On the vertex k-path cover

Boštjan Brešar, Marko Jakovac* Faculty of Natural Science and Mathematics, University of Maribor Koroška 160, 2000 Maribor, Slovenia Institute of Mathematics, Physics and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia {bostjan.bresar, marko.jakovac}@uni-mb.si

> Ján Katrenič, Gabriel Semanišin[‡] Institute of Computer Science, P.J. Šafárik University Jesenná 5, 041 54 Košice, Slovakia {jan.katrenic, gabriel.semanisin}@upjs.sk

Andrej Taranenko Faculty of Natural Science and Mathematics, University of Maribor Koroška 160, 2000 Maribor, Slovenia Institute of Mathematics, Physics and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia andrej.taranenko@uni-mb.si

November 26, 2012

Abstract

A subset S of vertices of a graph G is called a vertex k-path cover if every path of order k in G contains at least one vertex from S. Denote by $\psi_k(G)$ the minimum cardinality of a vertex k-path cover in G. In this paper an upper bound for ψ_3 in graphs with a given average degree is presented, A lower bound for ψ_k of regular graphs is also proven. For grids, i.e. the Cartesian products of two paths, we give an asymptotically tight bound for ψ_k and the exact value for ψ_3 .

 $^{^* \}rm Supported$ by the Ministry of Science and Higher Education of Slovenia under the grants J1-2043 and P1-0297.

[†]The research of the author supported in part by Slovak APVV grant SK-SI-0010-08 and Slovak VEGA grant 1/0035/09.

[‡]The research of the author supported in part by Slovak APVV grant SK-SI-0010-08, APVV-0007-07 and by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU, under project ITMS:26220120007.

1 Introduction

Let G be a graph and k be a positive integer. Then $S \subseteq V(G)$ is a vertex k-path cover of G if every path on k vertices in G contains a vertex from S. We denote by $\psi_k(G)$ the minimum cardinality of a vertex k-path cover in G. This graph invariant was recently introduced in [4], motivated by the problem of ensuring data integrity of communication in wireless sensor networks using the k-generalized Canvas scheme [13].

The concept of vertex k-path cover is a generalization of the vertex cover. Clearly $\psi_2(G)$ coincides with the minimum cardinality of a vertex cover in a graph G, and so

$$\psi_2(G) = |V(G)| - \alpha(G)$$

where $\alpha(G)$ stands for the independence number. In addition $\psi_3(G)$ corresponds to another previously studied concept of *dissociation number* of a graph [17], defined as follows. A subset of vertices in a graph G is called a *dissociation* set if it induces a subgraph with maximum degree at most 1. The maximum cardinality of a dissociation set in G is called the *dissociation number* of G and is denoted diss(G). Clearly

$$\psi_3(G) = |V(G)| - diss(G).$$

The problem of computing diss(G) has been introduced by Yannakakis [17], who also proved it to be NP-hard in the class of bipartite graphs. The dissociation number problem was also studied in [1, 2, 6, 8, 14, 12], see [14] for a survey.

Recently, Tu and Zhou [15] presented a 2-approximation for the 3-path vertex cover problem even in the weighted version of the problem. An exact algorithm for computing $\psi_3(G)$ in running time $O(1.5171^n)$ for a graph of order n was presented in [10]. The problem of computing $\psi_k(G)$ is NP-hard for each $k \geq 2$, but polynomial for instance in trees, as shown in [4]. The authors investigate upper bounds on the value of $\psi_k(G)$ and provide several estimations and exact values of $\psi_k(G)$. It is also proven that $\psi_3(G) \leq (2n+m)/6$, for every graph G with n vertices and m edges.

In this paper, we present a more general result by showing that for an arbitrary graph G with n vertices and m edges, and an integer k such that $k \leq \frac{m}{n} \leq k + 1$, we have $\psi_3(G) \leq \frac{kn}{k+2} + \frac{m}{(k+1)(k+2)}$. This result is proven in Section 2, while in Section 3 we consider bounds for d-regular graphs. We show that for an arbitrary integer $k \geq 2$ and a d-regular graph G, $d \geq k-1$, we have $\psi_k(G) \geq \frac{d-k+2}{2d-k+2}|V(G)|$. Section 4 is devoted to the vertex k-path cover number of Cartesian products of graphs, with an emphasis on grids, for which we present the exact value for ψ_3 .

