On the vertex k-path cover

Boštjan Brešar, Marko Jakovac*
Faculty of Natural Science and Mathematics, University of Maribor Koroška 160, 2000 Maribor, Slovenia Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia
\{bostjan.bresar, marko.jakovac\}@uni-mb.si
Ján Katrenič† Gabriel Semanišin ${ }^{\ddagger}$
Institute of Computer Science, P.J. Šafárik University
Jesenná 5, 04154 Košice, Slovakia
\{jan.katrenic, gabriel.semanisin\}@upjs.sk
Andrej Taranenko
Faculty of Natural Science and Mathematics, University of Maribor Koroška 160, 2000 Maribor, Slovenia
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia
andrej.taranenko@uni-mb.si

November 26, 2012

Abstract

A subset S of vertices of a graph G is called a vertex k-path cover if every path of order k in G contains at least one vertex from S. Denote by $\psi_{k}(G)$ the minimum cardinality of a vertex k-path cover in G. In this paper an upper bound for ψ_{3} in graphs with a given average degree is presented, A lower bound for ψ_{k} of regular graphs is also proven. For grids, i.e. the Cartesian products of two paths, we give an asymptotically tight bound for ψ_{k} and the exact value for ψ_{3}.

[^0]
1 Introduction

Let G be a graph and k be a positive integer. Then $S \subseteq V(G)$ is a vertex k-path cover of G if every path on k vertices in G contains a vertex from S. We denote by $\psi_{k}(G)$ the minimum cardinality of a vertex k-path cover in G. This graph invariant was recently introduced in [4], motivated by the problem of ensuring data integrity of communication in wireless sensor networks using the k-generalized Canvas scheme [13].

The concept of vertex k-path cover is a generalization of the vertex cover. Clearly $\psi_{2}(G)$ coincides with the minimum cardinality of a vertex cover in a graph G, and so

$$
\psi_{2}(G)=|V(G)|-\alpha(G)
$$

where $\alpha(G)$ stands for the independence number. In addition $\psi_{3}(G)$ corresponds to another previously studied concept of dissociation number of a graph [17], defined as follows. A subset of vertices in a graph G is called a dissociation set if it induces a subgraph with maximum degree at most 1 . The maximum cardinality of a dissociation set in G is called the dissociation number of G and is denoted $\operatorname{diss}(G)$. Clearly

$$
\psi_{3}(G)=|V(G)|-\operatorname{diss}(G) .
$$

The problem of computing $\operatorname{diss}(G)$ has been introduced by Yannakakis [17], who also proved it to be NP-hard in the class of bipartite graphs. The dissociation number problem was also studied in $[1,2,6,8,14,12]$, see [14] for a survey.

Recently, Tu and Zhou [15] presented a 2-approximation for the 3-path vertex cover problem even in the weighted version of the problem. An exact algorithm for computing $\psi_{3}(G)$ in running time $O\left(1.5171^{n}\right)$ for a graph of order n was presented in [10]. The problem of computing $\psi_{k}(G)$ is NP-hard for each $k \geq 2$, but polynomial for instance in trees, as shown in [4]. The authors investigate upper bounds on the value of $\psi_{k}(G)$ and provide several estimations and exact values of $\psi_{k}(G)$. It is also proven that $\psi_{3}(G) \leq$ $(2 n+m) / 6$, for every graph G with n vertices and m edges.

In this paper, we present a more general result by showing that for an arbitrary graph G with n vertices and m edges, and an integer k such that $k \leq \frac{m}{n} \leq k+1$, we have $\psi_{3}(G) \leq \frac{k n}{k+2}+\frac{m}{(k+1)(k+2)}$. This result is proven in Section 2, while in Section 3 we consider bounds for d-regular graphs. We show that for an arbitrary integer $k \geq 2$ and a d-regular graph $G, d \geq k-1$, we have $\psi_{k}(G) \geq \frac{d-k+2}{2 d-k+2}|V(G)|$. Section 4 is devoted to the vertex k-path cover number of Cartesian products of graphs, with an emphasis on grids, for which we present the exact value for ψ_{3}.

We conclude this section with the following straightforward values of ψ_{k}.
Proposition 1.1. Let $k \geq 2$ and $n \geq k$ be positive integers. Then

- $\psi_{k}\left(P_{n}\right)=\left\lfloor\frac{n}{k}\right\rfloor$,
- $\psi_{k}\left(C_{n}\right)=\left\lceil\frac{n}{k}\right\rceil$,
- $\psi_{k}\left(K_{n}\right)=n-k+1$.

