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Abstract

A subset S of vertices of a graph G is called a vertex k-path cover
if every path of order k in G contains at least one vertex from S.
Denote by ψk(G) the minimum cardinality of a vertex k-path cover in
G. In this paper an upper bound for ψ3 in graphs with a given average
degree is presented, A lower bound for ψk of regular graphs is also
proven. For grids, i.e. the Cartesian products of two paths, we give an
asymptotically tight bound for ψk and the exact value for ψ3.
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1 Introduction

Let G be a graph and k be a positive integer. Then S ⊆ V (G) is a vertex
k-path cover of G if every path on k vertices in G contains a vertex from
S. We denote by ψk(G) the minimum cardinality of a vertex k-path cover
in G. This graph invariant was recently introduced in [4], motivated by
the problem of ensuring data integrity of communication in wireless sensor
networks using the k-generalized Canvas scheme [13].

The concept of vertex k-path cover is a generalization of the vertex cover.
Clearly ψ2(G) coincides with the minimum cardinality of a vertex cover in
a graph G, and so

ψ2(G) = |V (G)| − α(G)

where α(G) stands for the independence number. In addition ψ3(G) cor-
responds to another previously studied concept of dissociation number of a
graph [17], defined as follows. A subset of vertices in a graph G is called a
dissociation set if it induces a subgraph with maximum degree at most 1.
The maximum cardinality of a dissociation set in G is called the dissociation
number of G and is denoted diss(G). Clearly

ψ3(G) = |V (G)| − diss(G).

The problem of computing diss(G) has been introduced by Yannakakis [17],
who also proved it to be NP-hard in the class of bipartite graphs. The
dissociation number problem was also studied in [1, 2, 6, 8, 14, 12], see [14]
for a survey.

Recently, Tu and Zhou [15] presented a 2-approximation for the 3-path
vertex cover problem even in the weighted version of the problem. An exact
algorithm for computing ψ3(G) in running time O(1.5171n) for a graph of
order n was presented in [10]. The problem of computing ψk(G) is NP-hard
for each k ≥ 2, but polynomial for instance in trees, as shown in [4]. The
authors investigate upper bounds on the value of ψk(G) and provide several
estimations and exact values of ψk(G). It is also proven that ψ3(G) ≤
(2n+m)/6, for every graph G with n vertices and m edges.

In this paper, we present a more general result by showing that for an
arbitrary graph G with n vertices and m edges, and an integer k such that
k ≤ m

n
≤ k + 1, we have ψ3(G) ≤ kn

k+2 + m
(k+1)(k+2) . This result is proven in

Section 2, while in Section 3 we consider bounds for d-regular graphs. We
show that for an arbitrary integer k ≥ 2 and a d-regular graph G, d ≥ k−1,
we have ψk(G) ≥ d−k+2

2d−k+2 |V (G)|. Section 4 is devoted to the vertex k-path
cover number of Cartesian products of graphs, with an emphasis on grids,
for which we present the exact value for ψ3.

We conclude this section with the following straightforward values of ψk.

Proposition 1.1. Let k ≥ 2 and n ≥ k be positive integers. Then
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• ψk(Pn) =
⌊

n
k

⌋

,

• ψk(Cn) = dn
k
e,

• ψk(Kn) = n− k + 1.

2 Upper bound in terms of average degree

First, recall a result from [4] which is a consequence of Lovász’s decompo-
sition [11] of a graph with maximum degree ∆ into subgraphs of maximum
degree 1.

Lemma 2.1 ([4]). Let G be a graph of maximum degree ∆. Then

ψ3(G) ≤
d∆−1

2 e
d∆+1

2 e
|V (G)|.

Lemma 2.2 ([4]). Let G be a graph on n vertices and m edges. Then

ψ3(G) ≤
2n+m

6
.

In the following theorem we give a tight upper bound in terms of the
average degree of a graph, which extends the result from Lemma 2.2.