We conclude this section with the following straightforward values of ψ_k .

Proposition 1.1. Let $k \ge 2$ and $n \ge k$ be positive integers. Then

- $\psi_k(P_n) = \lfloor \frac{n}{k} \rfloor$,
- $\psi_k(C_n) = \lceil \frac{n}{k} \rceil$,
- $\psi_k(K_n) = n k + 1.$

2 Upper bound in terms of average degree

First, recall a result from [4] which is a consequence of Lovász's decomposition [11] of a graph with maximum degree Δ into subgraphs of maximum degree 1.

Lemma 2.1 ([4]). Let G be a graph of maximum degree Δ . Then

$$\psi_3(G) \le \frac{\left\lceil \frac{\Delta-1}{2} \right\rceil}{\left\lceil \frac{\Delta+1}{2} \right\rceil} |V(G)|.$$

Lemma 2.2 ([4]). Let G be a graph on n vertices and m edges. Then

$$\psi_3(G) \le \frac{2n+m}{6} \,.$$

In the following theorem we give a tight upper bound in terms of the average degree of a graph, which extends the result from Lemma 2.2.

Theorem 2.1. Let G be a graph of order n, size m and average degree d(G), and k be the smallest positive integer such that $d(G) \leq 2k + 2$. Then

$$\psi_3(G) \le \frac{kn}{k+2} + \frac{m}{(k+1)(k+2)}$$

Proof. Proof by induction on k (the basis of induction k = 1 coincides with the bound from Lemma 2.2).

Assume

$$\psi_3(G) \le \frac{(k-1)n}{k+1} + \frac{m}{k(k+1)}$$

for all graphs with average degree $d, d \leq 2k$. We aim to prove that for a graph G with average degree $d, d \leq 2k + 2$ the following holds

$$\psi_3(G) \le \frac{kn}{k+2} + \frac{m}{(k+1)(k+2)}.$$

Repeatedly remove from G a vertex of degree at least 2(k + 1), as long as such a vertex exists. In this way we get a new graph, say G', with n' vertices and m' edges. For G' we now look at two cases.

First, if kn' < m', then by Lemma 2.1

$$\psi_{3}(G') \leq \frac{k}{k+1}n' \\ = \frac{k(k+2)}{(k+1)(k+2)}n' \\ = \frac{k(k+1)+k}{(k+1)(k+2)}n' \\ \leq \frac{k}{k+2}n' + \frac{m'}{(k+1)(k+2)}$$

In the second case, when $kn' \ge m'$, we use the induction hypothesis.

$$\psi_{3}(G') \leq \frac{k-1}{k+1}n' + \frac{m'}{k(k+1)}$$

$$= \frac{k-1}{k+1}n' + \frac{2m'}{k(k+1)(k+2)} + \frac{m'}{(k+1)(k+2)}$$

$$\leq \frac{k-1}{k+1}n' + \frac{2n'}{(k+1)(k+2)} + \frac{m'}{(k+1)(k+2)}$$

$$= \frac{k}{k+2}n' + \frac{m'}{(k+1)(k+2)}$$

Next we prove a lower bound for $\psi_3(G)$, showing that the upper bound of Theorem 2.1 is tight.

Proposition 2.1. For every positive rational number $\frac{a}{b} > 1$, $a, b \in \mathbb{N}$, and the smallest positive integer k, such that $\frac{a}{b} \leq 2k + 2$, there exists a graph G with average degree $d(G) = \frac{a}{b}$ and

$$\psi_3(G) \ge \frac{kn}{k+2} + \frac{m}{(k+1)(k+2)}.$$

Proof. Denote by H_n a complete graph on n vertices without edges of one perfect matching (assume n is even). Clearly $|V(H_n)| = n$ and

$$|E(H_n)| = \frac{n(n-1)}{2} - \frac{n}{2} = \frac{n(n-2)}{2}.$$

Clearly $diss(H_n) = 2$, because any arbitrary three vertices of H_n form a path of order three. Therefore $\psi_3(H_n) = n - 2$, for $n \ge 2$. We construct the graph G as the disjoint union of

- x components H_{2k+2} ,
- y components H_{2k+4} .