2 Upper bound in terms of average degree

First, recall a result from [4] which is a consequence of Lovász's decomposition [11] of a graph with maximum degree Δ into subgraphs of maximum degree 1 .

Lemma 2.1 ([4]). Let G be a graph of maximum degree Δ. Then

$$
\psi_{3}(G) \leq \frac{\left\lceil\frac{\Delta-1}{2}\right\rceil}{\left\lceil\frac{\Delta+1}{2}\right\rceil}|V(G)| .
$$

Lemma 2.2 ([4]). Let G be a graph on n vertices and m edges. Then

$$
\psi_{3}(G) \leq \frac{2 n+m}{6} .
$$

In the following theorem we give a tight upper bound in terms of the average degree of a graph, which extends the result from Lemma 2.2.

Theorem 2.1. Let G be a graph of order n, size m and average degree $d(G)$, and k be the smallest positive integer such that $d(G) \leq 2 k+2$. Then

$$
\psi_{3}(G) \leq \frac{k n}{k+2}+\frac{m}{(k+1)(k+2)}
$$

Proof. Proof by induction on k (the basis of induction $k=1$ coincides with the bound from Lemma 2.2).

Assume

$$
\psi_{3}(G) \leq \frac{(k-1) n}{k+1}+\frac{m}{k(k+1)}
$$

for all graphs with average degree $d, d \leq 2 k$. We aim to prove that for a graph G with average degree $d, d \leq 2 k+2$ the following holds

$$
\psi_{3}(G) \leq \frac{k n}{k+2}+\frac{m}{(k+1)(k+2)} .
$$

Repeatedly remove from G a vertex of degree at least $2(k+1)$, as long as such a vertex exists. In this way we get a new graph, say G^{\prime}, with n^{\prime} vertices and m^{\prime} edges. For G^{\prime} we now look at two cases.

First, if $k n^{\prime}<m^{\prime}$, then by Lemma 2.1

$$
\begin{aligned}
\psi_{3}\left(G^{\prime}\right) & \leq \frac{k}{k+1} n^{\prime} \\
& =\frac{k(k+2)}{(k+1)(k+2)} n^{\prime} \\
& =\frac{k(k+1)+k}{(k+1)(k+2)} n^{\prime} \\
& \leq \frac{k}{k+2} n^{\prime}+\frac{m^{\prime}}{(k+1)(k+2)}
\end{aligned}
$$

In the second case, when $k n^{\prime} \geq m^{\prime}$, we use the induction hypothesis.

$$
\begin{aligned}
\psi_{3}\left(G^{\prime}\right) & \leq \frac{k-1}{k+1} n^{\prime}+\frac{m^{\prime}}{k(k+1)} \\
& =\frac{k-1}{k+1} n^{\prime}+\frac{2 m^{\prime}}{k(k+1)(k+2)}+\frac{m^{\prime}}{(k+1)(k+2)} \\
& \leq \frac{k-1}{k+1} n^{\prime}+\frac{2 n^{\prime}}{(k+1)(k+2)}+\frac{m^{\prime}}{(k+1)(k+2)} \\
& =\frac{k}{k+2} n^{\prime}+\frac{m^{\prime}}{(k+1)(k+2)}
\end{aligned}
$$

Next we prove a lower bound for $\psi_{3}(G)$, showing that the upper bound of Theorem 2.1 is tight.

Proposition 2.1. For every positive rational number $\frac{a}{b}>1, a, b \in \mathbb{N}$, and the smallest positive integer k, such that $\frac{a}{b} \leq 2 k+2$, there exists a graph G with average degree $d(G)=\frac{a}{b}$ and

$$
\psi_{3}(G) \geq \frac{k n}{k+2}+\frac{m}{(k+1)(k+2)}
$$

Proof. Denote by H_{n} a complete graph on n vertices without edges of one perfect matching (assume n is even). Clearly $\left|V\left(H_{n}\right)\right|=n$ and

$$
\left|E\left(H_{n}\right)\right|=\frac{n(n-1)}{2}-\frac{n}{2}=\frac{n(n-2)}{2} .
$$

Clearly $\operatorname{diss}\left(H_{n}\right)=2$, because any arbitrary three vertices of H_{n} form a path of order three. Therefore $\psi_{3}\left(H_{n}\right)=n-2$, for $n \geq 2$.
We construct the graph G as the disjoint union of

- x components $H_{2 k+2}$,
- y components $H_{2 k+4}$.