Theorem 2.1. Let G be a graph of order n, size m and average degree d(G),
and k be the smallest positive integer such that d(G) ≤ 2k + 2. Then

ψ3(G) ≤
kn

k + 2
+

m

(k + 1)(k + 2)

Proof. Proof by induction on k (the basis of induction k = 1 coincides with
the bound from Lemma 2.2).

Assume

ψ3(G) ≤
(k − 1)n

k + 1
+

m

k(k + 1)

for all graphs with average degree d, d ≤ 2k. We aim to prove that for a
graph G with average degree d, d ≤ 2k + 2 the following holds

ψ3(G) ≤
kn

k + 2
+

m

(k + 1)(k + 2)
.

Repeatedly remove from G a vertex of degree at least 2(k + 1), as long
as such a vertex exists. In this way we get a new graph, say G′, with n′

vertices and m′ edges. For G′ we now look at two cases.
First, if kn′ < m′, then by Lemma 2.1
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ψ3(G
′) ≤ k

k + 1
n′

=
k(k + 2)

(k + 1)(k + 2)
n′

=
k(k + 1) + k

(k + 1)(k + 2)
n′

≤ k

k + 2
n′ +

m′

(k + 1)(k + 2)

In the second case, when kn′ ≥ m′, we use the induction hypothesis.

ψ3(G
′) ≤ k − 1

k + 1
n′ +

m′

k(k + 1)

=
k − 1

k + 1
n′ +

2m′

k(k + 1)(k + 2)
+

m′

(k + 1)(k + 2)

≤ k − 1

k + 1
n′ +

2n′

(k + 1)(k + 2)
+

m′

(k + 1)(k + 2)

=
k

k + 2
n′ +

m′

(k + 1)(k + 2)

Next we prove a lower bound for ψ3(G), showing that the upper bound
of Theorem 2.1 is tight.

Proposition 2.1. For every positive rational number a
b
> 1, a, b ∈ N, and

the smallest positive integer k, such that a
b
≤ 2k + 2, there exists a graph G

with average degree d(G) = a
b
and

ψ3(G) ≥
kn

k + 2
+

m

(k + 1)(k + 2)
.

Proof. Denote by Hn a complete graph on n vertices without edges of one
perfect matching (assume n is even). Clearly |V (Hn)| = n and

|E(Hn)| =
n(n− 1)

2
− n

2
=
n(n− 2)

2
.

Clearly diss(Hn) = 2, because any arbitrary three vertices of Hn form a
path of order three. Therefore ψ3(Hn) = n− 2, for n ≥ 2.
We construct the graph G as the disjoint union of

• x components H2k+2,

• y components H2k+4.
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We let x = (2b− a+ 2kb)(k + 2) and y = (a− 2kb)(k + 1).
First, we verify the average degree of the graph G. There are x(2k + 2)

vertices of degree 2k and y(2k + 4) vertices of degree 2k + 2, hence we get

d(G) =
x(2k + 2)(2k) + y(2k + 4)(2k + 2)

x(2k + 2) + y(2k + 4)

=
(2b− a+ 2kb)(k + 2)(2k + 2)(2k) + (a− 2kb)(k + 1)(2k + 4)(2k + 2)

(2b− a+ 2kb)(k + 2)(2k + 2) + (a− 2kb)(k + 1)(2k + 4)

=
(2b− a+ 2kb)(2k) + (a− 2kb)(2k + 2)

(2b− a+ 2kb) + (a− 2kb)

=
4kb− (a− 2kb)(2k) + (a− 2kb)(2k) + 2(a− 2kb)

2b

=
a

b
.

Now, let us verify the value of ψ3 of G. Clearly,

ψ3(G) = x · ψ3(H2k+2) + y · ψ3(H2k+4) = x(2k) + y(2k + 2).

And this exactly matches the right-hand side of inequality of the theorem:

ψ3(G) =
kn

k + 2
+

m

(k + 1)(k + 2)

=
k(x(2k + 2) + y(2k + 4))

k + 2
+
x(2k)(2k + 2) + y(2k + 2)(2k + 4)

2(k + 1)(k + 2)

=
kx(2k + 2)

k + 2
+ 2ky +

x(2k) + y(2k + 4)

(k + 2)

=
kx(2k + 2)

k + 2
+ 2ky +

x(2k)

(k + 2)
+ 2y

= 2kx+ 2ky + 2y.