We let x = (2b - a + 2kb)(k + 2) and y = (a - 2kb)(k + 1).

First, we verify the average degree of the graph G. There are x(2k+2) vertices of degree 2k and y(2k+4) vertices of degree 2k+2, hence we get

$$d(G) = \frac{x(2k+2)(2k) + y(2k+4)(2k+2)}{x(2k+2) + y(2k+4)}$$

$$= \frac{(2b-a+2kb)(k+2)(2k+2)(2k) + (a-2kb)(k+1)(2k+4)(2k+2)}{(2b-a+2kb)(k+2)(2k+2) + (a-2kb)(k+1)(2k+4)}$$

$$= \frac{(2b-a+2kb)(2k) + (a-2kb)(2k+2)}{(2b-a+2kb) + (a-2kb)}$$

$$= \frac{4kb - (a-2kb)(2k) + (a-2kb)(2k) + 2(a-2kb)}{2b}$$

$$= \frac{a}{b}.$$

Now, let us verify the value of ψ_3 of G. Clearly,

$$\psi_3(G) = x \cdot \psi_3(H_{2k+2}) + y \cdot \psi_3(H_{2k+4}) = x(2k) + y(2k+2).$$

And this exactly matches the right-hand side of inequality of the theorem:

$$\psi_{3}(G) = \frac{kn}{k+2} + \frac{m}{(k+1)(k+2)}$$

$$= \frac{k(x(2k+2) + y(2k+4))}{k+2} + \frac{x(2k)(2k+2) + y(2k+2)(2k+4)}{2(k+1)(k+2)}$$

$$= \frac{kx(2k+2)}{k+2} + 2ky + \frac{x(2k) + y(2k+4)}{(k+2)}$$

$$= \frac{kx(2k+2)}{k+2} + 2ky + \frac{x(2k)}{(k+2)} + 2y$$

$$= 2kx + 2ky + 2y.$$

3 Regular graphs

In the main theorem of this section we shall use the following result of Erdős and Gallai [7].

Theorem 3.1 ([7]). If G is a graph on n vertices that does not contain a path of order k, then it cannot have more than $\frac{n(k-2)}{2}$ edges. Moreover, the bound is achieved when the graph consists of disjoint cliques on k-1vertices. **Theorem 3.2.** Let $k \ge 2$ and $d \ge k - 1$ be positive integers. Then, for any *d*-regular graph G, the following holds:

$$\psi_k(G) \ge \frac{d-k+2}{2d-k+2} |V(G)|.$$

Proof. Let $S \subseteq V(G)$ be a vertex k-path cover and $T = V(G) \setminus S$. Let E_S , E_T be the set of edges with both endvertices in S and T, respectively. Let E_{ST} be the set of edges with one endvertex in S and the second vertex in T. Then obviously $|E(G)| = \frac{1}{2}d|V(G)| = |E_S| + |E_{ST}| + |E_T|$.

Since G is d-regular, $d|S| = 2|E_S| + |E_{ST}|$. Therefore $|S| \ge \frac{1}{d}|E_{ST}|$. Similarly, $|E_{ST}| + 2|E_T| = d|T|$. Since the graph induced on the set E_T does not contain a path of order k, according to Theorem 3.1, we have $|E_T| \le \frac{|T|(k-2)}{2}$. Combining all the previous formulas, we immediately have

$$|S| \ge \frac{1}{d}|E_{ST}| = \frac{1}{d}(d|T| - 2|E_T|) \ge \frac{1}{d}(d|T| - |T|(k-2)) = \frac{d-k+2}{d}|T|.$$

Then

$$\frac{S|+|T|}{|S|} = 1 + \frac{|T|}{|S|} \le 1 + \frac{d}{d-k+2} = \frac{2d-k+2}{d-k+2}$$

and

$$|S| \ge \frac{d-k+2}{2d-k+2} |V(G)|.$$

Corollary 3.1. If G is a cubic graph then $\psi_k(G) \ge \frac{5-k}{8-k}|V(G)|$, in particular $\psi_3(G) \ge \frac{2}{5}|V(G)|$.