We let $x=(2 b-a+2 k b)(k+2)$ and $y=(a-2 k b)(k+1)$.
First, we verify the average degree of the graph G. There are $x(2 k+2)$ vertices of degree $2 k$ and $y(2 k+4)$ vertices of degree $2 k+2$, hence we get

$$
\begin{aligned}
d(G) & =\frac{x(2 k+2)(2 k)+y(2 k+4)(2 k+2)}{x(2 k+2)+y(2 k+4)} \\
& =\frac{(2 b-a+2 k b)(k+2)(2 k+2)(2 k)+(a-2 k b)(k+1)(2 k+4)(2 k+2)}{(2 b-a+2 k b)(k+2)(2 k+2)+(a-2 k b)(k+1)(2 k+4)} \\
& =\frac{(2 b-a+2 k b)(2 k)+(a-2 k b)(2 k+2)}{(2 b-a+2 k b)+(a-2 k b)} \\
& =\frac{4 k b-(a-2 k b)(2 k)+(a-2 k b)(2 k)+2(a-2 k b)}{2 b} \\
& =\frac{a}{b} .
\end{aligned}
$$

Now, let us verify the value of ψ_{3} of G. Clearly,

$$
\psi_{3}(G)=x \cdot \psi_{3}\left(H_{2 k+2}\right)+y \cdot \psi_{3}\left(H_{2 k+4}\right)=x(2 k)+y(2 k+2)
$$

And this exactly matches the right-hand side of inequality of the theorem:

$$
\begin{aligned}
\psi_{3}(G) & =\frac{k n}{k+2}+\frac{m}{(k+1)(k+2)} \\
& =\frac{k(x(2 k+2)+y(2 k+4))}{k+2}+\frac{x(2 k)(2 k+2)+y(2 k+2)(2 k+4)}{2(k+1)(k+2)} \\
& =\frac{k x(2 k+2)}{k+2}+2 k y+\frac{x(2 k)+y(2 k+4)}{(k+2)} \\
& =\frac{k x(2 k+2)}{k+2}+2 k y+\frac{x(2 k)}{(k+2)}+2 y \\
& =2 k x+2 k y+2 y .
\end{aligned}
$$

3 Regular graphs

In the main theorem of this section we shall use the following result of Erdős and Gallai [7].

Theorem 3.1 ([7]). If G is a graph on n vertices that does not contain a path of order k, then it cannot have more than $\frac{n(k-2)}{2}$ edges. Moreover, the bound is achieved when the graph consists of disjoint cliques on $k-1$ vertices.

Theorem 3.2. Let $k \geq 2$ and $d \geq k-1$ be positive integers. Then, for any d-regular graph G, the following holds:

$$
\psi_{k}(G) \geq \frac{d-k+2}{2 d-k+2}|V(G)|
$$

Proof. Let $S \subseteq V(G)$ be a vertex k-path cover and $T=V(G) \backslash S$. Let E_{S}, E_{T} be the set of edges with both endvertices in S and T, respectively. Let $E_{S T}$ be the set of edges with one endvertex in S and the second vertex in T. Then obviously $|E(G)|=\frac{1}{2} d|V(G)|=\left|E_{S}\right|+\left|E_{S T}\right|+\left|E_{T}\right|$.

Since G is d-regular, $d|S|=2\left|E_{S}\right|+\left|E_{S T}\right|$. Therefore $|S| \geq \frac{1}{d}\left|E_{S T}\right|$. Similarly, $\left|E_{S T}\right|+2\left|E_{T}\right|=d|T|$. Since the graph induced on the set E_{T} does not contain a path of order k, according to Theorem 3.1, we have $\left|E_{T}\right| \leq \frac{|T|(k-2)}{2}$. Combining all the previous formulas, we immediately have

$$
|S| \geq \frac{1}{d}\left|E_{S T}\right|=\frac{1}{d}\left(d|T|-2\left|E_{T}\right|\right) \geq \frac{1}{d}(d|T|-|T|(k-2))=\frac{d-k+2}{d}|T|
$$

Then

$$
\frac{|S|+|T|}{|S|}=1+\frac{|T|}{|S|} \leq 1+\frac{d}{d-k+2}=\frac{2 d-k+2}{d-k+2}
$$

and

$$
|S| \geq \frac{d-k+2}{2 d-k+2}|V(G)|
$$

Corollary 3.1. If G is a cubic graph then $\psi_{k}(G) \geq \frac{5-k}{8-k}|V(G)|$, in particular $\psi_{3}(G) \geq \frac{2}{5}|V(G)|$.
Corollary 3.2. Let $k \geq 2$ be a fixed positive integer and Q_{d} the d-dimensional hypercube. Then

$$
\lim _{d \rightarrow \infty} \frac{\psi_{k}\left(Q_{d}\right)}{\left|V\left(Q_{d}\right)\right|}=\frac{1}{2}
$$