3 Regular graphs

In the main theorem of this section we shall use the following result of Erdős
and Gallai [7].

Theorem 3.1 ([7]). If G is a graph on n vertices that does not contain

a path of order k, then it cannot have more than n(k−2)
2 edges. Moreover,

the bound is achieved when the graph consists of disjoint cliques on k − 1
vertices.
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Theorem 3.2. Let k ≥ 2 and d ≥ k− 1 be positive integers. Then, for any
d-regular graph G, the following holds:

ψk(G) ≥
d− k + 2

2d− k + 2
|V (G)|.

Proof. Let S ⊆ V (G) be a vertex k-path cover and T = V (G) \ S. Let ES ,
ET be the set of edges with both endvertices in S and T , respectively. Let
EST be the set of edges with one endvertex in S and the second vertex in
T . Then obviously |E(G)| = 1

2d|V (G)| = |ES |+ |EST |+ |ET |.
Since G is d-regular, d|S| = 2|ES | + |EST |. Therefore |S| ≥ 1

d
|EST |.

Similarly, |EST | + 2|ET | = d|T |. Since the graph induced on the set ET

does not contain a path of order k, according to Theorem 3.1, we have
|ET | ≤ |T |(k−2)

2 . Combining all the previous formulas, we immediately have

|S| ≥ 1

d
|EST | =

1

d
(d|T | − 2|ET |) ≥

1

d
(d|T | − |T |(k − 2)) =

d− k + 2

d
|T |.

Then

|S|+ |T |
|S| = 1 +

|T |
|S| ≤ 1 +

d

d− k + 2
=

2d− k + 2

d− k + 2

and

|S| ≥ d− k + 2

2d− k + 2
|V (G)|.

Corollary 3.1. If G is a cubic graph then ψk(G) ≥ 5−k
8−k

|V (G)|, in particular

ψ3(G) ≥ 2
5 |V (G)|.

Corollary 3.2. Let k ≥ 2 be a fixed positive integer and Qd the d-dimensional
hypercube. Then

lim
d→∞

ψk(Qd)

|V (Qd)|
=

1

2
.

Proof. By Theorem 3.2, we know that d−k+2
2d−k+2 |V (Qd)| ≤ ψk(Qd) ≤ ψ2(Qd) ≤

1
2 |V (Qd)|, and the result immediately follows.

Proposition 3.1. Let k ≥ 2 and d ≥ k−1 be positive integers. There exists
a d-regular graph G with

ψk(G) ≤
d− k + 2

2d− k + 2
|V (G)|.
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Proof. Given fixed values k and d, a graph G may be constructed as follows.
Let A be a graph on (k− 1)(d− k+ 2) independent vertices and B a graph
consisting of d compontents of Kk−1. Let G be a disjoint union of A and B,
together with addition edges between them, which can be arbitrarily chosen
to fill d-regularity of G. Clearly, A is a k-path vertex cover of G since B
does not contain a path on k vertices and

ψk(G)

|V (G)| ≤
|A|

|A|+ |B| =
(k − 1)(d− k + 2)

(k − 1)(d− k + 2) + d(k − 1)
=

d− k + 2

2d− k + 2
.

4 Cartesian products

Recall that the Cartesian product G�H of graphs G = (V (G), E(G))
and H = (V (H), E(H)) has the vertex set V (G) × V (H), and vertices
(u, v), (x, y) ∈ V (G�H) are adjacent whenever u = x and vy ∈ E(H), or
ux ∈ E(G) and v = y. By pG and pH we denote the natural projections
to the factors G and H, respectively. For a fixed vertex u ∈ V (G), the
H-layer uH is the subgraph of G�H induced by the set of vertices {(u, v),
v ∈ V (H)}; analogously, for a fixed vertex v ∈ V (H), the G-layer Gv is the
subgraph of G�H induced by the set of vertices {(u, v), u ∈ V (G)}.

