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Abstract

A subset S of vertices of a graph G is a secure set if |N [X] ∩ S| ≥ |N [X] − S| holds
for any subset X of S, where N [X] denotes the closed neighborhood of X. The minimum
cardinality s(G) of a secure set in G is called the security number of G. We investigate
the security number of lexicographic product graphs by defining a new concept of tightly-
securable graphs. In particular we derive several exact results for different families of
graphs which yield some general results.
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1 Introduction

Secure sets and security number in graphs were introduced by Brigham et al. [1] while at-
tempting to generalize the well-known concept of defensive alliances in graphs [2], which only
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defend a single vertex at a given time. In general models, a more efficient defensive alliance
should be able to defend any attack on the entire alliance or any part of it. After preliminary
work [1] on secure sets in graphs, relatively few articles have been published regarding this
topic. Some general results on security number are presented in [3, 4]. In particular in [4]
it was shown that Knesser graphs K(m, 2) have their security number greater than half of
its vertices whenever m ≥ 6 and the number of its vertices

(
m
2

)
is even. Studies of security

in Cartesian product graphs were initiated already in [1], where several upper bounds were
determined for grid-like graphs. Afterwards the studies continued in [7] where exact formulae
and some other bounds on the security number of grid-like graphs were established. Strong
product graphs were considered in [5], where the security number of grids, cylinders, and
toruses was derived. Since there are no results for arbitrary graph products any step in this
direction would be a nice improvement. A variation of secure sets and security number called
global secure sets and global security number, respectively, were treated in [8, 9, 10] with an
additional condition that the secure set must also dominate G. Global secure sets on grid-like
graphs were studied in [11, 12].

The paper is structured as follows. In the remainder of this section the terminology of
secure sets and lexicographic product of graphs is given. In the second section the lexico-
graphic product with the second factor being a complete graph is considered and some exact
results are determined. The third section deals with the lexicographic product with the first
factor being a path or a cycle. The last section covers some general results.

In this paper G = (V,E) denotes a simple graph of minimum degree δ and maximum
degree ∆. For a nonempty subsetW ⊆ V and any vertex v ∈ V , NW (v) is the set of all vertices
from W that are adjacent to v, i.e. NW (v) = {u ∈ W |uv ∈ E(G)} and δW (v) = |NW (v)|
denotes the degree of v in W . If W = V , then we use the notation N(v) and call it the
open neighborhood of v, and δ(v) which is the degree of v. The closed neighborhood of v is
N [v] = N(v)∪{v}. The open neighborhood of a set W is N(W ) =

⋃
v∈W N(v) and the closed

neighborhood of W is N [W ] = N(W ) ∪W . The subgraph induced by a set W is denoted by
〈W 〉, and the complement of W is denoted by W .

The definition of a secure set is based on the following rules. Consider a set of vertices S.
A vertex y ∈ N [S]− S can attack only one neighbor in S (it does not matter if y is adjacent
to several vertices in S). On the other hand, a vertex x ∈ S can defend only one vertex in
N [x] ∩ S. We now present a formal definition of secure sets according to [1].

• For any S = {v1, . . . , vr} ⊆ V , an attack on S is formed by any r mutually disjoint sets
A = {A1, . . . , Ar}, for which Ai ⊆ NS(vi), 1 ≤ i ≤ r.

• A defense of S is formed by any r mutually disjoint sets D = {D1, . . . , Dr} for which
Di ⊆ NS [vi], 1 ≤ i ≤ r.

• An attack A is defendable if there exists a defense D such that |Di| ≥ |Ai| for 1 ≤ i ≤ r.

• A set S is secure if and only if every attack on S is defendable.
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The minimum cardinality of a secure set in a graph G is the security number and is
denoted by s(G). A secure set S of cardinality s(G) is called an s(G)-set. It is easy to see
that any s(G)-set induces a connected subgraph. Throughout the article we use the following
characterization of secure sets and the condition in the characterization will be called the
security condition.

Theorem 1.1 [1] A set S is a secure set in a graph G if and only if for every X ⊆ S,

|N [X] ∩ S| ≥ |N [X]− S|.