Proof. By Theorem 3.2, we know that $\frac{d-k+2}{2 d-k+2}\left|V\left(Q_{d}\right)\right| \leq \psi_{k}\left(Q_{d}\right) \leq \psi_{2}\left(Q_{d}\right) \leq$ $\frac{1}{2}\left|V\left(Q_{d}\right)\right|$, and the result immediately follows.
Proposition 3.1. Let $k \geq 2$ and $d \geq k-1$ be positive integers. There exists a d-regular graph G with

$$
\psi_{k}(G) \leq \frac{d-k+2}{2 d-k+2}|V(G)|
$$

Proof. Given fixed values k and d, a graph G may be constructed as follows. Let A be a graph on $(k-1)(d-k+2)$ independent vertices and B a graph consisting of d compontents of K_{k-1}. Let G be a disjoint union of A and B, together with addition edges between them, which can be arbitrarily chosen to fill d-regularity of G. Clearly, A is a k-path vertex cover of G since B does not contain a path on k vertices and

$$
\frac{\psi_{k}(G)}{|V(G)|} \leq \frac{|A|}{|A|+|B|}=\frac{(k-1)(d-k+2)}{(k-1)(d-k+2)+d(k-1)}=\frac{d-k+2}{2 d-k+2}
$$

4 Cartesian products

Recall that the Cartesian product $G \square H$ of graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$ has the vertex set $V(G) \times V(H)$, and vertices $(u, v),(x, y) \in V(G \square H)$ are adjacent whenever $u=x$ and $v y \in E(H)$, or $u x \in E(G)$ and $v=y$. By p_{G} and p_{H} we denote the natural projections to the factors G and H, respectively. For a fixed vertex $u \in V(G)$, the H-layer ${ }^{u} H$ is the subgraph of $G \square H$ induced by the set of vertices $\{(u, v)$, $v \in V(H)\}$; analogously, for a fixed vertex $v \in V(H)$, the G-layer G^{v} is the subgraph of $G \square H$ induced by the set of vertices $\{(u, v), u \in V(G)\}$.

Note that each H-layer is isomorphic to H, and is an induced subgraph of $G \square H$. Hence any vertex k-path cover S of $G \square H$ must contain at least $\psi_{k}(H)$ vertices in every H-layer. Much more can be said if we restrict the structure of one of the factors. In the main result of this section we focus on the ψ_{3} of grids (Cartesian products of paths), for which exact formulas are obtained.
Theorem 4.1. (i) $\psi_{3}\left(P_{2 n+1} \square P_{2 k}\right)=2 n k+\left\lfloor\frac{2 k}{3}\right\rfloor$, where $n, k \geq 1$,
(ii) $\psi_{3}\left(P_{2 n} \square P_{2 k}\right)=2 n k$, where $n, k \geq 1$,
(iii) $\psi_{3}\left(P_{2 n+1} \square P_{2 k+1}\right)=n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor$, where $1 \leq n \leq k$.

Proof. (i) Let us label the vertices of $P_{2 n+1}$ consecutively by $u_{1}, u_{2}, \ldots, u_{2 n+1}$ and the vertices of $P_{2 k}$ by $v_{1}, v_{2}, \ldots, v_{2 k}$. With this labeling, the vertex $\left(u_{i}, v_{j}\right) \in V\left(P_{2 n+1} \square P_{2 k}\right)$ is in $i^{\text {th }}$ layer ${ }^{u_{i}} P_{2 k}$ and in $j^{\text {th }}$ layer $P_{2 n+1}^{v_{j}}$.

Let us first prove that $\psi_{3}\left(P_{2 n+1} \square P_{2 k}\right) \leq 2 n k+\left\lfloor\frac{2 k}{3}\right\rfloor$. We construct a vertex 3 -path cover set S in the following way:
$S=\left\{\left(u_{2 i+1}, v_{3 j+3}\right),\left(u_{2 i}, v_{3 j+1}\right),\left(u_{2 i}, v_{3 j+2}\right) \mid\right.$ for applicable indices i and $\left.j\right\}$.
It is not difficult to verify that S is a vertex 3 -path cover set (Fig. 1) and gives the desired upper bond.