Note that each H-layer is isomorphic to H, and is an induced subgraph
of G�H. Hence any vertex k-path cover S of G�H must contain at least
ψk(H) vertices in every H-layer. Much more can be said if we restrict the
structure of one of the factors. In the main result of this section we focus
on the ψ3 of grids (Cartesian products of paths), for which exact formulas
are obtained.

Theorem 4.1. (i) ψ3(P2n+1�P2k) = 2nk + b2k3 c, where n, k ≥ 1,

(ii) ψ3(P2n�P2k) = 2nk, where n, k ≥ 1,

(iii) ψ3(P2n+1�P2k+1) = n(2k + 1) + b2k+1
3 c, where 1 ≤ n ≤ k.

Proof. (i) Let us label the vertices of P2n+1 consecutively by u1, u2, . . . , u2n+1

and the vertices of P2k by v1, v2, . . . , v2k. With this labeling, the vertex
(ui, vj) ∈ V (P2n+1�P2k) is in i

th layer uiP2k and in jth layer P
vj
2n+1.

Let us first prove that ψ3(P2n+1�P2k) ≤ 2nk + b2k3 c. We construct a
vertex 3-path cover set S in the following way:

S = {(u2i+1, v3j+3), (u2i, v3j+1), (u2i, v3j+2)| for applicable indices i and j} .

It is not difficult to verify that S is a vertex 3-path cover set (Fig. 1) and
gives the desired upper bond.
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u2nu1 u2 u3 u4 u5 u2 1n u2 1n

v1

v2

v3

v4

v5

v6

Figure 1: A vertex 3-path cover of P2n+1�P2k

Now let us prove that ψ3(P2n+1�P2k) ≥ 2nk+ b2k3 c. Let S be the opti-
mal vertex 3-path cover. Consider the layer uiP2k, for some i ∈ {1, 2, . . . , 2n}.

Suppose (ui, vj) 6∈ S, for some j ∈ {1, 2, . . . , 2k−1}, and all its neighbors
in uiP2k are in S. Then in the layer ui+1P2k either the vertex (ui+1, vj) is
in S (left-hand side of Fig. 2) or all its neighbors in this layer are in S
(right-hand side of Fig. 2).

ui ui 1

vj

ui ui 1

vj

Figure 2: Vertex (ui, vj) is not in S

Suppose (ui, vj) and (ui, vj+1), for some j ∈ {1, 2, . . . , 2k − 1}, are not
in S. Then the vertices (ui+1, vj) and (ui+1, vj+1) must be in S, otherwise
S is not a vertex 3-path cover (see Fig. 3).

ui ui 1

vj

vj 1

Figure 3: Vertices (ui, vj) and (ui, vj+1) are not in S

Let A be the set of all vertices in layer uiP2k that are not in S, and B
the set of all vertices in layer ui+1P2k that are in S. We shall prove that
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|A| ≤ |B| by finding a one to one function f from A to B. Let (ui, vj) be a
vertex in A.

Suppose that the vertex (ui, v2k) is not in A. By Fig. 2 and Fig. 3 we
set f((ui, vj)) = (ui+1, vj) if (ui+1, vj) is in S, otherwise we set f((ui, vj)) =
(ui+1, vj+1). This is obviously a one to one function.

We take a different approach if the vertex (ui, v2k) is in A. If also the
vertex (ui, v2k−1) is in A, we can use the same argument as above since
according to Fig. 3, we can set f((ui, v2k)) = (ui+1, v2k). If the ver-
tex (ui, v2k−1) /∈ A and (ui+1, v2k) ∈ B, then we can set f((ui, v2k)) =
(ui+1, v2k), otherwise we can set f((ui, v2k)) = (ui+1, v2k−1). It may occur
that the vertex (ui+1, v2k−1) is already an image of the vertex (ui, v2k−2).
If this situation occurs we can set either f((ui, v2k−2)) = (ui+1, v2k−2) or
f((ui, v2k−2)) = (ui+1, v2k−3) since at least one of the vertices (ui+1, v2k−2)
or (ui+1, v2k−3) is in B. Note that if vertex (ui, v2k−2) exists in the grid
then so must vertex (ui+1, v2k−3) since every P2k-layer has even number of
vertices. It can occur that the vertex (ui+1, v2k−3) is also an image of a
vertex in layer uiP2k. In this case we can repeat the above procedure.