Corollary 3.2. Let $k \ge 2$ be a fixed positive integer and Q_d the d-dimensional hypercube. Then

$$\lim_{d \to \infty} \frac{\psi_k(Q_d)}{|V(Q_d)|} = \frac{1}{2}.$$

Proof. By Theorem 3.2, we know that $\frac{d-k+2}{2d-k+2}|V(Q_d)| \le \psi_k(Q_d) \le \psi_2(Q_d) \le \frac{1}{2}|V(Q_d)|$, and the result immediately follows.

Proposition 3.1. Let $k \ge 2$ and $d \ge k-1$ be positive integers. There exists a *d*-regular graph *G* with

$$\psi_k(G) \le \frac{d-k+2}{2d-k+2} |V(G)|.$$

Proof. Given fixed values k and d, a graph G may be constructed as follows. Let A be a graph on (k-1)(d-k+2) independent vertices and B a graph consisting of d components of K_{k-1} . Let G be a disjoint union of A and B, together with addition edges between them, which can be arbitrarily chosen to fill d-regularity of G. Clearly, A is a k-path vertex cover of G since B does not contain a path on k vertices and

$$\frac{\psi_k(G)}{|V(G)|} \le \frac{|A|}{|A|+|B|} = \frac{(k-1)(d-k+2)}{(k-1)(d-k+2)+d(k-1)} = \frac{d-k+2}{2d-k+2}.$$

4 Cartesian products

Recall that the Cartesian product $G \Box H$ of graphs G = (V(G), E(G))and H = (V(H), E(H)) has the vertex set $V(G) \times V(H)$, and vertices $(u, v), (x, y) \in V(G \Box H)$ are adjacent whenever u = x and $vy \in E(H)$, or $ux \in E(G)$ and v = y. By p_G and p_H we denote the natural projections to the factors G and H, respectively. For a fixed vertex $u \in V(G)$, the H-layer ${}^{u}H$ is the subgraph of $G \Box H$ induced by the set of vertices $\{(u, v), v \in V(H)\}$; analogously, for a fixed vertex $v \in V(H)$, the G-layer G^{v} is the subgraph of $G \Box H$ induced by the set of vertices $\{(u, v), u \in V(G)\}$.

Note that each *H*-layer is isomorphic to *H*, and is an induced subgraph of $G\Box H$. Hence any vertex *k*-path cover *S* of $G\Box H$ must contain at least $\psi_k(H)$ vertices in every *H*-layer. Much more can be said if we restrict the structure of one of the factors. In the main result of this section we focus on the ψ_3 of grids (Cartesian products of paths), for which exact formulas are obtained.

Theorem 4.1. (i) $\psi_3(P_{2n+1} \Box P_{2k}) = 2nk + \lfloor \frac{2k}{3} \rfloor$, where $n, k \ge 1$,

(*ii*) $\psi_3(P_{2n} \Box P_{2k}) = 2nk$, where $n, k \ge 1$,

(*iii*)
$$\psi_3(P_{2n+1} \Box P_{2k+1}) = n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor$$
, where $1 \le n \le k$.

Proof. (i) Let us label the vertices of P_{2n+1} consecutively by $u_1, u_2, \ldots, u_{2n+1}$ and the vertices of P_{2k} by v_1, v_2, \ldots, v_{2k} . With this labeling, the vertex $(u_i, v_j) \in V(P_{2n+1} \Box P_{2k})$ is in *i*th layer $u_i P_{2k}$ and in *j*th layer $P_{2n+1}^{v_j}$.

Let us first prove that $\psi_3(P_{2n+1} \Box P_{2k}) \leq 2nk + \lfloor \frac{2k}{3} \rfloor$. We construct a vertex 3-path cover set S in the following way:

$$S = \{ (u_{2i+1}, v_{3j+3}), (u_{2i}, v_{3j+1}), (u_{2i}, v_{3j+2}) | \text{ for applicable indices } i \text{ and } j \}$$

It is not difficult to verify that S is a vertex 3-path cover set (Fig. 1) and gives the desired upper bond.