Figure 1: A vertex 3-path cover of $P_{2 n+1} \square P_{2 k}$
Now let us prove that $\psi_{3}\left(P_{2 n+1} \square P_{2 k}\right) \geq 2 n k+\left\lfloor\frac{2 k}{3}\right\rfloor$. Let S be the optimal vertex 3-path cover. Consider the layer ${ }^{{ }^{u}} \boldsymbol{i} P_{2 k}$, for some $i \in\{1,2, \ldots, 2 n\}$.

Suppose $\left(u_{i}, v_{j}\right) \notin S$, for some $j \in\{1,2, \ldots, 2 k-1\}$, and all its neighbors in ${ }^{u_{i}} P_{2 k}$ are in S. Then in the layer ${ }^{u_{i+1}} P_{2 k}$ either the vertex (u_{i+1}, v_{j}) is in S (left-hand side of Fig. 2) or all its neighbors in this layer are in S (right-hand side of Fig. 2).

Figure 2: Vertex $\left(u_{i}, v_{j}\right)$ is not in S
Suppose $\left(u_{i}, v_{j}\right)$ and $\left(u_{i}, v_{j+1}\right)$, for some $j \in\{1,2, \ldots, 2 k-1\}$, are not in S. Then the vertices $\left(u_{i+1}, v_{j}\right)$ and $\left(u_{i+1}, v_{j+1}\right)$ must be in S, otherwise S is not a vertex 3-path cover (see Fig. 3).

Figure 3: Vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{i}, v_{j+1}\right)$ are not in S
Let A be the set of all vertices in layer ${ }^{{ }^{u} i} P_{2 k}$ that are not in S, and B the set of all vertices in layer ${ }^{u_{i+1}} P_{2 k}$ that are in S. We shall prove that
$|A| \leq|B|$ by finding a one to one function f from A to B. Let $\left(u_{i}, v_{j}\right)$ be a vertex in A.

Suppose that the vertex $\left(u_{i}, v_{2 k}\right)$ is not in A. By Fig. 2 and Fig. 3 we set $f\left(\left(u_{i}, v_{j}\right)\right)=\left(u_{i+1}, v_{j}\right)$ if $\left(u_{i+1}, v_{j}\right)$ is in S, otherwise we set $f\left(\left(u_{i}, v_{j}\right)\right)=$ $\left(u_{i+1}, v_{j+1}\right)$. This is obviously a one to one function.

We take a different approach if the vertex $\left(u_{i}, v_{2 k}\right)$ is in A. If also the vertex $\left(u_{i}, v_{2 k-1}\right)$ is in A, we can use the same argument as above since according to Fig. 3, we can set $f\left(\left(u_{i}, v_{2 k}\right)\right)=\left(u_{i+1}, v_{2 k}\right)$. If the vertex $\left(u_{i}, v_{2 k-1}\right) \notin A$ and $\left(u_{i+1}, v_{2 k}\right) \in B$, then we can set $f\left(\left(u_{i}, v_{2 k}\right)\right)=$ $\left(u_{i+1}, v_{2 k}\right)$, otherwise we can set $f\left(\left(u_{i}, v_{2 k}\right)\right)=\left(u_{i+1}, v_{2 k-1}\right)$. It may occur that the vertex $\left(u_{i+1}, v_{2 k-1}\right)$ is already an image of the vertex $\left(u_{i}, v_{2 k-2}\right)$. If this situation occurs we can set either $f\left(\left(u_{i}, v_{2 k-2}\right)\right)=\left(u_{i+1}, v_{2 k-2}\right)$ or $f\left(\left(u_{i}, v_{2 k-2}\right)\right)=\left(u_{i+1}, v_{2 k-3}\right)$ since at least one of the vertices $\left(u_{i+1}, v_{2 k-2}\right)$ or $\left(u_{i+1}, v_{2 k-3}\right)$ is in B. Note that if vertex $\left(u_{i}, v_{2 k-2}\right)$ exists in the grid then so must vertex $\left(u_{i+1}, v_{2 k-3}\right)$ since every $P_{2 k}$-layer has even number of vertices. It can occur that the vertex $\left(u_{i+1}, v_{2 k-3}\right)$ is also an image of a vertex in layer ${ }^{u_{i}} P_{2 k}$. In this case we can repeat the above procedure.

