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Abstract

The concept of a secure set in graphs was first introduced by Brigham et
al. in 2007 as a generalization of defensive alliances in graphs. Defensive
alliances are related to the defence of a single vertex. However, in a general
realistic settings, a defensive alliance should be formed so that any attack on
the entire alliance or any subset of the alliance can be defended. In this sense,
secure sets represent an attempt to develop a model of this situation. Given a
graph G = (V,E) and a set of vertices S ⊆ V of G, the set S is a secure set if
it can defend every attack of vertices outside of S, according to an appropriate
definition of “attack” and “defence”. The minimum cardinality of a secure
set in G is the security number s(G). In this article we obtain the security
number of grid-like graphs, which are the strong products of paths and cycles
(grids, cylinders and toruses). Specifically we show that for any two positive
integers m,n ≥ 4, s(Pm ⊠Pn) = min{m,n, 8}, s(Pm ⊠Cn) = min{2m,n, 16}
and s(Cm ⊠ Cn) = min{2m, 2n, 32}.
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1. Introduction

Secure sets and security number in graphs were first described by Brigham
et al. [1] while attempting to improve the well-known concepts of defensive
alliances and defensive alliance number in graphs [2]. After this seminal
work on secure sets in graphs, relatively few articles have been published
regarding this topic. Some general results on security number are presented
in [3, 4]. According to the definition in [2], defensive alliances only defend
a single vertex at a given time. Nevertheless, in general models, a more
efficient defensive alliance should be able to defend any attack on the entire
alliance or any part of it. Studies of security in product graphs were initiated
in [1], and afterwards continued in [5, 6, 7] where several bounds and closed
formulaes on the security number of some grid-like graphs were given. Secure
sets have also been investigated in [8, 9, 10].

We begin with some notation and terminology. In this paper G = (V,E)
denotes a simple graph of order n, minimum degree δ and maximum degree
∆. For a nonempty subset W ⊆ V and any vertex v ∈ V , NW (v) is the set
of neighbors of the vertex v in W , NW (v) = {u ∈ W : uv ∈ E(G)}, and
δW (v) = |NW (v)| denotes the degree of v in W . If W = V , then we use the
notation N(v) and call it the open neighborhood of v. The closed neighborhood
of v is N [v] = N(v) ∪ {v}. The open neighborhood of a set W is N(W ) =
⋃

v∈W N(v) and the closed neighborhood of W is N [W ] = N(W ) ∪W . The
subgraph induced by a set W is denoted by 〈W 〉, and the complement of W
is denoted by W .

The definition of a secure set is based on the following rules. Consider a
set of vertices S. A vertex y ∈ N [S]−S can attack only one neighbor in S (it
does not matter if y is adjacent to several vertices in S). On the other hand,
a vertex x ∈ S can defend only one vertex in N [x] ∩ S. We now present a
formal definition of secure sets according to [1].

• For any S = {v1, v2, . . . , vr} ⊆ V , an attack on S is formed by any r
mutually disjoint sets A = {A1, A2, . . . , Ar}, for which Ai ⊆ NS(vi),
1 ≤ i ≤ r.

• A defence of S is formed by any r mutually disjoint setsD = {D1, D2, . . . , Dr}
for which Di ⊆ NS[vi], 1 ≤ i ≤ r.
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• Attack A is defendable if there exists a defence D such that |Di| ≥ |Ai|
for 1 ≤ i ≤ r.

• Set S is secure if and only if every attack on S is defendable.

The minimum cardinality of a secure set in a graph G is the security
number and is denoted by s(G). A secure set S of cardinality s(G) is called
a s(G)-set. Throughout the article we use the following characterization of
secure sets.

Theorem 1. [1] A set S is a secure set in a graph G if and only if for every
X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|.

From now on we call the expression |N [X] ∩ S| ≥ |N [X] − S| the se-
curity condition for X. Studies on the security number in product graphs
were initiated in [1], where the authors gave upper bounds for the Cartesian
product of paths and cycles. Moreover, to prove the equality in these bounds
was left as an open problem, which was solved in [5]. There was proved
that for any integers m,n ≥ 4, it follows that s(Pm�Pn) = min{m,n, 3},
s(Pm�Cn) = min{2m,n, 6} and s(Cm�Cn) = min{2m, 2n, 12}. Other stud-
ies of the global security number of the Cartesian product of paths and cycles
where presented in [6, 7]. In the present article we prove a formula for the
security number of the strong product of paths and/or cycles.

We recall that the strong product of two graphs G = (U,E1) and H =
(V,E2) is the graph G⊠H, with the vertex set {(a, b) : a ∈ U, b ∈ V } and
two vertices (a, b) and (c, d) of U × V are adjacent in G ⊠H if and only if,
either (a = c and bd ∈ E2), (b = d and ac ∈ E1), or (ac ∈ E1 and bd ∈ E2).
The graphs G and H are called the factors of the product. For a vertex
a ∈ U , the set of vertices {(a, b) : b ∈ V } is called an H-layer and is denoted
by aH. Similarly, for a vertex b ∈ V , the set of vertices {(a, b) : a ∈ U} is
called a G-layer and is denoted by G b. It is clear that the graph induced by
any G-layer is isomorphic to G and, analogously, the graph induced by any
H-layer is isomorphic to H. The projection of a set W ⊂ U × V onto G is
defined by PG(W ) = {u ∈ U : (u, v) ∈ W}. Analogously, the projection of
W onto H is PH(W ) = {v ∈ V : (u, v) ∈ W}. The proof of the following
result is the main goal of this article.