The lexicographic product G◦H (also sometimes denoted by G[H] and called composition)
of graphs G and H is a graph with V (G◦H) = V (G)×V (H). Two vertices (g, h) and (g′, h′)
are adjacent in G ◦ H whenever gg′ ∈ E(G) or (g = g′ and hh′ ∈ E(H)). For a fixed
h ∈ V (H) we call Gh = {(g, h) ∈ V (G ◦ H) | g ∈ V (G)} a G-layer through h in G ◦ H. An
H-layer through g, denoted gH, for a fixed g ∈ V (G) is defined symmetrically. Notice that
the subgraph induced by Gh or gH is isomorphic to G or H, respectively. As usual we define
projections pG : V (G◦H)→ V (G) by pG : (g, h) 7→ g and similarly pH : V (G◦H)→ V (H) by
pG : (g, h) 7→ h. The lexicographic product is clearly not commutative, while it is associative
[6].

2 The second factor is a complete graph

We start by analyzing the security number of a graph G ◦H where H is a complete graph.
First we determine the following result.

Proposition 2.1 If G is an arbitrary graph and n ≥ 1, then

s(G ◦Kn) ≤ n · s(G).

Proof. Let S1 = {u1, . . . , us(G)} be vertices that form a minimum secure set in graph G
and set S2 = S1 × V (H). Let X be an arbitrary subset of S2 and denote Y = pG(X). Since
S1 is a secure set in G we have |N [Y ] ∩ S1| ≥ |N [Y ]− S1| and it follows that

|N [X] ∩ S2| = |N [Y ] ∩ S1| · n ≥ |N [Y ]− S1| · n = |N [X]− S2|.

We have proved that S2 is a secure set in graph G ◦Kn and its size is exactly |S2| = n · s(G).
Hence, s(G ◦Kn) ≤ n · s(G). �

Now, we try to find sufficient conditions for which the bound in Proposition 2.1 is attained.
First, note that s(G◦K1) = s(G) since G◦K1

∼= G. For n ≥ 2 we need the following definition.

Definition 2.2 Let S be a secure set of a graph G. A subset X ⊆ S is tight if

|N [X] ∩ S| = |N [X]− S|.
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Theorem 2.3 Let n ≥ 2. If all minimal (with respect to inclusion) secure sets of a graph G
are tight, then

s(G ◦Kn) = n · s(G).

Proof. By Proposition 2.1 we have s(G ◦Kn) ≤ n · s(G) for any graph G. Now, suppose
that S is a minimum secure set in G ◦Kn where |S| < n · s(G). Denote with S1 = pG(S).
We analyze two cases.

Case 1: |S1| < s(G).
Obviously, S1 is not a secure set in G, therefore there exists Y = {u1, . . . , uk} ⊆ S1 with the
property |N [Y ] ∩ S1| < |N [Y ]− S1|. For each i ∈ {1, . . . , k} there exists a vji ∈ V (Kn), such
that (ui, vji) ∈ S. For X = {(u1, vj1), . . . , (uk, vjk)} ⊆ S we have

|N [X] ∩ S| ≤ |N [Y ] ∩ S1| · n < |N [Y ]− S1| · n ≤ |N [X]− S|.

Therefore, S is not a secure set in G ◦Kn.

Case 2: |S1| ≥ s(G).
Without loss of generality, we may assume that S1 is a secure set in G. Otherwise, we could
proceed with the same argument as in the proof of Case 1, and hence, S would not be a
secure set. Let S2 be a minimal secure set of a graph G with respect to S1. Thus S2 ⊆ S1
and |S2| ≥ s(G). By assumption S2 is tight and we have |S2| = |N [S2] ∩ S2| = |N [S2]− S2|.
For X = (S2 × V (Kn)) ∩ S we have

|N [X] ∩ S|+ |N [X]− S| = n · (|S2|+ |N [S2]− S2|) = 2n|S2|.

Since |N [X] ∩ S| ≤ |S| < n · s(G) ≤ n · |S2|, it follows that |N [X]− S| > n · |S2|, and hence
|N [X] ∩ S| < |N [X] − S|, which is a contradiction with the fact that S is a secure set of
G ◦Kn.