We can always find a one to one function from A to B and hence $|A| \leq$ $|B|$. Therefore two consecutive layers, ${ }^{u_{i}} P_{2 k}$ and ${ }^{u_{i+1}} P_{2 k}$, must have at least $2 k$ vertices in S. There are n such paired layers in $P_{2 n+1} \square P_{2 k}$. Together with the additional layer ${ }^{u_{2 n+1}} P_{2 k}$, which is isomorphic to the path $P_{2 k}$, there must be at least $2 n k+\left\lfloor\frac{2 k}{3}\right\rfloor$ vertices in S.
(ii) We follow the same line of thought as in (i), with the exception that in this case there is no additional layer.
(iii) Note that in the proof of (i), two consecutive layers, ${ }^{u_{i}} P_{2 k}$ and ${ }^{u_{i+1}} P_{2 k}$, have at least $2 k$ vertices in S. In this case the layer ${ }^{u_{i}} P_{2 k+1}$ has odd number of vertices and it can occur that two consecutive layers do not have at least $2 k+1$ vertices in S. Nevertheless, two consecutive layers, ${ }^{u_{i}} P_{2 k+1}$ and ${ }^{u_{i+1}} P_{2 k+1}$, must still have at least $2 k$ vertices in S. Moreover if they have exactly $2 k$ vertices in S, then for layers ${ }^{u_{i}} P_{2 k+1}$ and ${ }^{u_{i+1}} P_{2 k+1}$ the vertices $\left(u_{i}, v_{2 j}\right)$ and $\left(u_{i+1}, v_{2 j}\right), j \in\{1, \ldots, k\}$, must all be in S (see the structure of sets A and B in (i)).

Having made the basic observation let us proceed with the proof. For the upper bound the same construction as in (i) suffices. Now we want to prove that $\psi_{3}\left(P_{2 n+1} \square P_{2 k+1}\right) \geq n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor$. Assume that $0 \leq n \leq k$ and S is the optimal vertex 3 -path cover of the graph $P_{2 n+1} \square P_{2 k+1}$. We proceed with induction on n. For $n=0$, the graph $P_{1} \square P_{2 k+1}$ is isomorphic to the path $P_{2 k+1}$, and hence $\psi_{3}\left(P_{2 k+1}\right)=\left\lfloor\frac{2 k+1}{3}\right\rfloor$. Now let $n \geq 1$. In the induction step we consider two cases.

Suppose that the last two layers, ${ }^{u_{2 n}} P_{2 k+1}$ and ${ }^{u_{2 n+1}} P_{2 k+1}$, contribute at least $2 k+1$ vertices to S. Assume that $\psi_{3}\left(P_{2 n-1} \square P_{2 k+1}\right)=(n-1)(2 k+$ $1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor$ and $\psi_{3}\left(P_{2 n+1} \square P_{2 k+1}\right)<n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor$. If we remove layers ${ }^{u_{2 n}} P_{2 k+1}$ and ${ }^{u_{2 n+1}} P_{2 k+1}$, we remove at least $2 k+1$ vertices from S
an therefore $\psi_{3}\left(P_{2 n-1} \square P_{2 k+1}\right)<n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor-2 k-1$. By induction assumption it follows that

$$
\begin{aligned}
(n-1)(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor & <n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor-2 k-1 \\
2 n k+n-2 k-1 & <2 n k+n-2 k-1 \\
0 & <0
\end{aligned}
$$

which leads to a contradiction.
For the second case assume that the last two layers, ${ }^{u_{2 n}} P_{2 k+1}$ and ${ }^{u_{2 n+1}} P_{2 k+1}$, contribute exactly $2 k$ vertices to S. According to the observation above, layer ${ }^{u_{2 n-1}} P_{2 k+1}$ must contribute at least $k+1$ vertices to S, otherwise there exists an uncovered path P_{3} in the last three layers. If we remove layers ${ }^{u_{2 n+1}} P_{2 k+1},{ }^{u_{2 n}} P_{2 k+1}$ and ${ }^{u_{2 n-1}} P_{2 k+1}$ (this is possible since $n \geq 1$), we remove at least $3 k+1$ vertices from S. Suppose again that $\psi_{3}\left(P_{2 n+1} \square P_{2 k+1}\right)<$ $n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor$. Then $\psi_{3}\left(P_{2 n-2} \square P_{2 k+1}\right)<n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor-3 k-1$. But according to (i) we know that $\psi_{3}\left(P_{2 n-2} \square P_{2 k+1}\right)=2 k(n-1)+\left\lfloor\frac{2 n-2}{3}\right\rfloor$ and hence

