. Let G and H be arbitrary connected graphs and H rooted

at any vertex h ∈ V (H). Then

|V (G)|ψk(H) ≤ ψk(G ◦H) ≤ |V (G)|ψk(H) + ψ2(G) .

Proof. We need at least ψk(H) covered vertices in every H-layer of graph
G ◦ H. The number of such layers is |V (G)| therefore the lower bound of
ψk(G ◦H) is |V (G)|ψk(H).

For the upper bound we construct a k-path vertex cover of graph G ◦H.
Let S1 be a minimum k-path vertex cover of graph H and S2 a minimum
2-path vertex cover (i.e. vertex cover) of graph G. If every H-layer is covered
in the same way as S1 covers graph H and the G-layer is covered in the same
way as S2 covers graph G then the size of the minimum k-path vertex cover
of graph G ◦H is at most





|V (G)|
∑

i=1

|S1|



+ |S2| .

Suppose this is not true. Then we have a path of order k in G ◦H which is
not covered. If such a path lies in more than one H-layer then there exist two
adjacent vertices on this path that lie in the G-layer of graph G ◦H. Hence,
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we have two adjacent vertices in the G-layer that are not covered. This is a
contradiction since S2 is a vertex cover of graph G. Therefore, this path lies
completely in one of the H-layers which is also a contradiction since S1 is a
k-path vertex cover of graph H. Hence

ψk(G ◦H) ≤





|V (G)|
∑

i=1

|S1|



+ |S2|

= |V (G)||S1|+ |S2| = |V (G)|ψk(H) + ψ2(G) .

Having proved Proposition 2.1 it would be interesting to know when both
bounds are achieved. For the sake of this we introduce the following defini-
tion.

Definition 2.2. Let H be an arbitrary graph and h ∈ V (H). If there exists

a minimum k-path vertex cover S of graph H, i.e. |S| = ψk(H), such that

h ∈ S, then we call vertex h a kPVC-perfect vertex.

As an example (Figure 2), we take the path Pk+1 = v1v2v3 . . . vkvk+1 for
which ψk(Pk+1) = 1. It is easy to see that all vertices except v1 and vk+1 are
kPVC-perfect vertices.

. . .

v1 v2 v3 vk 1vk

. . .

. . .

. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

Figure 2: The path Pk+1 with all possibilities for the kPVC-perfect vertex

With the help of Definition 2.2 we can give a sufficient condition when
the lower bound in Proposition 2.1 is achieved.

Theorem 2.3. Let G and H be arbitrary connected graphs, graph H rooted

at h ∈ V (H), and ψk(G) 6= 0. Then

ψk(G ◦H) = |V (G)|ψk(H)

if and only if h is a kPVC-perfect vertex.
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Proof. Suppose that h ∈ V (H) is a kPVC-perfect vertex. Then there exists
a minimum k-path vertex cover S of graph H such that h ∈ S. We construct
a k-path vertex cover of graph G ◦ H in such way that we cover every H-
layer in the same way as S covers graph H. In this sense, vertices (gi, h),
i ∈ {1, . . . , |V (G)|}, are covered since the vertex h is a kPVC-perfect vertex.
Hence, the G-layer is completely covered and there is no uncovered path of
order k in the G ◦H having some of its vertices in the G-layer. Also, since
S is a k-path vertex cover of H there is no path of order k in any H-layer.
Hence,

ψk(G ◦H) ≤ |V (G)||S| = |V (G)|ψk(H) .

According to Proposition 2.1 this upper bound is also the lower bound of
ψk(G ◦H) and therefore

ψk(G ◦H) = |V (G)|ψk(H) .

For the converse, suppose that ψk(G ◦ H) = |V (G)|ψk(H). Let S be a
minimum k-path vertex cover of graph G ◦ H and Si = {(gi, hj) ∈ S | j ∈
{1, . . . , |V (H)|}}, i ∈ {1, . . . , |V (G)|}, the set of vertices of S that lie in the
Hi-layer. Hence,

|S| =

|V (G)|
∑

i=1

|Si| .