Both cases lead to a contradiction, therefore, the assumption |S| < n · s(G) is not true
and Proposition 2.1 implies the result. �

We strongly believe that the assumption of S being “minimal” in Theorem 2.3 can be
replaced with “minimum”. One might also think that the assumption of S being minimal
(or minimum) is not only sufficient but also necessary, but this is not the case, since the size
of the smallest secure set in the lexicographic product G ◦Kn does not necessary depend on
the smallest secure set of G being tight, but rather on its structure. See for example the
graph G in Figure 1. Its only minimum secure set (which is labeled with black color) is of
size 3, i.e. s(G) = 3, and it is not tight. Still, it is easy to see that the security number of the
lexicographic product G ◦K2 equals 2 · s(G) = 6, and hence, no vertex can be removed from
the secure set presented in the proof of Proposition 2.1 to make it smaller. The reason for
that is that the minimum secure set of graph G is completely covered with its tight subsets.
Therefore, it makes sense to define a new concept.
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Figure 1: A graph G with minimum secure set S colored black

Definition 2.4 Let S be any minimum secure set of a graph G and X1, . . . , Xn all of its
tight subsets. If

S ⊆
n⋃

i=1

N [Xi]

for any minimum secure set of G, then we say that G is tightly-securable.

All graphs with a leaf are clearly tightly-securable graphs as every leaf represents a min-
imum secure set which is clearly tight. Also complete graphs with even number of ver-
tices and cycles are tightly-securable, while complete graphs with odd number of vertices
are not tightly-securable. It turns out that the Definition 2.4 is necessary for the equality
s(G ◦Kn) = n · s(G), n ≥ 2.

Theorem 2.5 Let n ≥ 2. If G is not a tightly-securable graph, then

s(G ◦Kn) < n · s(G).

Proof. Let V (G) = {u1, . . . , u|V (G)|} and V (Kn) = {v1, . . . , vn}. Without loss of generality
assume that S1 = {u1, . . . , us(G)} is a minimum secure set of G and X1, . . . , Xk all of its tight
subsets. Since G is not a tightly-securable graph, we have

Y =

(
k⋃

i=1

N [Xi]

)
∩ S1 ( S1,

and there exist a vertex x ∈ S1 − Y .
By Proposition 2.1 we know that S2 = S1 × V (Kn) is a secure set of a graph G ◦ Kn.

Now, let S3 = S2 − {(x, v1)}. We will prove that S3 is a secure set of G ◦Kn by analyzing
two cases. Let X be an arbitrary subset of S3.
Case 1: x /∈ N [pG(X)].
Then (x, v1) is not adjacent to any vertex of X, i.e. (x, v1) /∈ N [X]. We know that S2 is a
secure set in G ◦Kn, and therefore

|N [X] ∩ S3| = |N [X] ∩ S2| ≥ |N [X]− S2| = |N [X]− S3|.
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Hence, the security condition is fulfilled for X.
Case 2: x ∈ N [pG(X)].
Since G is not tightly-securable and x ∈ N [pG(X)], pG(X) is not tight. Therefore

|N [pG(X)] ∩ S1| ≥ |N [pG(X)]− S1|+ 1.

Also, (x, vi) ∈ N [X] for all i ∈ {1, . . . , n}. Note that (x, v1) /∈ S3 and (x, vj) ∈ S3 for all
j ∈ {2, . . . , n}. Therefore

|N [X] ∩ S3| = n · |N [pG(X)] ∩ S1| − 1

≥ n · (|N [pG(X)]− S1|+ 1)− 1

= n · |N [pG(X)]− S1|+ n− 1

= |N [X]− S3| − 1 + n− 1

= |N [X]− S3|+ n− 2

≥ |N [X]− S3|.

Again the security condition is fulfilled for X and therefore S3 is a secure set in G ◦Kn and
we are done. �

Corollary 2.6 Let n ≥ 2. If G is not a tightly-securable graph, then

s(G ◦Kn) ≤ n · s(G)−
⌊n

2

⌋
.

Proof. We use the same idea and notation as in the proof of Theorem 2.5, only let S3 =
S2 − {(x, v1), . . . , (x, vbn2 c)}. The proof of Case 1 stays the same, and the proof of Case 2 is

as follows. Note that (x, v1), . . . , (x, vbn2 c) /∈ S3 and (x, vdn+1
2 e), . . . , (x, vn) ∈ S3. Therefore

|N [X] ∩ S3| = n · |N [pG(X)] ∩ S1| −
⌊n

2

⌋
≥ n · (|N [pG(X)]− S1|+ 1)−

⌊n
2

⌋
= n · |N [pG(X)]− S1|+ n−

⌊n
2

⌋
= |N [X]− S3| −

⌊n
2

⌋
+ n−

⌊n
2

⌋
= |N [X]− S3|+ n− 2 ·

⌊n
2

⌋
≥ |N [X]− S3|.