$$
\begin{aligned}
2 k(n-1)+\left\lfloor\frac{2 n-2}{3}\right\rfloor & <n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor-3 k-1 \\
2 n k-2 k+\left\lfloor\frac{2 n-2}{3}\right\rfloor & <2 n k+n+\left\lfloor\frac{2 k+1}{3}\right\rfloor-3 k-1 \\
\left\lfloor\frac{2 n-2}{3}\right\rfloor & <n+\left\lfloor\frac{2 k+1}{3}\right\rfloor-k-1 \\
\left\lfloor\frac{2 n-2}{3}\right\rfloor-n & <\left\lfloor\frac{2 k+1}{3}\right\rfloor-k-1 \\
\left\lfloor\frac{-n-2}{3}\right\rfloor & <\left\lfloor\frac{-k-2}{3}\right\rfloor \\
k & <n
\end{aligned}
$$

which again is a contradiction since $n \leq k$.

As seen in Theorem 4.1, it is already hard to determine the exact value of ψ_{3} for grids. Therefore it would be nice to have at least some lower or upper bounds for $\psi_{k}, k \geq 4$.
Lemma 4.1. For each $k \geq 4, \psi_{k}\left(P_{2\lceil\sqrt{k}\rceil} \square P_{3\lceil\sqrt{k}\rceil}\right) \geq\lceil\sqrt{k}\rceil$.
Proof. Set $G:=P_{2\lceil\sqrt{k}\rceil} \square P_{3\lceil\sqrt{k}\rceil}$. Assume to the contrary that S is a k path vertex cover of the graph G, with $|S| \leq\lceil\sqrt{k}\rceil-1$. Then at least $\lceil\sqrt{k}\rceil$ of all $P_{3\lceil\sqrt{k}\rceil}$-layers of G do not contain any vertex of S.

Since $|S| \leq\lceil\sqrt{k}\rceil-1$, there exists a vertex $v_{j} \notin S$ in the layer ${ }^{u_{i}} P_{3\lceil\sqrt{k}\rceil}$, where $1 \leq j \leq\lceil\sqrt{k}\rceil$, such that its neighbour in the layer ${ }^{u_{i+1}} P_{3\lceil\sqrt{k}\rceil}$ is also
 can be connected by an edge with both end-vertices not in S. Similarly, a vertex $v_{l} \notin S$, where $2\lceil\sqrt{k}\rceil+1 \leq l \leq 3\lceil\sqrt{k}\rceil$, exists in ${ }^{u_{i}} P_{3\lceil\sqrt{k}\rceil}$ and its neighbour in ${ }^{u_{i+1}} P_{3\lceil\sqrt{k}\rceil}$ is also not in S.

Now, using the $\left.P_{3\lceil\sqrt{k}}\right\rceil^{\text {-layers not containing any vertices of } S \text { and moving }}$ from/to the other $P_{3\lceil\sqrt{k}\rceil^{\text {-layers }} \text { on uncovered vertices only, one can easily }}$ construct a path on at least $\lceil\sqrt{k}\rceil \cdot\lceil\sqrt{k}\rceil$ vertices. Since $\lceil\sqrt{k}\rceil \cdot\lceil\sqrt{k}\rceil \geq$ $\sqrt{k} \cdot \sqrt{k}=k$, we have a path of order at least k with no vertices in S. This is a contradiction to the assumption that S is a k-path vertex cover.

First we present a lower bound with the help of Lemma 4.1.
Proposition 4.1. For $k \geq 4, n \geq 2\lceil\sqrt{k}\rceil$, $m \geq 3\lceil\sqrt{k}\rceil$, the following holds

$$
\frac{n m}{24\lceil\sqrt{k}\rceil} \leq \psi_{k}\left(P_{n} \square P_{m}\right) .
$$

Proof. We partition the whole graph $P_{n} \square P_{m}$ into r disjoint subgraphs isomorphic to $P_{2\lceil\sqrt{k}\rceil} \square P_{3\lceil\sqrt{k}\rceil}$ such that $r(2\lceil\sqrt{k}\rceil)(3\lceil\sqrt{k}\rceil) \geq \frac{1}{4} n m$. By Lemma 4.1 a k-path vertex cover must have at least $\lceil\sqrt{k}\rceil$ vertices in each subgraph isomorphic to $P_{2\lceil\sqrt{k}\rceil} \square P_{3\lceil\sqrt{k}\rceil}$ in G, hence:

$$
\psi_{k}\left(P_{n} \square P_{m}\right) \geq r\lceil\sqrt{k}\rceil \geq \frac{n m}{24\lceil\sqrt{k}\rceil}
$$