Theorem 2. Let m,n ≥ 2 be two integers. Then

(i) s(Pm ⊠ Pn) = min{m,n, 8} ,
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(ii) s(Pm ⊠ Cn) = min{2m,n, 16} ,

(iii) s(Cm ⊠ Cn) =

{

5, if m = n = 3,
min{2m, 2n, 32}, otherwise.

We split the proof of the results above in two parts (see Sections 2 and
3). Notice that the graph C3 ⊠ C3 is isomorphic to the complete graph K9,
and from [1] we know that s(C3 ⊠ C3) = 5.

The paper is organized as follows. Throughout the article U = {u0, . . . , um−1}
and V = {v0, . . . , vn−1} represent the vertex sets of graphs G and H of order
m and n, respectively, where G and H are a path or a cycle. All the oper-
ations with the subscripts are done modulo m or n, respectively, for those
cases in which the corresponding factor graph is a cycle. We only consider
non-symmetrical cases.

2. Proofs of the upper bounds

Let S be a set of vertices in a graph G and let UD be a set of disjoint
pairs of vertices {u, v} such that u ∈ S and v ∈ N [S] − S. The set UD
is a universal defence for S, if for any attack on S, the attack of a vertex
v ∈ N [S]− S can be repelled by a vertex u ∈ S such that {u, v} ∈ UD.

Lemma 3. Let G = (V,E) be a graph and let S ⊂ V . If there exists a
universal defence for S, then S is a secure set.

Proof. LetA = {A1, A2, . . . , Ar} be an attack on S and letAi = {vi1, vi2, . . . , viki}
for every i ∈ {1, . . . , r}. Since there exists a universal defence UD for S, ev-
ery vij belongs to a pair {uij, vij} ∈ UD, where uij ∈ S and the vertex uij

does not appear in any other pair. Thus, the set Di = {ui1, ui2, . . . , uiki}
satisfies the condition |Di| ≥ |Ai| for every i ∈ {1, . . . , r}. Therefore, S is a
secure set.

In the proof of the following claims we construct a universal defence for
the corresponding set and then we use the lemma above.

Claim 1. The sets u0Pn,
um−1Pn, Pm

v0 and Pm
vn−1 are secure sets of Pm⊠Pn,

where m,n ≥ 2.

Proof. First we show that the set u0Pn is secure. The result follows from
Lemma 3 and the fact that the set of disjoint pairs {(u0, v0), (u1, v0)}, {(u0, v1), (u1, v1)},
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. . ., {(u0, vn−1), (u1, vn−1)} is a universal defence of u0Pn. By the structure
of Pm ⊠ Pn, the security of um−1Pn, Pm

v0 and Pm
vn−1 can be proved analo-

gously.

Claim 2. The sets u0Cn,
um−1Cn and any two consecutive Pm-layers are

secure sets of Pm ⊠ Cn, where m ≥ 2 and n ≥ 3.

Proof. As in the proof of Claim 1, we observe that u0Cn and um−1Cn are
secure sets. Without loss of generality, let P v1

m and P v2
m be two consecutive

Pm-layers. The result follows from Lemma 3 and the fact that the set of dis-
joint pairs {(u0, v1), (u0, v0)}, {(u1, v1), (u1, v0)}, . . ., {(um−1, v1), (um−1, v0)},
{(u0, v2), (u0, v3)}, {(u1, v2), (u1, v3)}, . . ., {(um−1, v2), (um−1, v3)} is a univer-
sal defence of two consecutive Pm-layers.

Since the next result can be proved similarly to Claim 2, we omit the
proof.

Claim 3. Any two consecutive Cn-layers and any two consecutive Cm-layers
are secure sets of Cm ⊠ Cn, where m,n ≥ 3.

With the claims presented above, we are able to prove the upper bounds
of our main result.

Proposition 4. For any integers m,n ≥ 2,

s(Pm ⊠ Pn) ≤ min{m,n, 8} .

Proof. By Claim 1 we have that s(Pm ⊠ Pn) ≤ min{m,n}. Assume that
m,n ≥ 8 and let Z0,0 be the set of 8 vertices of Pm ⊠ Pn shown in Fig-
ure 1. One can see that the pairs {(u0, v1), (u0, v3)}, {(u0, v2), (u1, v3)},

u0 u1 u2 u3

v0

v1

v2

v3

Figure 1: A secure set Z0,0 of Pm ⊠ Pn.

{(u1, v2), (u2, v3)}, {(u1, v1), (u2, v2)}, {(u2, v1), (u3, v2)}, {(u1, v0), (u3, v1)}
and {(u1, v0), (u3, v0)} form a universal defence of Z0,0. Hence, by Lemma 3,
Z0,0 is a secure set.

5



Notice that the cylinder Pm⊠Cn can be obtained from the grid Pm⊠Pn by
adding some edges between vertices of the Pm

v0-layer and the Pm
vn−1-layer

(see Figure 2).

vn-4

vn-3

vn-2

vn-1

v0

v1

v2

v3

u0 u1 u2 u3

Figure 2: A secure set S of Pm ⊠ Cn with |S| = 16 and the edges added to the graph
Pm ⊠ Pn to obtain Pm ⊠ Cn.

This observation allows us to find a universal defence of set S presented
in Figure 2, similarly as we found it for Z0,0 in the proof of Proposition 4.
The next result follows from the security of S and Claim 2.