Hence, S3 is a secure set in G ◦Kn. �

Note, that if all minimum secure sets S of a graph G are tight, then G is also a tightly-
securable graph,

S ⊆
n⋃

i=1

N [Xi],

6



since one of its tight subsets X1, . . . , Xn is also S. This leads us to believe that the assumption
of G being a tightly-securable graph is not only a necessary but also a sufficient condition for
the lexicographic product G ◦Kn to have its security number s(G ◦Kn) = n · s(G). Hence,
the following conjecture.

Conjecture 2.7 Let n ≥ 2. A graph G is tightly-securable if and only if

s(G ◦Kn) = n · s(G).

3 The first factor is a cycle or a path

We start this section with a complete anwser for s(Cn ◦H). A generalization of this result
will follow in the last section. First a lemma.

Lemma 3.1 Let n ≥ 3. If S is a secure set in Cn ◦H, then |pCn(S)| ≥ 2.

Proof. Suppose that |pCn(S)| = 1 for a secure set S in Cn ◦H and let (u, v) be an arbitrary
vertex from S. Since |pCn(S)| = 1, it follows that

|N [{(u, v)}]− S| ≥ 2|V (H)| > |V (H)| ≥ |S| ≥ |N [{(u, v)}] ∩ S|,

which is a contradiction. Hence, |pCn(S)| ≥ 2. �

Theorem 3.2 For n ≥ 4 we have

s(Cn ◦H) = 2|V (H)|.

Proof. Let V (H) = {v1, . . . , v|V (H)|}, V (Cn) = {u1, . . . , un} and let uiui+1 ∈ E(G) for
i ∈ {1, . . . , n}, where un+1 = u1.

Let S be a set formed by two consecutive H-layers of graph Cn ◦ H. It is easy to
verify that S is a secure set since for every subset X ⊆ S we have two possibilities, namely
|pCn(X)| ∈ {1, 2}. For |pCn(X)| = 1 we have

|N [X] ∩ S| ≥ |V (H)| = |N [X]− S|

and for |pCn(X)| = 2 we have

|N [X] ∩ S| = 2|V (H)| = |N [X]− S|.

Hence, s(Cn ◦H) ≤ 2|V (H)|.
Now, suppose that S is a minimum secure set of graph Cn ◦H with |S| < 2|V (H)|. By

Lemma 3.1 we have |pCn(S)| ≥ 2 and there exist two vertices (ui, vj), (ui+1, vk) ∈ V (Cn ◦H),
for some i ∈ {1, . . . , n} and some j, k ∈ {1, . . . , |V (H)|}, such that (ui, vj), (ui+1, vk) ∈ S as
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〈S〉 is connected. Consider the subset X = {(ui, vj), (ui+1, vk)}. Then |N [X]| = 4|V (H)|.
Since |S| < 2|V (H)|, it follows that

|N [X]− S| ≥ |N [X]| − |S| = 4|V (H)| − |S| > 2|V (H)| > |S| ≥ |N [X] ∩ S|.

Hence, |N [X] ∩ S| < |N [X]− S| for the set X ⊆ S which implies that S is not a secure set,
a contradiction. Therefore, s(Cn ◦H) = |S| ≥ 2|V (H)|. �

Next we continue with description of s(Pn ◦H). For this we need the following notation.
For any path Pn let V (Pn) = {1, . . . , n} and E(Pn) = {i(i+ 1) | 1 ≤ i ≤ n− 1}. For a secure
set S in Pn ◦H set Si = iH ∩ S.

The value of s(Pn ◦H) depends more on the structure of H. In particular, it depends on
the cardinality of a minimum secure set that contains at least half of vertices of H. In the
last section the result for s(Pn ◦H) will be generalized. The following lemmas are needed.

Lemma 3.3 Let S be a secure set of G. If |N [X] ∩ S| ≥ |N [X] − S| + 2` for any X ⊆ S,
then s(G) ≤ |S| − `.

Proof. Let S′ be an arbitrary subset of S with |S| − ` vertices. We will prove that S′ is a
secure set of G. If X is an arbitrary subset of S′ ⊆ S, then |N [X] ∩ S| ≥ |N [X]− S|+ 2` by
assumption. Therefore |N [X]∩S′| ≥ |N [X]∩S| − ` and |N [X]−S′| ≤ |N [X]−S|+ `, which
implies |N [X] ∩ S′| ≥ |N [X]− S′|. �

Lemma 3.4 Let H be an arbitrary graph, n ≥ 3, and let S be a secure set in Pn ◦ H with
pPn(S) = {1, 2}. If pH(S1) = |V (H)| − `, then S2 = pH(S2) is a secure set in H with the
property |N [A2] ∩ S2| ≥ |N [A2]− S2|+ 2` for any A2 ⊆ S2.