Figure 1: A vertex 3-path cover of $P_{2n+1} \Box P_{2k}$

Now let us prove that $\psi_3(P_{2n+1} \Box P_{2k}) \ge 2nk + \lfloor \frac{2k}{3} \rfloor$. Let S be the optimal vertex 3-path cover. Consider the layer $^{u_i}P_{2k}$, for some $i \in \{1, 2, \ldots, 2n\}$. Suppose $(u_i, v_j) \notin S$, for some $j \in \{1, 2, \ldots, 2k-1\}$, and all its neighbors

in ${}^{u_i}P_{2k}$ are in S. Then in the layer ${}^{u_{i+1}}P_{2k}$ either the vertex (u_{i+1}, v_j) is in S (left-hand side of Fig. 2) or all its neighbors in this layer are in S (right-hand side of Fig. 2).

Figure 2: Vertex (u_i, v_j) is not in S

Suppose (u_i, v_j) and (u_i, v_{j+1}) , for some $j \in \{1, 2, ..., 2k - 1\}$, are not in S. Then the vertices (u_{i+1}, v_j) and (u_{i+1}, v_{j+1}) must be in S, otherwise S is not a vertex 3-path cover (see Fig. 3).

Figure 3: Vertices (u_i, v_j) and (u_i, v_{j+1}) are not in S

Let A be the set of all vertices in layer ${}^{u_i}P_{2k}$ that are not in S, and B the set of all vertices in layer ${}^{u_{i+1}}P_{2k}$ that are in S. We shall prove that

 $|A| \leq |B|$ by finding a one to one function f from A to B. Let (u_i, v_j) be a vertex in A.

Suppose that the vertex (u_i, v_{2k}) is not in A. By Fig. 2 and Fig. 3 we set $f((u_i, v_j)) = (u_{i+1}, v_j)$ if (u_{i+1}, v_j) is in S, otherwise we set $f((u_i, v_j)) = (u_{i+1}, v_{j+1})$. This is obviously a one to one function.

We take a different approach if the vertex (u_i, v_{2k}) is in A. If also the vertex (u_i, v_{2k-1}) is in A, we can use the same argument as above since according to Fig. 3, we can set $f((u_i, v_{2k})) = (u_{i+1}, v_{2k})$. If the vertex $(u_i, v_{2k-1}) \notin A$ and $(u_{i+1}, v_{2k}) \in B$, then we can set $f((u_i, v_{2k})) = (u_{i+1}, v_{2k-1})$, otherwise we can set $f((u_i, v_{2k})) = (u_{i+1}, v_{2k-1})$. It may occur that the vertex (u_{i+1}, v_{2k-1}) is already an image of the vertex (u_i, v_{2k-2}) . If this situation occurs we can set either $f((u_i, v_{2k-2})) = (u_{i+1}, v_{2k-2})$ or $f((u_i, v_{2k-2})) = (u_{i+1}, v_{2k-3})$ since at least one of the vertices (u_{i+1}, v_{2k-2}) or (u_{i+1}, v_{2k-3}) is in B. Note that if vertex (u_i, v_{2k-2}) exists in the grid then so must vertex (u_{i+1}, v_{2k-3}) since every P_{2k} -layer has even number of vertices. It can occur that the vertex (u_{i+1}, v_{2k-3}) is also an image of a vertex in layer $u_i P_{2k}$. In this case we can repeat the above procedure.

We can always find a one to one function from A to B and hence $|A| \leq |B|$. Therefore two consecutive layers, ${}^{u_i}P_{2k}$ and ${}^{u_{i+1}}P_{2k}$, must have at least 2k vertices in S. There are n such paired layers in $P_{2n+1} \Box P_{2k}$. Together with the additional layer ${}^{u_{2n+1}}P_{2k}$, which is isomorphic to the path P_{2k} , there must be at least $2nk + \lfloor \frac{2k}{3} \rfloor$ vertices in S.

(*ii*) We follow the same line of thought as in (*i*), with the exception that in this case there is no additional layer.