Clearly, |Si| ≥ ψk(H). If |Si| > ψk(H), i ∈ {1, . . . , |V (G)|}, then

|S| =

|V (G)|
∑

i=1

|Si| >

|V (G)|
∑

i=1

ψk(H) = |V (G)|ψk(H)

which is a contradiction. Therefore, |Si| = ψk(H), for any i ∈ {1, . . . , |V (G)|}.
Suppose that h is not a kPVC-perfect vertex. Then h does not lie in any
minimum k-path vertex cover of graph H. Each set Si, i ∈ {1, . . . , |V (G)|}, is
a minimum k-path vertex cover of the Hi-layer, i ∈ {1, . . . , |V (G)|}. Since h
is not a kPVC-perfect vertex, (gi, h) /∈ Si, for all i ∈ {1, . . . , |V (G)|}. More-
over, (gi, h) /∈ S, for all i ∈ {1, . . . , |V (G)|}. This means that the G-layer
of graph G ◦ H, which is isomorphic to graph G, is completely uncovered.
This is a contradiction to the assumption that ψk(G) 6= 0. Hence, h is a
kPVC-perfect vertex.

Remark 2.4. The assumption ψk(G) 6= 0 in Theorem 2.3 is only needed to

prove one implication. Hence, when h is a kPVC-perfect vertex it always

holds that ψk(G ◦H) = |V (G)|ψk(H), even if ψk(G) = 0.
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With the help of Theorem 2.3 and Remark 2.4 we can prove the following
results.

Proposition 2.5. Let G and H be arbitrary connected graphs and H rooted

at h ∈ V (H). If h is not a kPVC-perfect vertex then

ψk(G ◦H) ≥ |V (G)|ψk(H) + ψk(G) .

Proof. If ψk(G) = 0, the result is the same as in the Proposition 2.1. Suppose
that ψk(G) 6= 0. By Theorem 2.3 we know that ψk(G◦H) ≥ |V (G)|ψk(H)+1.
We can show more, namely that ψk(G ◦ H) ≥ |V (G)|ψk(H) + ψk(G). If H
is the vertex graph, then this bound is trivial, since ψk(G ◦H) = ψk(G) and
ψk(H) = 0. Let H be different than the vertex graph. Without loss of gen-
erality, suppose that the root vertex h is the vertex h1. Let S be a minimum
k-path vertex cover of graph G◦H, Si = {(gi, hj) ∈ S | j ∈ {2, . . . , |V (H)|}},
i ∈ {1, . . . , |V (G)|}, and S ′ = {(gi, h1) ∈ S | i ∈ {1, . . . , |V (G)|}}. It is
obvious that

|S| =





|V (G)|
∑

i=1

|Si|



+ |S ′| .

Since h1 is not a kPVC-perfect vertex, every minimum k-path vertex cover
of H does not contain vertex h1. If |Si| = ψk(H) − 1, for some i, then
Si∪{(gi, h1)} is a minimum k-path vertex cover of graph induced by the Hi-
layer, and hence h1 is a kPVC-perfect vertex, which is not possible. Hence,
|Si| ≥ ψk(H), for all i ∈ {1, . . . , |V (G)|}. Also, |S ′| ≥ ψk(G). Therefore,

|S| =





|V (G)|
∑

i=1

|Si|



+ |S ′|

≥





|V (G)|
∑

i=1

ψk(H)



+ ψk(G)

= |V (G)|ψk(H) + ψk(G) ,

and the proof is complete.