Proof. Suppose that there exists A2 ⊆ S2 such that |N [A2] ∩ S2| < |N [A2]− S2|+ 2`. Let
A = {(2, h) |h ∈ A2} ⊆ S. Then |N [A] ∩ S| = |V (H)| − ` + |N [A2] ∩ S2| and |N [A] − S| =
`+ |V (H)|+ |N [A2]− S2|, which implies

|N [A] ∩ S| = |V (H)| − `+ |N [A2] ∩ S2|
< |V (H)| − `+ |N [A2]− S2|+ 2`

= `+ |V (H)|+ |N [A2]− S2|
= |N [A]− S|,

a contradiction. �

Note that minimal secure sets of Pn are of size 1 or 2. There are exactly two minimal
secure sets of size 1, i.e. each leaf of the path is a secure set. The minimal secure sets of size
2 contain two adjacent vertices of degree 2. Clearly all minimal secure sets of Pn are tight
and hence s(Pn ◦Kt) = t by Theorem 2.3.
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We settle all other cases for s(Pn ◦H) with the next result. First, let us introduce another
notation. Let G = (V,E) be a graph and x ≥ 1 an integer. Then Sx(G) is a secure set
of minimum cardinality containing at least x vertices of graph G. It is easy to see that for
2 ≤ x ≤ n we have |Sx(Pn)| = |Sx(Cn)| = x. In particular, we are interested in Sa(H) for

a =
⌈
|V (H)|

2

⌉
. While one can expect that for many graphs Sa(H) = a holds, there exist

graphs with Sa(H) ≥ s(G) > a as mentioned in the introduction, see [4]. Another way to get
Sa(H) > a is that s(H) < a but there is no secure set of cardinality a. Some investigation
into the direction, when this is not possible, is presented in [10] for global security number.

Theorem 3.5 Let H be a non-complete graph and n ≥ 4. For a =
⌈
|V (H)|

2

⌉
we have s(Pn ◦

H) = |V (H)|+ |Sa(H)|.

Proof. Let H be a non-complete graph, a =
⌈
|V (H)|

2

⌉
, and n ≥ 4. First we construct a

secure set in Pn ◦H with |V (H)|+ |Sa(H)| vertices. Let

S = {(1, h) |h ∈ V (H)} ∪ {(2, h) |h ∈ Sa(H)}.

We will prove that S is a secure set in Pn ◦H. Let X ⊆ S. If pPn(X) = {1, 2}, then

|N [X] ∩ S| = |V (H)|+ |Sa(H)| ≥ |(V (H))|+ (|V (H)| − |Sa(H)|) = |N [X]− S|,

as |Sa(H)| ≥ |V (H)|
2 . If pPn(X) = {1}, then

|N [X] ∩ S| > |Sa(H)| ≥ (|V (H)| − |Sa(H)|) = |N [X]− S|.

Finally let pPn(X) = {2} and let X2 = pH(X). Then

|N [X] ∩ S| = |V (H)|+ |NH [X2] ∩ Sa(H)| ≥ |V (H)|+ |NH [X2]− Sa(H)| = |N [X]− S|

since Sa(H) is a secure set of H.
For the converse let S be a secure set in Pn ◦ H with s(Pn ◦ H) vertices and let first

n ≥ 5. Let i ∈ {3, . . . , n − 2}. Suppose that there exists h ∈ V (H) such that (i, h) ∈ S.
Vertex (i, h) has 2|V (H)| neighbors in i−1H ∪ i+1H. Therefore, there exists at least one
vertex in ( i−1H ∪ i+1H) ∩ S, say (i + 1, h′), otherwise set {(i, h)} ⊆ S is not secure. Now,
{(i, h), (i+ 1, h′)} ⊆ S has 4|V (H)| vertices in its closed neighborhood in Pn ◦H which yields
at least 2|V (H)| > |V (H)| + |Sa(H)| vertices in S, a contradiction. Notice, that the same
holds if n = 4 and we have (2, h), (3, h′) ∈ S. Hence, we may assume that S is a subset either
of the first two or the last two H-layers of Pn ◦H. Without loss of generality we may assume
that S is a subset of 1H ∪2H. It is also clear that 1H ∩ S 6= ∅ and 2H ∩ S 6= ∅, as otherwise
there exists (x, y) ∈ S with