We conclude the paper with the following upper bound.
Proposition 4.2. For $k \geq 4$ the following holds

$$
\psi_{k}\left(P_{n} \square P_{m}\right) \leq \frac{2 n m}{\lfloor\sqrt{k}\rfloor}-\frac{n m}{k}
$$

Proof. We will construct a k-path vertex cover with at most $\frac{2 n m}{\lfloor\sqrt{k}\rfloor}-\frac{n m}{k}$ vertices. Let $S_{1}=\left\{(i, j) \in P_{n} \square P_{m} \mid i \equiv 0(\bmod \lfloor\sqrt{k}\rfloor)\right\}$ and similarly $S_{2}=\left\{(i, j) \in P_{n} \square P_{m} \mid j \equiv 0(\bmod \lfloor\sqrt{k}\rfloor)\right\}$. It is easy to see that $S=$ $\left(S_{1} \cup S_{2}\right) \backslash\left(S_{1} \cap S_{2}\right)$ is a k-path vertex cover, since the largest subgraph of $P_{n} \square P_{m}$ with all vertices uncovered is isomorphic to $P_{\lfloor\sqrt{k}\rfloor-1} \square P_{\lfloor\sqrt{k}\rfloor-1}$.

In a P_{n}-layer we cover every $|\sqrt{k}|$-th vertex. Since there are m layers, the size of S_{1} is at most $\left|S_{1}\right| \leq \frac{n m}{\lfloor\sqrt{k}]}$. Similarly, $\left|S_{2}\right| \leq \frac{n m}{[\sqrt{k}]}$. The vertices $(i, j) \in S_{1} \cap S_{2}$ can be left uncovered, because all the vertices $(i \pm 1, j)$ and $(i, j \pm 1)$ are in S. Since $\left|S_{1} \cap S_{2}\right| \leq \frac{n m}{k}$, the assertion follows.

References

[1] V. E. Alekseev, R. Boliac, D. V. Korobitsyn, V. V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comp. Science 389 (1-2) (2007) 219-236.
[2] R. Boliac, K. Cameron, V.V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72 (2004) 241-253.
[3] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. - Graph Theory 17 (1997) 5-50.
[4] B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (12) (2011) 1189-1195. 1189-1195.
[5] B. Brešar and B. Zmazek, On the independence graph of a graph, Discrete Math. 272 (2001), 263-268.
[6] K. Cameron, P. Hell, Independent packings in structured graphs, Math. Program. 105 (2-3) (2006) 201-213.
[7] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.
[8] F. Göring, J. Harant, D. Rautenbach and I. Schiermeyer, On Findependence in graphs, Discuss. Math. - Graph Theory 29 (2) (2009) 377-383.
[9] P. Hell, X. Yu, H. Zhou, Independence ratios of graph powers, Discrete Math. 127 (1994) 213-220.
[10] F. Kardoš, J. Katrenič, I. Schiermeyer, On computing the minimum 3 -path vertex cover and dissociation number of graphs, to appear in Theor. Comp. Science.
[11] L. Lovász, On decompositions of graphs, Studia Sci. Math Hungar. 1 (1966) 237-238.
[12] V. V. Lozin, D. Rautenbach, Some results on graphs without long induced paths, Inf. Process. Lett. 88 (4) (2003) 167-171.
[13] M. Novotný, Design and Analysis of a Generalized Canvas Protocol. (to appear in Proceedings of WISTP 2010: Information Security Theory and Practice. Security and Privacy of Pervasive Systems and Smart Devices, LNCS 6033, Springer 2010).
[14] Y. Orlovich, A. Dolguib, G. Finkec, V. Gordond, F. Wernere, The complexity of dissociation set problems in graphs, Discrete Appl. Math. 159 (13) (2011) 1352-1366.
[15] J. Tua, W. Zhoub, A factor 2 approximation algorithm for the vertex cover P_{3} problem, Information Processing Letters 111 (14) (2011) 683686
[16] V.G. Vizing, The Cartesian product of graphs, Vychisl. Sistemy 9 (1963), 30-43.
[17] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Computing 10 (1981) 310-327.

[^0]: *Supported by the Ministry of Science and Higher Education of Slovenia under the grants J1-2043 and P1-0297.
 ${ }^{\dagger}$ The research of the author supported in part by Slovak APVV grant SK-SI-0010-08 and Slovak VEGA grant 1/0035/09.
 ${ }^{\ddagger}$ The research of the author supported in part by Slovak APVV grant SK-SI-0010-08, APVV-0007-07 and by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU, under project ITMS:26220120007.