Proposition 5. For any integers m,n ≥ 2,

s(Pm ⊠ Cn) ≤ min{2m,n, 16} .

We can also indicate a secure set of cardinality 32 in a sufficiently large
strong product of cycles (see Figure 3). The existence of such a set and Claim
3 imply the following proposition.

Proposition 6. For any integers m ≥ 3 and n ≥ 4,

s(Cm ⊠ Cn) ≤ min{2m, 2n, 32} .

3. Proofs of the lower bounds

Let S be a minimum secure set of G ⊠ H, where G and H are a path
or a cycle. For i ∈ {0, 1, . . . ,m − 1} we define Xi = uiH ∩ S. Let d =
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vn-4

un-3 un-2 un-1 u0 u1 u2 u3

vn-3

vn-2

vn-1

v0

v1

v2

v3

un-4

Figure 3: A secure set S of Cm ⊠ Cn with |S| = 32 and the edges added to the graph
Pm ⊠ Pn to obtain Cm ⊠ Cn.

min{i : 0 ≤ i ≤ m− 1, Xi 6= ∅}, f = max{i : 0 ≤ i ≤ m− 1, Xi 6= ∅} and
r = f − d+1. Similarly, we define Yj = Gvj ∩S for j ∈ {0, 1, . . . , n− 1}. Let
g = min{j : 0 ≤ j ≤ n − 1, Yj 6= ∅}, h = max{j : 0 ≤ j ≤ n − 1, Yj 6= ∅}
and t = h− g + 1.

From now on, we use the letters d, f, g, h, r, t (and their corresponding
meanings) defined in the paragraph above. If at least one graph in the strong
product is a cycle, then we can assume that (d = 0 and f = r− 1) or (g = 0
and h = t − 1). Since any minimum secure set is connected [1], it follows
that for every i ∈ {d, . . . , f}, Xi 6= ∅ and for every j ∈ {g, . . . , h}, Yj 6= ∅.

Given the vertices ui, uj ∈ U , 0 ≤ i < i+ 1 < j ≤ m− 1, and vk, vl ∈ V ,
0 ≤ k < k + 1 < l ≤ n− 1 of a graph G and H, respectively, we call the set
of vertices R(i, j, k, l) ⊆ U × V defined by

R(i, j, k, l) = {(ua, vb) ∈ U × V : i ≤ a ≤ j, k ≤ b ≤ l}

a rectangle in G ⊠ H. Notice that any rectangle has nonempty intersection
with at least three G-layers and at least three H-layers. According to a
rectangle R(i, j, k, l), for any α ∈ {i, j} and any β ∈ {k, l}, a corner-like set
C(α, β) of a set S ⊆ R(i, j, k, l)−{(ui, vk), (ui, vl), (uj , vk), (uj , vl)} such that
S ∩uα H 6= ∅ and S ∩G vβ 6= ∅, is formed by exactly two vertices, one in Xα

and the other in Yβ, being the closest vertices to (uα, vβ) (see Figure 4). If
a corner-like set contains two neighbors of the corner, then we call it simple.
A simple corner-like set is for instance C(i, k) in Figure 4.
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ui uj

vl

vk

Figure 4: The rectangle R(i, j, k, l) and the four corner-like sets C(i, k), C(i, l), C(j, k)
and C(j, l), where C(i, k) is simple.

Given a rectangle R(i, j, k, l) in G ⊠ H and a set W ⊆ R(i, j, k, l), we
define the following sets.

• LBW — the left border of W — is the set of vertices (ua, vb) ∈ W such
that (uα, vb) /∈ W for every α ∈ {i, . . . , a− 1}.

• RBW — the right border of W — is the set of vertices (ua, vb) ∈ W
such that (uα, vb) /∈ W for every α ∈ {a+ 1, . . . , j}.

• UBW — the upper border of W — is the set of vertices (ua, vb) ∈ W
such that (ua, vβ) /∈ W for every β ∈ {k, . . . , b− 1}.

• BBW — the bottom border of W — is the set of vertices (ua, vb) ∈ W
such that (ua, vβ) /∈ W for every β ∈ {b+ 1, . . . , l}.

Figure 5 shows an example of the sets defined above. In addition we say
that the union of all these sets is the border of W , and denote it by BD.
Notice that LBW ∩ UBW 6= ∅, LBW ∩ BBW 6= ∅, RBW ∩ UBW 6= ∅ and
RBW ∩ BBW 6= ∅. Also, |LBW | = |RBW | and |UBW | = |BBW |.

Lemma 7. Let W be a subset of a rectangle that contains at most n − 2
columns and at most m−2 rows of Cm⊠Cn, where m,n ≥ 4. Then |N [W ]−
W | ≥ |LBW |+ |RBW |+ |UBW |+ |BBW |+ 4.
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Figure 5: The sets LBW (black polygon - left side), RBW (gray polygon - left side), UBW

(black polygons - right side) and BBW (gray polygons - right side).