|N [{(x, y)}] ∩ S| < |V (H)| ≤ |N [{(x, y)}]− S|

since H is not a complete graph.
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Let xi = |S ∩iH| for i ∈ {1, 2}. As |N [S]| contains 3 · |V (H)| vertices,

|S| = x1 + x2 ≥
3|V (H)|

2
.

Suppose that x1 = |V (H)|−`. Lemma 3.4 implies that S2 = pH(S2) is a secure set in H where
|N [A2]∩S2| ≥ |N [A2]−S2|+ 2` for any A2 ⊆ S2. Therefore, it follows from Lemma 3.3 that
any subset S′2 of S2 containing |S2|−` vertices is a secure set in H. Let Ŝ2 = {(2, h) |h ∈ S′2}.
Since x1 + x2 ≥ 3|V (H)|

2 and x1 = |V (H)| − `, it follows that

x2 ≥
|V (H)|

2
+ `.

Therefore |Ŝ2| ≥ |V (H)|
2 . Since S′2 is a secure set in H of size |Ŝ2| we get

|S| = |V (H)|+ |S′2| ≥ |V (H)|+ |Sa(H)|,

which completes the proof. �

Corollary 3.6 If n ≥ 4 and m ≥ 3, then s(Pn ◦ Pm) =
⌈
3m
2

⌉
.

Corollary 3.7 If n ≥ 4 and m ≥ 4, then s(Pn ◦ Cm) =
⌈
3m
2

⌉
.

4 General results

We presented the exact results for the security number of the lexicographic product of a path
or a cycle and an arbitrary graph H and also the upper bound of the security number of the
lexicographic product of an arbitrary graph G and a complete graph. In the case of G ◦Kn

and Cn ◦ H the upper bound is the product of the security number of the first factor and
the size of the second factor. We also proved that there exist graphs where this bound is
not achieved and the difference can be arbitrary large, see Corollary 2.6. On the other hand,
there are many graphs G and H where the security number of G ◦H is much more than the
product of the security number of the first factor and the size of the second factor.

Proposition 4.1 Let G be an arbitrary connected graph with δ(G) = 1 and |V (G)| ≥ 3. If
H is an arbitrary non-complete graph, then s(G ◦H) > s(G) · |V (H)|.

Proof. Let S be a minimum secure set in G ◦ H. As s(G) = 1, we will prove that
|S| > |V (H)|. For the purpose of contradiction, suppose that |S| ≤ |V (H)|. It is clear that
one H-layer, say gH, is not a secure set of G ◦ H since H is not complete and there exists
h ∈ V (H) with |NH [{h}]| < |V (H)|. Therefore

|N [{(g, h)}] ∩ S| < |V (H)| ≤ |N [{(g, h)}]− S|.
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Let X be a subset of S that contains one vertex from gH for every g ∈ pG(S). Therefore
|X| = |pG(S)|. Since 〈S〉 and G are connected, we have |N [X]| ≥ 3 · |V (H)|. Also, since
|S| ≤ |V (H)|, we have |N [X]∩S| ≤ |V (H)| and |N [X]−S| ≥ 2 · |V (H)|, a contradiction. �

The following open problem is connected with Proposition 4.1.

Problem 4.2 For which graphs is inequality s(G ◦H) > s(G) · |V (H)| true? In particular,
is it true if every minimum secure set of G is tight and H is a non-complete graph?

We continue with an exact result that is a generalization of Theorem 3.5. For this let
v be a vertex with δ(v) = 1. Its unique neighbor, say u, is called the support vertex of v.
The proof of the next result is identical to the proof of Theorem 3.5, only at the start of
the second paragraph one needs to start with a vertex w which is not a support vertex of
degree 2. Consequently, one can get even more vertices in its neighborhood as in the proof
of Theorem 3.5.

Theorem 4.3 Let H be a non-complete graph, |V (G)| ≥ 4, and let a =
⌈
|V (H)|

2

⌉
. If there

exists a vertex v of degree one in G with its support vertex u of degree two, then we have
s(G ◦H) = |V (H)|+ |Sa(H)|.