(*iii*) Note that in the proof of (*i*), two consecutive layers, ${}^{u_i}P_{2k}$ and ${}^{u_{i+1}}P_{2k}$, have at least 2k vertices in S. In this case the layer ${}^{u_i}P_{2k+1}$ has odd number of vertices and it can occur that two consecutive layers do not have at least 2k + 1 vertices in S. Nevertheless, two consecutive layers, ${}^{u_i}P_{2k+1}$ and ${}^{u_{i+1}}P_{2k+1}$, must still have at least 2k vertices in S. Moreover if they have exactly 2k vertices in S, then for layers ${}^{u_i}P_{2k+1}$ and ${}^{u_{i+1}}P_{2k+1}$ the vertices (u_i, v_{2j}) and $(u_{i+1}, v_{2j}), j \in \{1, \ldots, k\}$, must all be in S (see the structure of sets A and B in (*i*)).

Having made the basic observation let us proceed with the proof. For the upper bound the same construction as in (i) suffices. Now we want to prove that $\psi_3(P_{2n+1} \Box P_{2k+1}) \ge n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor$. Assume that $0 \le n \le k$ and S is the optimal vertex 3-path cover of the graph $P_{2n+1} \Box P_{2k+1}$. We proceed with induction on n. For n = 0, the graph $P_1 \Box P_{2k+1}$ is isomorphic to the path P_{2k+1} , and hence $\psi_3(P_{2k+1}) = \lfloor \frac{2k+1}{3} \rfloor$. Now let $n \ge 1$. In the induction step we consider two cases.

Suppose that the last two layers, ${}^{u_{2n}}P_{2k+1}$ and ${}^{u_{2n+1}}P_{2k+1}$, contribute at least 2k + 1 vertices to S. Assume that $\psi_3(P_{2n-1} \Box P_{2k+1}) = (n-1)(2k+1) + \lfloor \frac{2k+1}{3} \rfloor$ and $\psi_3(P_{2n+1} \Box P_{2k+1}) < n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor$. If we remove layers ${}^{u_{2n}}P_{2k+1}$ and ${}^{u_{2n+1}}P_{2k+1}$, we remove at least 2k + 1 vertices from S

an therefore $\psi_3(P_{2n-1} \Box P_{2k+1}) < n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor - 2k - 1$. By induction assumption it follows that

$$(n-1)(2k+1) + \left\lfloor \frac{2k+1}{3} \right\rfloor < n(2k+1) + \left\lfloor \frac{2k+1}{3} \right\rfloor - 2k - 1$$
$$2nk + n - 2k - 1 < 2nk + n - 2k - 1$$
$$0 < 0,$$

which leads to a contradiction.

For the second case assume that the last two layers, ${}^{u_{2n}}P_{2k+1}$ and ${}^{u_{2n+1}}P_{2k+1}$, contribute exactly 2k vertices to S. According to the observation above, layer ${}^{u_{2n-1}}P_{2k+1}$ must contribute at least k+1 vertices to S, otherwise there exists an uncovered path P_3 in the last three layers. If we remove layers ${}^{u_{2n+1}}P_{2k+1}$, ${}^{u_{2n}}P_{2k+1}$ and ${}^{u_{2n-1}}P_{2k+1}$ (this is possible since $n \ge 1$), we remove at least 3k + 1 vertices from S. Suppose again that $\psi_3(P_{2n+1} \Box P_{2k+1}) < n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor$. Then $\psi_3(P_{2n-2} \Box P_{2k+1}) < n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor - 3k - 1$. But according to (i) we know that $\psi_3(P_{2n-2} \Box P_{2k+1}) = 2k(n-1) + \lfloor \frac{2n-2}{3} \rfloor$ and hence

$$2k(n-1) + \left\lfloor \frac{2n-2}{3} \right\rfloor < n(2k+1) + \left\lfloor \frac{2k+1}{3} \right\rfloor - 3k - 1$$

$$2nk - 2k + \left\lfloor \frac{2n-2}{3} \right\rfloor < 2nk + n + \left\lfloor \frac{2k+1}{3} \right\rfloor - 3k - 1$$

$$\left\lfloor \frac{2n-2}{3} \right\rfloor < n + \left\lfloor \frac{2k+1}{3} \right\rfloor - k - 1$$

$$\left\lfloor \frac{2n-2}{3} \right\rfloor - n < \left\lfloor \frac{2k+1}{3} \right\rfloor - k - 1$$

$$\left\lfloor \frac{-n-2}{3} \right\rfloor < \left\lfloor \frac{-k-2}{3} \right\rfloor$$

$$k < n$$

which again is a contradiction since $n \leq k$.