Proof. Let LB′
W = LBW ∩ (UBW ∪ BBW ), RB′

W = RBW ∩ (UBW ∪ BBW ),
UB′

W = UBW ∩ (LBW ∪RBW ) and BB′
W = BBW ∩ (LBW ∪RBW ). Hence,

|N [W ]−W | ≥ |LBW − LB′
W |+ 2|LB′

W |+ |RBW −RB′
W |+ 2|RB′

W |+

+ |UBW − UB′
W |+ |BBW − BB′

W |+ 4

= |LBW |+ |LB′
W |+ |RBW |+ |RB′

W |+ |UBW | − |UB′
W |+

+ |BBW | − |BB′
W |+ 4

= |LBW |+ |LBW ∩ UBW |+ |LBW ∩ BBW |+ |RBW |+

+ |RBW ∩ UBW |+ |RBW ∩ BBW |+ |UBW |+

− |UBW ∩ LBW | − |UBW ∩RBW |+ |BBW | − |BBW ∩ LBW |+

− |BBW ∩RBW |+ 4

≥ |LBW |+ |RBW |+ |UBW |+ |BBW |+ 4,

and the proof is completed.

Lemma 8. Let W be a subset of a rectangle that contains at most n − 1
columns and at most m− 2 rows of Pm ⊠Cn, where m ≥ 3 and n ≥ 4. Then
|N [W ]−W | ≥ |RBW |+ |UBW |+ |BBW |+ 2.

Proof. The proof is similar to that of Lemma 7. Let RB′
W = RBW ∩ (UBW ∪
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BBW ), UB′
W = UBW ∩RBW and BB′

W = BBW ∩RBW . Hence,

|N [W ]−W | ≥ |RBW −RB′
W |+ 2|RB′

W |+ |UBW − UB′
W |+ |BBW − BB′

W |+ 2

= |RBW |+ |RB′
W |+ |UBW | − |UB′

W |+ |BBW | − |BB′
W |+ 2

= |RBW |+ |RBW ∩ UBW |+ |RBW ∩ BBW |+ |UBW | − |UBW |+

− |UBW ∩RBW |+ |BBW | − |BBW | − |BBW ∩RBW |+ 2

≥ |RBW |+ |UBW |+ |BBW |+ 2,

which completes the proof.

We say that a partial structure of a secure set S is given by the set
PD = A∪B where A ⊆ S and B = N [A]−S. In the auxiliary figures, black
and white vertices belong to A and V − S, respectively, and any gray vertex
may be a member of either A or B.

Lemma 9. If a set S ⊆ U × V is a secure set of Cm ⊠ Cn or Pm ⊠ Cn,
where m,n ≥ 3, then the partial structures of S presented in Figure 6 are
forbidden.

Proof. Since the maximum degree of vertices in Cm ⊠Cn or Pm ⊠Cn is 8, if
a set S ⊆ U × V contains a vertex that has five neighbors which are not in
S, then by Theorem 1 S is not secure. Thus, the partial structures presented
in Figure 6 (a) and (b) are forbidden.

In the partial structure presented in Figure 6 (c), we have that |N [A] ∩
S| ≤ 10 while |B| ≥ 12, so this partial structure is also forbidden. Similar
situations are in the partial structures illustrated in Figure 6 (d) and (f).
For the case of Figure 6 (e), the set W , surrounded by a polygon, satisfies
|N [W ]∩S| ≤ 8 and |N [W ]−S| ≥ 9, which makes this partial structure also
forbidden.

The following lemma presents lower bounds for secure sets that contain
at least m or n vertices.

Lemma 10. Let m,n ≥ 4 be two integers and let S be a s(Cm ⊠ Cn)-set. If
|PCm

(S)| = m or |PCn
(S)| = n, then s(Cm ⊠Cn) ≥ 2n or s(Cm ⊠Cn) ≥ 2m.

Proof. Suppose that s(Cm ⊠ Cn) < 2n and s(Cm ⊠ Cn) < 2m. Assume
|PCm

(S)| = m. Since S is connected, Xi 6= ∅ for every i ∈ {0, . . . ,m− 1}. If
|Xi| ≥ 2 for every i ∈ {1, . . . ,m−1}, then |S| ≥ 2m, which is a contradiction.
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(a) (b) (c)

(d) (f)(e)

Figure 6: The partial structures which are forbidden for a secure set S.

If |(N [Xi]−S)∩ uiCn| ≥ 2 for every i ∈ {0, . . . ,m−1}, then |(N [S]−S)| ≥
2m, which contradicts the security of S. So, there exists a ujCn-layer such
that at most one vertex of it does not belong to S, and there is exactly
one such layer (otherwise |S| ≥ 2m or |S| ≥ 2n since m,n ≥ 4). Thus
|S| ≥ m+ n− 2. If |S| = m+ n− 2 or |S| = m+ n− 1, then for the vertex
(uj+2, vα) ∈ S, we have |(N [{(uj+2, vα)}] ∩ S)| ≤ 4 and |(N [{(uj+2, vα)}] −
S)| ≥ 5, a contradiction. If |PCn

(S)| = n, then a similar analysis as above
completes the proof.

Similarly as above, we can prove the following lemma.

Lemma 11. Let m,n ≥ 4 be two integers and let S be a s(Pm ⊠ Cn)-set. If
|PPm

(S)| = m, then s(Pm ⊠ Cn) ≥ 2m.

In our next two results we give more properties of secure sets in Cm⊠Cn

and Pm ⊠ Cn.

Lemma 12. If a set S ⊆ U × V is a s(Cm ⊠ Cn)-set, m,n ≥ 3, such that
|S| < min{2m, 2n}, then |X0|, |Xr−1| ≥ 2, |Y0|, |Yt−1| ≥ 2 and 6 ≤ r, t ≤ 8.
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Proof. If r = m or t = n, then by Lemma 10, |S| ≥ 2m or |S| ≥ 2n, which
is a contradiction. So, r < m and t < n. If |X0| = 1, then S contains
the partial structure presented in Figure 6 (a), which means that S is not
secure. Thus, |X0| ≥ 2. According to the symmetry of Cm ⊠ Cn, we have
that |Xr−1| ≥ 2, |Y0| ≥ 2 and |Yt−1| ≥ 2.