Corollary 2.6. Let G and H be arbitrary connected graphs and H rooted at

h ∈ V (H). Then

ψ2(G ◦H) =

{

|V (G)|ψ2(H) ; h is a kPVC-perfect vertex
|V (G)|ψ2(H) + ψ2(G) ; h is not a kPVC-perfect vertex

.
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Proof. If G is the vertex graph, then ψ2(G) = 0. It follows that

ψ2(G ◦H) = ψ2(H) = |V (G)|ψ2(H) = |V (G)|ψ2(H) + ψ2(G)

and both results coincide no matter whether h is kPVC-perfect or not.
Suppose now that G is different from the vertex graph. Since G is con-

nected, ψ2(G) 6= 0. By Theorem 2.3 ψ2(G ◦H) = |V (G)|ψ2(H) if and only
if h is a kPVC-perfect vertex. If h is not a kPVC-perfect vertex then by
Proposition 2.5 it follows that

|V (G)|ψ2(H) + ψ2(G) ≤ ψ2(G ◦H) ≤ |V (G)|ψ2(H) + ψ2(G) ,

and hence, ψ2(G ◦H) = |V (G)|ψ2(H) + ψ2(G).

Corollary 2.7. Let G and H be arbitrary connected graphs and H rooted at

h ∈ V (H). Then

α(G◦H) =

{

|V (G)|α(H) ; h is a kPVC-perfect vertex
|V (G)|(α(H)− 1) + α(G) ; h is not a kPVC-perfect vertex

.

Proof. By Corollary 2.6 the result follows immediately. First, suppose that
h is a kPVC-perfect vertex. Then

α(G ◦H) = |V (G ◦H)| − ψ2(G ◦H)

= |V (G)||V (H)| − |V (G)|ψ2(H)

= |V (G)|(|V (H)| − ψ2(H))

= |V (G)|α(H) .

If h is not a kPVC-perfect vertex, then

α(G ◦H) = |V (G ◦H)| − ψ2(G ◦H)

= |V (G)||V (H)| − |V (G)|ψ2(H)− ψ2(G)

= |V (G)||V (H)| − |V (G)|ψ2(H)− |V (G)|+ |V (G)| − ψ2(G)

= |V (G)|(|V (H)| − ψ2(H)− 1) + |V (G)| − ψ2(G)

= |V (G)|(α(H)− 1) + α(G) .

The assumption ψk(G) 6= 0 which is used in Theorem 2.3 and later in the
proof of Proposition 2.5 is connected to the fact whether the root vertex is a
kPVC-perfect vertex or not. We can derive the following corollary.
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Corollary 2.8. Let G and H be arbitrary connected graphs and H rooted at

vertex h ∈ V (H). If ψk(G ◦ H) = |V (G)|ψk(H) then h is a kPVC-perfect
vertex or ψk(G) = 0.

Proof. Suppose ψk(G ◦ H) = |V (G)|ψk(H). If ψk(G) = 0, we are done.
We may therefore assume that ψk(G) 6= 0. By Theorem 2.3 vertex h is a
kPVC-perfect vertex.

Even though Corollary 2.8 is almost the same as Theorem 2.3, it is impor-
tant to know that the converse in Corollary 2.8 is not true. If h is not a kPVC-
perfect vertex and ψk(G) = 0, then the equality ψk(G ◦H) = |V (G)|ψk(H)
does not necessary hold. Take for example k ≥ 3, G = Pk−1 = u1u2 . . . uk−1

and H = P2k−1 = v1v2 . . . v2k−1 rooted at v1. It is clear that ψk(G) = 0. Also,
it is easy to see that ψk(H) = 1 and v1 is not a kPVC-perfect vertex. There
is a unique way how to cover each H-layer with the k-path vertex cover of
the size ψk(H) = 1. However, such a cover is not a k-path vertex cover for
the whole graph G ◦H since it is easy to find a path on k vertices which is
not covered (see Figure 3). Hence, ψk(G ◦H) > |V (G)|ψk(H) = |V (G)|.

. . .
11

. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

(   , )u  v 12(   , )u  v 13(   , )u  v 1k(      , )u     v1
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Figure 3: The graph Pk−1 ◦ P2k−1 rooted at (ui, v1), i ∈ {1, . . . , k − 1}

We continue our observation by finding conditions for which the value
ψk(G ◦ H) would equal the lower bound in Proposition 2.5 and the upper
bound in Proposition 2.1. For both cases we introduce some new definitions.