As seen in Theorem 4.1, it is already hard to determine the exact value of ψ_3 for grids. Therefore it would be nice to have at least some lower or upper bounds for ψ_k , $k \ge 4$.

Lemma 4.1. For each $k \ge 4$, $\psi_k(P_{2\lceil \sqrt{k} \rceil} \Box P_{3\lceil \sqrt{k} \rceil}) \ge \lceil \sqrt{k} \rceil$.

Proof. Set $G := P_{2\lceil \sqrt{k} \rceil} \square P_{3\lceil \sqrt{k} \rceil}$. Assume to the contrary that S is a k-path vertex cover of the graph G, with $|S| \leq \left\lceil \sqrt{k} \right\rceil - 1$. Then at least $\left\lceil \sqrt{k} \right\rceil$ of all $P_{3\lceil \sqrt{k} \rceil}$ -layers of G do not contain any vertex of S.

Since $|S| \leq \left\lceil \sqrt{k} \right\rceil - 1$, there exists a vertex $v_j \notin S$ in the layer ${}^{u_i}P_{3\lceil \sqrt{k}\rceil}$, where $1 \leq j \leq \left\lceil \sqrt{k} \right\rceil$, such that its neighbour in the layer ${}^{u_{i+1}}P_{3\lceil \sqrt{k}\rceil}$ is also not in S. So, two consecutive $P_{3\lceil \sqrt{k}\rceil}$ -layers, say ${}^{u_i}P_{3\lceil \sqrt{k}\rceil}$ and ${}^{u_{i+1}}P_{3\lceil \sqrt{k}\rceil}$, can be connected by an edge with both end-vertices not in S. Similarly, a vertex $v_l \notin S$, where $2\left\lceil \sqrt{k} \right\rceil + 1 \leq l \leq 3\left\lceil \sqrt{k} \right\rceil$, exists in ${}^{u_i}P_{3\lceil \sqrt{k}\rceil}$ and its neighbour in ${}^{u_{i+1}}P_{3\lceil \sqrt{k}\rceil}$ is also not in S.

Now, using the $\dot{P}_{3\lceil\sqrt{k}\rceil}$ -layers not containing any vertices of S and moving from/to the other $P_{3\lceil\sqrt{k}\rceil}$ -layers on uncovered vertices only, one can easily construct a path on at least $\left\lceil\sqrt{k}\right\rceil \cdot \left\lceil\sqrt{k}\right\rceil$ vertices. Since $\left\lceil\sqrt{k}\right\rceil \cdot \left\lceil\sqrt{k}\right\rceil \ge \sqrt{k} \cdot \sqrt{k} = k$, we have a path of order at least k with no vertices in S. This is a contradiction to the assumption that S is a k-path vertex cover.

First we present a lower bound with the help of Lemma 4.1.

Proposition 4.1. For
$$k \ge 4$$
, $n \ge 2 \left\lceil \sqrt{k} \right\rceil$, $m \ge 3 \left\lceil \sqrt{k} \right\rceil$, the following holds
$$\frac{nm}{24 \left\lceil \sqrt{k} \right\rceil} \le \psi_k (P_n \Box P_m).$$

Proof. We partition the whole graph $P_n \Box P_m$ into r disjoint subgraphs isomorphic to $P_{2\lceil \sqrt{k} \rceil} \Box P_{3\lceil \sqrt{k} \rceil}$ such that $r\left(2\lceil \sqrt{k} \rceil\right) \left(3\lceil \sqrt{k} \rceil\right) \ge \frac{1}{4}nm$. By Lemma 4.1 a k-path vertex cover must have at least $\lceil \sqrt{k} \rceil$ vertices in each subgraph isomorphic to $P_{2\lceil \sqrt{k} \rceil} \Box P_{3\lceil \sqrt{k} \rceil}$ in G, hence:

$$\psi_k(P_n \Box P_m) \ge r \left\lceil \sqrt{k} \right\rceil \ge \frac{nm}{24 \left\lceil \sqrt{k} \right\rceil}.$$

We conclude the paper with the following upper bound.