Since S does not contain the forbidden partial structures appearing in
Figure 6 (a) and (b), we have that t ≥ |X0|+2. First, suppose that |X0| = 2.
If t = 4, then S contains the partial structure (c) presented in Figure 6. So,
S is not secure. If t = 5, then S contains the partial structures presented
in Figure 6 (b) or (d), which are forbidden. Hence, if |X0| = 2, then t ≥ 6.
Now suppose that |X0| = 3. If t = 5, then S contains the partial structure
presented in Figure 6 (f). Thus, S is not secure. Hence, t ≥ 6. Finally, if
|X0| ≥ 4, then t ≥ 6. According to the symmetry of Cm⊠Cn, we obtain that
r ≥ 6.

If r = m − 1, then |S| = |X0| + |X1| + |Xm−3| + |Xm−2| +
∑m−4

i=2 |Xi| ≥
12 +

∑m−4

i=2 |Xi|. We will show that
∑m−4

i=2 |Xi| ≥ 2(m− 5). Suppose on the
contrary, that

∑m−4

i=2 |Xi| < 2(m − 5). Hence, there exists at least one Xj,
2 ≤ j ≤ m−4, such that |Xj| = 1 (notice that |Xj| 6= 0 since S is connected).
We shall first show that j 6= 2 and j 6= m − 4. If j = 2, then there exists a
vertex (u1, vq) ∈ X1 such that |N [(u1, vq)]∩S| ≤ 3 and |N [(u1, vq)]−S| ≥ 6,
a contradiction. Thus, j 6= 2 and, similarly, we get j 6= m− 4. Now, observe
that it follows |Xj−1| ≥ 2 or |Xj+1| ≥ 2, otherwise |N [Xj] ∩ S| = 3 and
|N [Xj] − S| = 6, which is not possible. If |Xj+1| = 2, then |Xj+2| ≥ 3,
otherwise |N [Xj+1] ∩ S| = 5 and |N [Xj+1] − S| = 7, which is again not
possible. Notice also that |Xj+3| ≥ 3. If not, then |N [Xj+2] ∩ S| = 7 and
|N [Xj+2]− S| = 8.

As a consequence, for every Xj with |Xj| = 1, there exists Xj′ with
|Xj′ | ≥ 3 such that, if |Xj| = |Xl| = 1, l 6= j, then Xj′ 6= Xl′ . Let I ⊂
{3, . . . ,m− 5} be such that for every j ∈ I, |Xj| = 1. Hence,

m−4
∑

i=2

|Xi| =
∑

i∈I

|Xi|+
∑

i/∈I,2≤i≤m−4

|Xi|

≥ 2|I|+
∑

i/∈I,2≤i≤m−4

2

= 2|I|+ 2(m− 5− |I|)

= 2(m− 5),
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which is a contradiction. Thus, |S| ≥ 12 +
∑m−4

i=2 |Xi| ≥ 12 + 2(m − 5) =
2m+2, which is a contradiction. Similarly, we can show that t 6= n−1, since
then |S| ≥ 2n+ 2. Therefore, r < m− 1 and t < n− 1.

Now, if r ≥ 9 or t ≥ 9, then by Lemma 7, we obtain |N [S] − S| ≥
|LBS| + |RBS| + |UBS| + |BBS| + 4 ≥ 34, which is a contradiction with
Proposition 6.

Lemma 13. If a set S ⊆ U × V is a s(Pm ⊠ Cn)-set, m,n ≥ 3, such that
|S| < min{2m,n}, then (|Xd| ≥ 2 or |Xf | ≥ 2), 3 ≤ r ≤ 4 and 6 ≤ t ≤ 8.

Proof. Let S be a s(Pm ⊠ Cn)-set such that |S| < n. Since t is the number
of Cn-layers that have a nonempty intersection with S, t 6= n. Moreover by
Lemma 11, r 6= m. Hence, we may assume r < m and t < n. If d 6= 0 and
|Xd| = 1, then S contains the partial structure presented in Figure 6 (a),
which means that S is not secure. Thus, |Xd| ≥ 2. Analogously, if f 6= m−1
and |Xf | = 1, then S is not secure. So, |Xf | ≥ 2.

If d 6= 0 and f 6= m − 1, then, similarly to the proof of Lemma 12 we
can show that t ≥ 6. If either d = 0 or f = m − 1, say d = 0, then
f − d + 1 = r ≥ 2. Suppose that r = 2. Since |S| < n, there exists
j ∈ {0, . . . , n− 1} such that (u0, vj), (u1, vj) /∈ S. Now, let i ∈ {0, . . . , n− 1}
be such that S ∩ {(u0, vi), (u1, vi)} 6= ∅ and (u0, vi+1), (u1, vi+1) /∈ S. If
(u0, vi), (u1, vi) ∈ S, then we have a contradiction with Lemma 9 (Figure 6
(b)). So, either (u0, vi) /∈ S or (u1, vi) /∈ S. If (u0, vi) /∈ S, then (u1, vi) ∈ S,
|N [(u1, vi)] ∩ S| ≤ 3 and |N [(u1, vi)] − S| ≥ 6, which is not possible. So,
(u0, vi) ∈ S and (u1, vi) /∈ S. If (u1, vi−1) /∈ S, then |N [(u0, vi)] ∩ S| ≤ 2
and |N [(u0, vi)]−S| ≥ 4, a contradiction. Hence, (u1, vi−1) ∈ S and we have
|N [{(u0, vi), (u1, vi−1)}] ∩ S| ≤ 5 and |N [{(u0, vi), (u1, vi−1)}] − S| ≥ 6. So,
the security condition is not satisfied for the set {(u0, vi), (u1, vi−1)}. Thus,
r ≥ 3.