Let h ∈ V (H) be a vertex that is not a kPVC-perfect vertex. We may
refer to such a vertex as the kPVC-imperfect vertex. We know that h /∈ S
for any minimum k-path vertex cover S of H. Therefore, h ∈ T = V (H)−S,
where T is the set of uncovered vertices. Then vertex h lies in some paths
Pi, for i ∈ {1, . . . , k − 1}, having h as one of its end-vertices, and consisting
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only of the vertices of the set T . There always exists at least one such path,
namely the path P1 on vertex h. Let P (H : S : h) be the order of the longest
path in graph H starting (or ending) in the vertex h such that all vertices of
this path are uncovered with respect to S. It is clear that the set depends on
graph H, a minimum k-path vertex cover S, and kPVC-imperfect vertex h.
To be consistent, we define P (H : S : h) = 0 if h is a kPVC-perfect vertex.

Remark 2.9. Let H be a graph, S a minimum k-path vertex cover of H,

and h ∈ V (H). Then

0 ≤ P (H : S : h) ≤ k − 1 .

With the help of Remark 2.9 we can define for any graph H the following
concept.

Definition 2.10. Let H be an arbitrary graph and h ∈ V (H). If

q = min{P (H : S : h) |S is a minimum k-path vertex cover of H} ,

then we refer to the vertex h as the q-kPVC-imperfect vertex.

For the kPVC-perfect vertex the Definition 2.10 implies that such a vertex
is a 0-kPVC-imperfect vertex. To understand the Definition 2.10 we give an
example presented in Figure 4. Take again the graph P2k−1. There is a
unique way how to cover graph P2k−1 with a k-path vertex cover S of size
ψk(P2k−1) = 1. Namely, vertex vk must be covered. All other vertices are
kPVC-imperfect vertices. Hence, P (H : S : v1) = k − 1, and since S is a
unique minimum k-path vertex cover, it follows that q = P (H : S : v1) =
k − 1. Therefore, v1 is a (k − 1)-kPVC-imperfect vertex. In general, for
every vi, i 6= k, we find the longest uncovered path for which vi is one of its
end-vertices. The order of this path equals q and vi is a q-kPVC-imperfect
vertex.

v1 v2 v vk 1vk

. . . . . .

k 1 v2 2k v2 1k

Figure 4: The path P2k−1 with vk as the only kPVC-perfect vertex

The definition of a q-kPVC-imperfect vertex gives the desired theorems
similar to Theorem 2.3.
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Theorem 2.11. Let G and H be connected graphs, where G is different

from the vertex graph, and graph H rooted at h ∈ V (H). If h is a q-kPVC-
imperfect vertex for some integer q ≥

⌈

k
2

⌉

, then

ψk(G ◦H) = |V (G)|ψk(H) + ψ2(G) .

Proof. Let h b a q-kPVC-imperfect vertex for some q ≥
⌈

k
2

⌉

. Without
loss of generality, suppose that the root vertex h is the vertex h1. Let
S be a minimum k-path vertex cover of graph G ◦ H, Si = {(gi, hj) ∈
S | j ∈ {2, . . . , |V (H)|}}, i ∈ {1, . . . , |V (G)|}, and S ′ = {(gi, h1) ∈ S | i ∈
{1, . . . , |V (G)|}}. It is obvious that

|S| =





|V (G)|
∑

i=1

|Si|



+ |S ′| .

By the definition of the kPVC-imperfect vertex h1 always lies in an uncovered
path of order at least q for every minimum k-path vertex cover of graph H
in such a away that h1 is an end-vertex of this path. Since h1 is a kPVC-
imperfect vertex, every minimum k-path vertex cover of H does not contain
vertex h1. If |Si| = ψk(H)− 1, for some i, then Si ∪ {(gi, h1)} is a minimum
k-path vertex cover of graph induced by the Hi-layer, and hence h1 is a
kPVC-perfect vertex, which is not possible. Therefore, |Si| ≥ ψk(H), for all
i ∈ {1, . . . , |V (G)|}.