We can always find a one to one function from A to B and hence |A| ≤
|B|. Therefore two consecutive layers, uiP2k and ui+1P2k, must have at least
2k vertices in S. There are n such paired layers in P2n+1�P2k. Together
with the additional layer u2n+1P2k, which is isomorphic to the path P2k,
there must be at least 2nk + b2k3 c vertices in S.

(ii) We follow the same line of thought as in (i), with the exception that
in this case there is no additional layer.

(iii) Note that in the proof of (i), two consecutive layers, uiP2k and
ui+1P2k, have at least 2k vertices in S. In this case the layer uiP2k+1 has
odd number of vertices and it can occur that two consecutive layers do not
have at least 2k + 1 vertices in S. Nevertheless, two consecutive layers,
uiP2k+1 and ui+1P2k+1, must still have at least 2k vertices in S. Moreover
if they have exactly 2k vertices in S, then for layers uiP2k+1 and ui+1P2k+1

the vertices (ui, v2j) and (ui+1, v2j), j ∈ {1, . . . , k}, must all be in S (see the
structure of sets A and B in (i)).

Having made the basic observation let us proceed with the proof. For
the upper bound the same construction as in (i) suffices. Now we want to
prove that ψ3(P2n+1�P2k+1) ≥ n(2k+1)+ b2k+1

3 c. Assume that 0 ≤ n ≤ k
and S is the optimal vertex 3-path cover of the graph P2n+1�P2k+1. We
proceed with induction on n. For n = 0, the graph P1�P2k+1 is isomorphic
to the path P2k+1, and hence ψ3(P2k+1) = b2k+1

3 c. Now let n ≥ 1. In the
induction step we consider two cases.

Suppose that the last two layers, u2nP2k+1 and u2n+1P2k+1, contribute at
least 2k + 1 vertices to S. Assume that ψ3(P2n−1�P2k+1) = (n − 1)(2k +
1) + b2k+1

3 c and ψ3(P2n+1�P2k+1) < n(2k + 1) + b2k+1
3 c. If we remove

layers u2nP2k+1 and u2n+1P2k+1, we remove at least 2k + 1 vertices from S
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an therefore ψ3(P2n−1�P2k+1) < n(2k+1)+ b2k+1
3 c−2k−1. By induction

assumption it follows that

(n− 1)(2k + 1) +

⌊

2k + 1

3

⌋

< n(2k + 1) +

⌊

2k + 1

3

⌋

− 2k − 1

2nk + n− 2k − 1 < 2nk + n− 2k − 1

0 < 0 ,

which leads to a contradiction.
For the second case assume that the last two layers, u2nP2k+1 and

u2n+1P2k+1,
contribute exactly 2k vertices to S. According to the observation above,
layer u2n−1P2k+1 must contribute at least k+1 vertices to S, otherwise there
exists an uncovered path P3 in the last three layers. If we remove layers
u2n+1P2k+1,

u2nP2k+1 and
u2n−1P2k+1 (this is possible since n ≥ 1), we remove

at least 3k + 1 vertices from S. Suppose again that ψ3(P2n+1�P2k+1) <
n(2k+1)+ b2k+1

3 c. Then ψ3(P2n−2�P2k+1) < n(2k+1)+ b2k+1
3 c− 3k− 1.

But according to (i) we know that ψ3(P2n−2�P2k+1) = 2k(n− 1) + b2n−2
3 c

and hence

2k(n− 1) +

⌊

2n− 2

3

⌋

< n(2k + 1) +

⌊

2k + 1

3

⌋

− 3k − 1

2nk − 2k +

⌊

2n− 2

3

⌋

< 2nk + n+

⌊

2k + 1

3

⌋

− 3k − 1

⌊

2n− 2

3

⌋

< n+

⌊

2k + 1

3

⌋

− k − 1

⌊

2n− 2

3

⌋

− n <

⌊

2k + 1

3

⌋

− k − 1

⌊−n− 2

3

⌋

<

⌊−k − 2

3

⌋

k < n

which again is a contradiction since n ≤ k.