Since d 6= 0 or f 6= m − 1, say d 6= 0, we have that |Xd| ≥ 2. From
the forbidden partial structures shown in Figure 6 (a) and (b), we obtain
t ≥ |Xd| + 2. Hence, if |Xd| ≥ 4, then t ≥ 6. Thus, suppose that |Xd| = 2.
If t = 4, then S contains the partial structure (c) presented in Figure 6.
Therefore, S is not secure. If t = 5, then S contains the partial structures in
Figure 6 (b) or (d), which are forbidden, or S contains the partial structure
in Figure 7. In the partial structure presented in Figure 7, we have that
|N [A] ∩ S| ≤ 11 while |B| ≥ 13. So, the set S containing this partial
structure is not secure. Hence, if |Xd| = 2, then t ≥ 6. Moreover, if |Xd| = 3,

13



X Xd d 2

Figure 7: The partial structure of S.

then t ≥ 5. If t = 5, then S contains the partial structure presented in Figure
6 (f). Thus, S is not secure. Therefore, t ≥ 6.

If r ≥ 5 or t ≥ 9, then by Lemma 8 (for the symmetrical case), |N [S] −
S| ≥ |LBS|+ |UBS|+ |BBS|+2 ≥ 18 or |N [S]−S| ≥ |LBS|+ |UBS|+ |BBS|+
2 ≥ 17, respectively, and this is a contradiction with Proposition 5.

In the next result we present lower bounds on the security number of
Cm ⊠ Cn.

Proposition 14. For any integers m ≥ 3 and n ≥ 4,

s(Cm ⊠ Cn) ≥ min{2m, 2n, 32}.

Proof. Suppose that s(Cm ⊠ Cn) < min{2m, 2n, 32} and let S be a s(Cm ⊠

Cn)-set. Consider the sets Xα, α ∈ {0, . . . ,m−1} and Yβ, β ∈ {0, . . . , n−1}.
First we assume that m = 3 and n ≥ 4. Hence min{2m, 2n, 32} = 6.
However, we can check that every set of cardinality less than or equal to five
has a neighborhood of cardinality greater than or equal to seven.

From now on we consider the case m ≥ 4 and n ≥ 4. If there exists a set
Xi such that |Xi| = n, then by Lemma 10, s(Cm⊠Cn) ≥ 2m or s(Cm⊠Cn) ≥
2n, which is a contradiction. Similarly, we obtain a contradiction, if there
exists a set Yk such that |Yk| = m.

Thus, |Xα| < n and |Yβ| < m for every α ∈ {0, . . . ,m − 1} and β ∈
{0, . . . , n−1}. Hence, without loss of generality assume that S is a subset of
some rectangle R(0, r− 1, 0, t− 1). For every j /∈ {0, . . . , r− 1}, Xj = ∅, and
for every l /∈ {0, . . . , t− 1}, Yl = ∅. Notice that by Lemma 12, 6 ≤ r, t ≤ 8.
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If r, t ≥ 7 or (r = 6 and t ≥ 8) or (r ≥ 8 and t = 6), then by Lemma 7,
|N [S] − S| ≥ 32. As a consequence, without loss of generality, assume that
6 ≤ r ≤ 7 and t = 6. Consider the corner-like sets of a set S in the rectangle
R(0, r − 1, 0, t− 1).

(i) If (u0, va), (u0, vb) ∈ X0 where a = min{l ∈ {0, . . . , t − 1} : (u0, vl) ∈
X0} and b = max{l ∈ {0, . . . , t − 1} : (u0, vl) ∈ X0}, then a ≥ 1,
b ≤ t− 2 and (u1, va−1), (u1, vb+1) ∈ X1.

(ii) If (ur−1, vp), (ur−1, vz) ∈ Xr−1 with p = min{l ∈ {0, . . . , t − 1} :
(ur−1, vl) ∈ Xr−1} and z = max{l ∈ {0, . . . , t− 1} : (ur−1, vl) ∈ Xr−1},
then p ≥ 1, z ≤ t− 2 and (ur−2, vp−1), (ur−2, vz+1) ∈ Xr−2.

(iii) If (ua, v0), (ub, v0) ∈ Y0 where a = min{l ∈ {0, . . . , r−1} : (ul, v0) ∈ Y0}
and b = max{l ∈ {0, . . . , r − 1} : (ul, v0) ∈ Y0}, then a ≥ 1, b ≤ r − 2
and (ua−1, v1), (ub+1, v1) ∈ Y1.

(iv) If (up, vt−1), (uz, vt−1) ∈ Yt−1 with p = min{l ∈ {0, . . . , r−1} : (ul, vt−1) ∈
Yt−1} and z = max{l ∈ {0, . . . , r − 1} : (ul, vt−1) ∈ Yt−1}, then p ≥ 1,
z ≤ r − 2 and (up−1, vt−2), (uz+1, vt−2) ∈ Yt−2.