The main idea of the proof is to show that for any edge in the G-layer at
least one of its end-vertices in S. Hence, any two adjacentH-layers contribute
at least 2ψk(H) + 1 vertices to S. Let (gi, h1), (gj, h1) ∈ V (G ◦H), i 6= j, be
any two adjacent vertices. We analyze two cases.

Case 1: Let |Si| = ψk(H) and |Sj| = ψk(H). Suppose that both vertices
(gi, h1) and (gj, h1) do not belong to S. Then Si and Sj are minimum k-path
vertex covers of theHi-layer and theHj-layer, respectively. If h1 is a q-kPVC-
imperfect vertex of graph H, then (gi, h1) and (gj, h1) are q-kPVC-imperfect
vertices of the Hi-layer and the Hj-layer, respectively. Hence, (gi, h1) lies in
an uncovered path Pr, r ≥ q, and is an end-vertex of this path. Also, (gj, h1)
lies in an uncovered path Ps, s ≥ q, and is an end-vertex of this path. Since
vertices (gi, h1) and (gj, h1) are adjacent in graph G ◦ H, paths Pr and Ps

together form another uncovered path of order

r + s ≥ 2 · q ≥ 2 ·

⌈

k

2

⌉

≥ k .
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Hence, S is not a k-path vertex cover, which is a contradiction. Therefore,
at least one of the vertices (gi, h1) and (gj, h1) must belong to S. Moreover,
layers Hi and Hj contribute at least 2ψk(H) + 1 vertices to S.

Case 2: At least one of |Si| and |Sj| does not equal ψk(H). Without
loss of generality, let this be |Si|. According to the observation above |Si| ≥
ψk(H)+1 and |Sj| ≥ ψk(H). Obviously, layers Hi and Hj contribute at least
2ψk(H) + 1 vertices to S.

Considering both cases,

|S| ≥ |V (H)|ψk(H) + ψ2(G) .

By Proposition 2.1, this is also the upper bound. Hence,

ψk(G ◦H) = |V (H)|ψk(H) + ψ2(G) .

Theorem 2.12. Let G and H be connected graphs, where G is different from

the vertex graph, and graph H rooted at h ∈ V (H). If

ψk(G ◦H) = |V (G)|ψk(H) + ψ2(G) ,

then h is a q-kPVC-imperfect vertex for some integer q ≥
⌊

k
2

⌋

.

Proof. First note that ψ2(G) 6= 0 since G is connected and different from
the vertex graph. Suppose that h is a q-kPVC-imperfect vertex for some
q ≤

⌊

k
2

⌋

− 1. Note, if k = 2 or k = 3, then q = 0 and h is a kPVC-perfect
vertex. By Remark 2.4 it follows that

ψk(G ◦H) = |V (G)|ψk(H) < |V (G)|ψk(H) + ψ2(G) .

Let k ≥ 4. We may assume that q 6= 0 (otherwise the proof is the same
as above). First, we construct a k-path vertex cover S of graph G ◦H such
that |S| = |V (G)|ψk(H) + ψ2(G). Let S1 be a minimum k-path vertex cover
of graph H, such that h is an end-vertex of an uncovered path of order q,
and S2 a minimum 2-path vertex cover (i.e. vertex cover) of graph G. We
cover every H-layer in the same way as S1 covers graph H. Also, we cover
the G-layer in the same way as S2 covers graph G. We take both mentioned
covers for the set S. Note that S2 6= ∅ since G is connected and different from
the vertex graph. Take a vertex (g, h) ∈ V (G ◦H) such that g ∈ S2. Let T2

12



be the set of vertices in graph G which are adjacent to g and do not belong
to S2. Since S2 is a minimum vertex cover T2 6= ∅. The graph induced on
the set of vertices T2 ∪{g} is a star graph with the central vertex g. Vertices
in V (G) − (T2 ∪ {g}) (if there are any) that are adjacent to vertices in T2
must all belong to S2. Otherwise, S2 would not be a vertex cover. Therefore,
by uncovering the vertex g, we get an uncovered path of order at most 3 in
graph G. For |T2| = 1 and ui ∈ T2, this path is of order 2, namely P2 = uig.
The worst case is if |T2| ≥ 2. For vertices ui, uj ∈ T2, i 6= j, this path is of
order 3, namely P3 = uiguj. It is obvious that if we eliminate paths of order
k in the case of |T2| ≥ 2, we also eliminate them in the case of |T2| = 1.
Hence, we consider two vertices ui, uj ∈ T2, i 6= j.