As seen in Theorem 4.1, it is already hard to determine the exact value
of ψ3 for grids. Therefore it would be nice to have at least some lower or
upper bounds for ψk, k ≥ 4.

Lemma 4.1. For each k ≥ 4, ψk(P2d√ke�P3d√ke) ≥
⌈√

k
⌉

.

Proof. Set G := P2d√ke�P3d√ke. Assume to the contrary that S is a k-

path vertex cover of the graph G, with |S| ≤
⌈√

k
⌉

− 1. Then at least
⌈√

k
⌉

of all P3d√ke-layers of G do not contain any vertex of S.
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Since |S| ≤
⌈√

k
⌉

− 1, there exists a vertex vj 6∈ S in the layer uiP3d√ke,

where 1 ≤ j ≤
⌈√

k
⌉

, such that its neighbour in the layer ui+1P3d√ke is also

not in S. So, two consecutive P3d√ke-layers, say
uiP3d√ke and ui+1P3d√ke,

can be connected by an edge with both end-vertices not in S. Similarly, a

vertex vl 6∈ S, where 2
⌈√

k
⌉

+ 1 ≤ l ≤ 3
⌈√

k
⌉

, exists in uiP3d√ke and its

neighbour in ui+1P3d√ke is also not in S.

Now, using the P3d√ke-layers not containing any vertices of S and moving

from/to the other P3d√ke-layers on uncovered vertices only, one can easily

construct a path on at least
⌈√

k
⌉

·
⌈√

k
⌉

vertices. Since
⌈√

k
⌉

·
⌈√

k
⌉

≥
√
k ·

√
k = k, we have a path of order at least k with no vertices in S. This

is a contradiction to the assumption that S is a k-path vertex cover.

First we present a lower bound with the help of Lemma 4.1.

Proposition 4.1. For k ≥ 4, n ≥ 2
⌈√

k
⌉

,m ≥ 3
⌈√

k
⌉

, the following holds

nm

24
⌈√

k
⌉ ≤ ψk(Pn�Pm).

Proof. We partition the whole graph Pn�Pm into r disjoint subgraphs iso-

morphic to P2d√ke�P3d√ke such that r
(

2
⌈√

k
⌉)(

3
⌈√

k
⌉)

≥ 1
4nm. By

Lemma 4.1 a k-path vertex cover must have at least
⌈√

k
⌉

vertices in each

subgraph isomorphic to P2d√ke�P3d√ke in G, hence:

ψk(Pn�Pm) ≥ r
⌈√

k
⌉

≥ nm

24
⌈√

k
⌉ .

We conclude the paper with the following upper bound.

Proposition 4.2. For k ≥ 4 the following holds

ψk(Pn�Pm) ≤ 2nm
⌊√

k
⌋ − nm

k
.

Proof. We will construct a k-path vertex cover with at most 2nm

b√kc − nm
k

vertices. Let S1 =
{

(i, j) ∈ Pn�Pm | i ≡ 0
(

mod
⌊√

k
⌋)}

and similarly

S2 =
{

(i, j) ∈ Pn�Pm | j ≡ 0
(

mod
⌊√

k
⌋)}

. It is easy to see that S =

(S1 ∪ S2)\(S1 ∩ S2) is a k-path vertex cover, since the largest subgraph of
Pn�Pm with all vertices uncovered is isomorphic to Pb√kc−1�Pb√kc−1.
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In a Pn-layer we cover every
⌊√

k
⌋

-th vertex. Since there are m layers,

the size of S1 is at most |S1| ≤ nm

b√kc . Similarly, |S2| ≤ nm

b√kc . The vertices

(i, j) ∈ S1 ∩ S2 can be left uncovered, because all the vertices (i± 1, j) and
(i, j ± 1) are in S. Since |S1 ∩ S2| ≤ nm

k
, the assertion follows.
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