Next we generalize Theorem 3.2. For this we need two adjacent vertices of degree two in
G and we need to exclude the case of Theorem 4.3. We include the proof which is similar to
the proof of Theorem 3.2 but contains some important differences. First a lemma.

Lemma 4.4 Suppose that G and H are connected graphs, |V (G)| ≥ 4, and that H is non-
complete. For any secure set S in G ◦H we have |pG(S)| ≥ 2.

Proof. Suppose that |pG(S)| = 1 for a secure set S. If pH(S) = V (H), then there exists
(u, v) ∈ S where pH((u, v)) is not adjacent to all other vertices of H as H is non-complete.
Since pG(S) = 1, it follows

|N [{(u, v)}]− S| ≥ |V (H)| = |S| > |N [{(u, v)}] ∩ S|,

which is a contradiction. If pH(S) ⊂ V (H), then for any (u, v) ∈ S we have

|N [{(u, v)}]− S| ≥ |V (H)| > |S| ≥ |N [{(u, v)}] ∩ S|,

again a contradiction. Both options imply that |pG(S)| ≥ 2. �

Theorem 4.5 Suppose that G and H are connected graphs, |V (H)| ≥ 4, H is non-complete,
and that all support vertices in G, if they exists, have degree more than 2. If there exist two
adjacent vertices of degree 2 in G, then

s(G ◦H) = 2|V (H)|.
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Proof. Let uv ∈ E(G) where δ(u) = δ(v) = 2 and let S be the set uH ∪vH. It is easy to
verify that S is a secure set, since for every subset X ⊆ S we have two possibilities, namely
|pG(X)| ∈ {1, 2}. For |pG(X)| = 1 we have

|N [X] ∩ S| ≥ |V (H)| = |N [X]− S|

and for |pG(X)| = 2 we have

|N [X] ∩ S| = 2|V (H)| = |N [X]− S|.

Hence, s(G ◦H) ≤ 2|V (H)|.
Now, suppose that S is a minimum secure set of a graph G ◦ H with |S| < 2|V (H)|.

By Lemma 4.4 we have |pG(S)| ≥ 2 and there exist two vertices (g, h), (g′, h′) ∈ V (G ◦H),
such that (g, h), (g′, h′) ∈ S and gg′ ∈ E(G) as 〈S〉 is connected. Consider the subset
X = {(g, h), (g′, h′)}. We have |N [X]| ≥ 4|V (H)| since every support vertex of G has degree
more than 2. Since |S| < 2|V (H)|, it follows that

|N [X]− S| ≥ |N [X]| − |S| > 2|V (H)| > |S| ≥ |N [X] ∩ S|.

Hence, the security condition is not true for the set X ⊆ S which implies that S is not a
secure set, a contradiction. Therefore, s(G ◦H) = |S| ≥ 2|V (H)| and we are done. �

On the other hand, the product of the security number of the first factor and the size of
the second factor is an upper bound for the security number of the lexicographic product in
the following graphs. In particular, the following result helps if 〈X〉 is not connected.

Proposition 4.6 Let G be a graph that contains a minimum secure set S1 such that for any
X ⊆ S1, |N [X] ∩ S1| ≥ |N [X]− S1|+ k, where k is the number of connected components of
〈X〉. Then

s(G ◦H) ≤ s(G) · |V (H)|.

Proof. Let S1 be a minimum secure set of G such that for any X ⊆ S1, |N [X] ∩ S1| ≥
|N [X]−S1|+k, where k is the number of connected components of 〈X〉. Let S = {(g, h) | g ∈
S1, h ∈ V (H)}. We will prove that S is a secure set in G ◦ H. Let Y be an arbitrary
subset of S and let X = pG(Y ). Let X1, . . . , Xk be connected components of 〈X〉 and
Yi = (Xi × V (H)) ∩ Y . If |Xi| = 1, then

|V (H)| · (|N [Xi] ∩ S1| − 1) < |N [Yi] ∩ S| ≤ |V (H)| · |N [Xi] ∩ S1|.

On the other hand, if |Xi| ≥ 2, then

|N [Yi] ∩ S| = |V (H)| · |N [Xi] ∩ S1|.

Therefore,

|N [Y ] ∩ S| ≥ |V (H)| · (|N [X] ∩ S1| − k) ≥ |V (H)| · |N [X]− S1| = |N [Y ]− S|.

�
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