If h is a q-kPVC-imperfect vertex of graph H, then (gi, h) and (gj, h)
are q-kPVC-imperfect vertices of the Hi-layer and the Hj-layer, respectively.
Hence, (gi, h) lies in an uncovered path Pq and is an end-vertex of this path.
Also, (gj, h) lies in an uncovered path Pq and is an end-vertex of this path.
Since vertices (gi, h), (g, h) and (gj, h) form the path P3, both paths Pq

together with the path P3 form another uncovered path of order at most

2 · q + 1 ≤ 2 ·

(⌊

k

2

⌋

− 1

)

+ 1 ≤ k − 1 .

We have proved that S−{(g, h)} is also a k-path vertex cover of graph G◦H.
Therefore

ψk(G ◦H) ≤ |V (G)|ψk(H) + ψ2(G)− 1 < |V (G)|ψk(H) + ψ2(G) .

For even k we can combine Theorem 2.11 and Theorem 2.12 into the
following corollary.

Corollary 2.13. Let G and H be connected graphs, where G is different

from the vertex graph, and graph H rooted at h ∈ V (H). If k is even, then

ψk(G ◦H) = |V (G)|ψk(H) + ψ2(G)

if and only if h is a q-kPVC-imperfect vertex for some integer q ≥ k
2
.

Proof. For k is even the equality
⌈

k
2

⌉

=
⌊

k
2

⌋

holds. Hence, Theorem 2.12 is
the converse of Theorem 2.11 and vise versa.
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To see the behavior of ψk(G ◦ H) for smaller values of q for a q-kPVC-
imperfect vertex we give the following result.

Proposition 2.14. Let G and H be connected graphs, where G is different

from the vertex graph, and graph H rooted at h ∈ V (H). If h is a 1-kPVC-
imperfect vertex, then

ψk(G ◦H) = |V (G)|ψk(H) + ψk(G) .

Proof. Let h ∈ V (H) be a 1-kPVC-imperfect vertex. Then there exists a
minimum k-path vertex cover S of graph H such that h is uncovered and
isolated from the other uncovered vertices inH. We construct a k-path vertex
cover of graph G ◦ H in such way that we cover every H-layer in the same
way as S covers graph H. In this sense vertices (gi, h), i ∈ {1, . . . , |V (G)|},
are all uncovered and isolated from the other uncovered vertices in all H-
layers. To complete the construction we cover the vertices of the G-layer
with a k-path vertex cover of the size ψk(G). Altogether we have covered
|V (H)|ψk(H) + ψk(G) vertices and since, according to Proposition 2.5, this
is also the lower bound for ψk(G ◦H), it follows that

ψk(G ◦H) = |V (G)|ψk(H) + ψk(G) .

The converse of Proposition 2.14 does not hold. Take for example k ≥ 5,
G = Pk−3 = u1u2 . . . uk−3, and H = Pk+2 = v1v2 . . . vk+2 rooted at v1. It
is clear that ψk(H) = 1 and that v1 is a 2-kPVC-imperfect vertex since the
closest vertex to v1 which can be covered in a minimum k-path vertex cover of
H = Pk+2 is vertex v3. It is easy to see that ψk(G◦H) = |V (H)|ψk(H)+ψk(G)
(see Figure 5).

Corollary 2.15. Let G and H be arbitrary connected graphs and H rooted

at h ∈ V (H). Then

ψ3(G◦H) =







|V (G)|ψ3(H) ; h is a kPVC-perfect vertex
|V (G)|ψ3(H) + ψ3(G) ; h is a 1-kPVC-imperfect vertex

|V (G)|ψ3(H) + ψ2(G) ; h is a 2-kPVC-imperfect vertex

.