It follows from the observations above that (u0, v0), (u0, vt−1), (ur−1, v0), (ur−1, vt−1),
(u0, v0), (ur−1, v0), (u0, vt−1), (ur−1, vt−1) /∈ S. In the following cases we as-
sume 6 ≤ r ≤ 7 and t = 6. Moreover, we avoid the forbidden partial struc-
tures presented in Figure 6. Also, based on the existence of simple corner-like
sets, we consider the possible borders of S. Note that in the auxiliary figures,
vertices in the polygons drawn in the center are not adjacent to any vertex
in BD.

Case 1: No corner-like set of S is simple. We observe that only two borders
of S presented in Figure 8 are possible. In Figure 8 (a), |N [BD]∩S| ≤ 24 and
|N [BD]−S| ≥ 28 and, in Figure 8 (b), |N [BD]∩S| ≤ 28 and |N [BD]−S| ≥
30, which are both contradictions.

Case 2: Only one corner-like set of S is simple. Hence, the only possible
borders of S are drawn in Figure 9. For the case of Figure 9 (a), we have
|N [BD]∩S| ≤ 26 and |N [BD]−S| ≥ 28. Moreover, in Figure 9 (b), |N [BD]∩
S| ≤ 29 and |N [BD]− S| ≥ 30. Both cases are contradictions.

Case 3: Exactly two corner-like sets of S are simple. In this case, we
consider three possibilities for the border of S according to positions of those
two simple corner-like sets.
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(a) (b)

Figure 8: Possible borders of S with no simple corner-like sets.

Subcase 3.1: Both simple corner-like sets have a nonempty intersection
with either X0 or Xr−1. So, only the borders drawn in Figure 10 are pos-
sible for S. In Figure 10 (a), |N [BD] ∩ S| ≤ 26 and |N [BD] − S| ≥ 28,
a contradiction. Now, consider the BD shown in Figure 10 (b). Since
|N [BD] − S| ≥ 30, all gray vertices adjacent to vertices in BD must be
in S. Then, |N [BD] ∩ S| = 30 and |N [BD] − S| = 30. Thus, from the
vertices in the square drawn in the center, which are not adjacent to any
vertex in BD, at most one can belong to S, since |S| ≤ 31 by assumption.
Hence, without loss of generality we can assume that the gray vertex inside
the lower triangle drawn in Figure 10 (b) has a neighbour inside the square
that does not belong to S. Then, for the set of vertices inside the triangle
the security condition is not satisfied, a contradiction.

Subcase 3.2: Both simple corner-like sets have a nonempty intersection
with either Y0 or Yt−1. Hence, S can only have the border that is shown in
Figure 11. In this case, the security condition is not violated only if all gray
vertices that are adjacent to the vertices in the border belong to S. Now,
|N [BD] ∩ S| = |N [BD] − S| = 30, thus only one of four vertices inside the
polygon can belong to S. However, similarly as in Subcase 3.1 we can show
that both gray vertices that are inside the triangles must have a neighbour
inside the polygon that belongs to S, a contradiction.

Subcase 3.3: Only one of the two simple corner-like sets have a nonempty
intersection with X0. In this case, only the borders drawn in Figure 12 can
appear in S. In Figure 12 (a), |N [BD] ∩ S| ≤ 26 and |N [BD] − S| ≥ 28, a
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(a) (b)

Figure 9: Possible borders of S with exactly one simple corner-like set.

contradiction. Now consider the border of the set S presented in Figure 12
(b). Since |N [BD] − S| ≥ 30, all gray vertices adjacent to vertices in BD
must be in S. Then, |N [BD] ∩ S| = 30 = |N [BD]− S|. Now, since |S| ≤ 31
we observe that only one vertex that is inside the central polygon can belong
to S. This leads us to a contradiction with the security condition that is not
satisfied for the vertices inside one of the triangles.

Case 4: Exactly three corner-like sets of S are simple. In this case, S can
only have one of the borders illustrated in Figure 13. However, the security
condition is not satisfied for the border (a). So, let us consider the border
(b). We can check that |N [BD] ∩ S| ≥ |N [BD]− S| only if all gray vertices
in N(BD) are in S. Then, |N [BD]∩S| = 31. It follows that no vertex inside
the central polygon belongs to S. Let T be the set of vertices inside the
triangle. Then, we have |N [T ]∩S| = 7 and |N(T )−S| = 8, a contradiction.

Case 5: All corner-like sets of S are simple. We consider the security
condition for W = X0 ∪Xr−1 ∪ Y0 ∪ Yt−1:

2|X0|+ 2|Xr−1|+ 2|Y0|+ 2|Yt−1| − 4 ≥ |N [W ] ∩ S|

≥ |N [W ]− S|

≥ |X0|+ 2 + |Xr−1|+ 2 + |Y0|+ 2+

+ |Yt−1|+ 2 + 4,

which leads to
|X0|+ |Xr−1|+ |Y0|+ |Yt−1| ≥ 16. (1)
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(a) (b)

Figure 10: Possible borders of S with exactly two simple corner-like sets which are lying
over either X0 or Xr−1.