Proposition 4.2. For $k \ge 4$ the following holds

$$\psi_k(P_n \Box P_m) \le \frac{2nm}{\left\lfloor \sqrt{k} \right\rfloor} - \frac{nm}{k}.$$

Proof. We will construct a k-path vertex cover with at most $\frac{2nm}{\lfloor\sqrt{k}\rfloor} - \frac{nm}{k}$ vertices. Let $S_1 = \left\{ (i, j) \in P_n \square P_m \mid i \equiv 0 \pmod{\lfloor\sqrt{k}\rfloor} \right\}$ and similarly $S_2 = \left\{ (i, j) \in P_n \square P_m \mid j \equiv 0 \pmod{\lfloor\sqrt{k}\rfloor} \right\}$. It is easy to see that $S = (S_1 \cup S_2) \setminus (S_1 \cap S_2)$ is a k-path vertex cover, since the largest subgraph of $P_n \square P_m$ with all vertices uncovered is isomorphic to $P_{\lfloor\sqrt{k}\rfloor-1} \square P_{\lfloor\sqrt{k}\rfloor-1}$.

In a P_n -layer we cover every $\lfloor \sqrt{k} \rfloor$ -th vertex. Since there are m layers, the size of S_1 is at most $|S_1| \leq \frac{nm}{\lfloor \sqrt{k} \rfloor}$. Similarly, $|S_2| \leq \frac{nm}{\lfloor \sqrt{k} \rfloor}$. The vertices $(i, j) \in S_1 \cap S_2$ can be left uncovered, because all the vertices $(i \pm 1, j)$ and $(i, j \pm 1)$ are in S. Since $|S_1 \cap S_2| \leq \frac{nm}{k}$, the assertion follows. \Box

References

- V. E. Alekseev, R. Boliac, D. V. Korobitsyn, V. V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comp. Science 389 (1-2) (2007) 219–236.
- [2] R. Boliac, K. Cameron, V.V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72 (2004) 241–253.
- [3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. - Graph Theory 17 (1997) 5–50.
- [4] B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (12) (2011) 1189–1195. 1189–1195.
- [5] B. Brešar and B. Zmazek, On the independence graph of a graph, Discrete Math. 272 (2001), 263–268.
- [6] K. Cameron, P. Hell, Independent packings in structured graphs, Math. Program. 105 (2-3) (2006) 201–213.
- [7] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356.
- [8] F. Göring, J. Harant, D. Rautenbach and I. Schiermeyer, On Findependence in graphs, Discuss. Math. - Graph Theory 29 (2) (2009) 377–383.
- [9] P. Hell, X. Yu, H. Zhou, Independence ratios of graph powers, Discrete Math. 127 (1994) 213–220.
- [10] F. Kardoš, J. Katrenič, I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, to appear in Theor. Comp. Science.
- [11] L. Lovász, On decompositions of graphs, Studia Sci. Math Hungar. 1 (1966) 237–238.
- [12] V. V. Lozin, D. Rautenbach, Some results on graphs without long induced paths, Inf. Process. Lett. 88 (4) (2003) 167–171.

- [13] M. Novotný, Design and Analysis of a Generalized Canvas Protocol. (to appear in Proceedings of WISTP 2010: Information Security Theory and Practice. Security and Privacy of Pervasive Systems and Smart Devices, LNCS 6033, Springer 2010).
- [14] Y. Orlovich, A. Dolguib, G. Finkec, V. Gordond, F. Wernere, The complexity of dissociation set problems in graphs, Discrete Appl. Math. 159 (13) (2011) 1352–1366.
- [15] J. Tua, W. Zhoub, A factor 2 approximation algorithm for the vertex cover P_3 problem, Information Processing Letters 111 (14) (2011) 683–686
- [16] V.G. Vizing, The Cartesian product of graphs, Vychisl. Sistemy 9 (1963), 30–43.
- [17] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Computing 10 (1981) 310–327.