Proof. If G is the vertex graph, then ψ2(G) = ψ3(G) = 0. It follows that

ψ3(G ◦H) = ψ3(H) = |V (G)|ψ3(H)

= |V (G)|ψ3(H) + ψ3(G)

= |V (G)|ψ3(H) + ψ2(G)
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Figure 5: The graph Pk−3 ◦ Pk+2 rooted at (ui, v1), i ∈ {1, . . . , k − 1}

and all three results coincide.
Now suppose that G is not the vertex graph. If h is a kPVC perfect

vertex, then by Remark 2.4 it follows that

ψk(G ◦H) = |V (G)|ψk(H) .

Let q ≥
⌈

k
2

⌉

=
⌈

3
2

⌉

= 2. If h is a q-kPVC-imperfect vertex, and hence
also a 2-kPVC-imperfect vertex, then by Theorem 2.11 it follows that

ψ3(G ◦H) = |V (G)|ψ3(H) + ψ2(G) .

To end the proof, by Proposition 2.14, if h is a 1-kPVC-imperfect vertex,
then

ψ3(G ◦H) = |V (G)|ψ3(H) + ψ3(G) .

Corollary 2.16. Let G and H be arbitrary connected graphs and H rooted

at h ∈ V (H). Then

diss(G◦H) =







|V (G)|diss(H) ; h is a kPVC-perfect vertex
|V (G)|(diss(H)− 1) + diss(G) ; h is a 1-kPVC-imperfect vertex

|V (G)|(diss(H)− 1) + α(G) ; h is a 2-kPVC-imperfect vertex

.

Proof. By Corollary 2.15 the result follows immediately. First, suppose that
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h is a kPVC-perfect vertex. Then

diss(G ◦H) = |V (G ◦H)| − ψ3(G ◦H)

= |V (G)||V (H)| − |V (G)|ψ3(H)

= |V (G)|(|V (H)| − ψ3(H))

= |V (G)|diss(H) .

If h is a 1-PVC-imperfect vertex, then

diss(G ◦H) = |V (G ◦H)| − ψ3(G ◦H)

= |V (G)||V (H)| − |V (G)|ψ3(H)− ψ3(G)

= |V (G)||V (H)| − |V (G)|ψ3(H)− |V (G)|+ |V (G)| − ψ3(G)

= |V (G)|(|V (H)| − ψ3(H)− 1) + |V (G)| − ψ3(G)

= |V (G)|(diss(H)− 1) + diss(G) .

If h is a 2-PVC-imperfect vertex, then

diss(G ◦H) = |V (G ◦H)| − ψ3(G ◦H)

= |V (G)||V (H)| − |V (G)|ψ3(H)− ψ2(G)

= |V (G)||V (H)| − |V (G)|ψ3(H)− |V (G)|+ |V (G)| − ψ2(G)

= |V (G)|(|V (H)| − ψ3(H)− 1) + |V (G)| − ψ2(G)

= |V (G)|(diss(H)− 1) + α(G) .

3. Concluding remarks

We have seen that securing local networks which are communicating with
each other through servers that are connected in a global network can be
done in such a way that we place a server in a kPVC-perfect vertex of a local
network. In this sense we get a secured network with the smallest possible
number of sensors. If this is not possible, then the server must be placed as
close as possible to a kPVC-perfect vertex in the local networks.

This study was made in the case where all local networks are the same. In
general, local networks are different. Hence, the study of generalized rooted
product of graphs is needed. This product was introduced in [8]. Let G be
a labeled graph on m vertices and let H be a sequence of m rooted graphs
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H1, H2, . . . , Hm. The rooted product graph G (H) is the graph obtained by
identifying the root of graph Hi with the i-th vertex of graph G.

We end this short section with an open question of how to properly secure
a generalized rooted product.
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vertex k-path cover, Discrete Appl. Math. 161 (13-14) (2013) 1943–1949.
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