However, since r ≥ 6, there exists a set Xr−3. We observe that N [X2] ∩
X0 = ∅ and N [Xr−3] ∩Xr−1 = ∅ according to the construction of the graph.
Moreover, the structure of S implies that |N [Y0]∩X2| = 2, |N [Y0]∩Xr−3| = 2,
|N [Yt−1] ∩X2| = 2 and |N [Yt−1] ∩Xr−3| = 2. Hence,

|N [W ] ∩ S| ≤ |X0|+ |X1|+ . . .+ |Xr−1| − (|X0| − 2)− (|Xr−1| − 2)

and
|N [W ]− S| ≥ |X0|+ 4 + |Xr−1|+ 4 + 2(r − 2) + 4.

Since |N [W ] ∩ S| ≥ |N [W ]− S|,

|X0|+ |X1|+ . . .+ |Xr−1| ≥ 2(|X0|+ |Xr−1|) + 2r + 4. (2)

Analogously, since t ≥ 6, there exists a set Yt−3. From the construction
of the graph it follows that N [Y2] ∩ Y0 = ∅ and N [Yt−3] ∩ Yt−1 = ∅. Also,
|N [X0]∩Y2| = 2, |N [X0]∩Yt−3| = 2, |N [Xr−1]∩Y2| = 2 and |N [Xr−1]∩Yt−3| =
2. Thus,

|Y0|+ |Y1|+ . . .+ |Yt−1| ≥ 2(|Y0|+ |Yt−1|) + 2t+ 4. (3)

Since |S| = |X0|+ . . .+ |Xr−1| = |Y0|+ . . .+ |Yt−1|, we get from (1), (2) and
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Figure 11: Possible border of S with exactly two simple corner-like sets which are lying
over either Y0 or Yt−1.

(3)

2|S| ≥ 2(|X0|+ |Xr−1|) + 2r + 4 + 2(|Y0|+ |Yt−1|) + 2t+ 4 (from (2) and (3))

= 2(|X0|+ |Xr−1|+ |Y0|+ |Yt−1|) + 2r + 2t+ 8

≥ 32 + 2r + 2t+ 8 (from (1))

= 2r + 2t+ 40,

which leads to |S| ≥ r + t + 20. Moreover, since r, t ≥ 6, it follows that
|S| ≥ 32, which is a contradiction with the first assumption.

Therefore, if S is a secure set of minimum cardinality in Cm ⊠ Cn, then
|S| ≥ min{2m, 2n, 32} and the proof is completed.

Proposition 15. For any integers m,n ≥ 2,

s(Pm ⊠ Cn) ≥ min{2m,n, 16}.

Proof. The proof is relatively analogous to the proof of Proposition 14. Sup-
pose that s(Pm ⊠ Cn) < min{2m,n, 16} and let S be a s(Pm ⊠ Cn)-set. We
consider the sets Xα, α ∈ {0, . . . ,m− 1} and Yβ, β ∈ {0, . . . , n− 1}.

First, if X0 = ∅ and Xm−1 = ∅, then S has the same structure like in
the case of a torus (Proposition 14) and |S| ≥ min{2m, 2n, 32}, which is a
contradiction. Thus, X0 6= ∅ or Xm−1 6= ∅. We assume for instance that
X0 6= ∅. Since s(Pm ⊠ Cn) < min{2m,n, 16}, for every α ∈ {0, . . . ,m − 1},
|Xα| < n.

19



(a) (b)

Figure 12: Possible borders of S with exactly two simple corner-like sets such that only
one of them is lying over X0.

Suppose there exists a set Yk such that |Yk| = m. If S = Yk, then
|N [S]∩S| = 1/2|N [S]−S|, a contradiction. So, Yk ( S. Since S is connected,
Yk−1 6= ∅ or Yk+1 6= ∅. We assume that Yk−1 6= ∅. Moreover |Yk−1| < m
because s(Pm ⊠ Cn) < 2m. Thus, |N [S] ∩ S| < 2m ≤ |N [S]− S|, which is a
contradiction. Hence, |S ∩ Yk−1| ≥ m and |S| ≥ 2m.

As a consequence, for every α ∈ {0, . . . ,m − 1} and β ∈ {0, . . . , n − 1}
we have |Xα| < n and |Yβ| < m. Hence, like in the proof of Proposition 14,
S is a subset of some rectangle R(0, r − 1, g, h). We assume without loss of
generality that g = 0 and h = t−1. By Lemma 13, 3 ≤ r ≤ 4 and 6 ≤ t ≤ 8.
If r = 4 or t = 8, then by Lemma 8, |N [S]− S| ≥ 16. Thus, |S| ≥ 16, which
is a contradiction. Therefore, r = 3 and 6 ≤ t ≤ 7.

From now on the proof is very similar to the one of Proposition 14, so we
explain only its crucial steps. We consider only the corner-like sets C(r−1, l′),
l′ ∈ {0, t− 1}. For these sets one can formulate claims (i)-(iv) similarly as in
the previous proof. Moreover, we know that r = 3 and 6 ≤ t ≤ 7.

Case 1: No corner-like set of S is simple. Hence, S can have one of
the borders illustrated in Figure 14. However, in both cases the security
condition is not satisfied for BD.

Case 2: Only one corner-like set of S is simple. All possible borders of S
are drawn in Figure 15. From Figure 15 (a), it follows that |N [BD]∩S| ≤ 13
and |N [BD] − S| ≥ 14, a contradiction. Moreover, in Figure 15 (b) we
have |N [BD] ∩ S| = |N [BD] − S| = 15 only if all gray vertices that have a
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(a) (b)

Figure 13: Possible borders of S with exactly three simple corner-like sets.

neighbour in BD belong to S. Otherwise, S is not secure. Since |S| ≤ 15,
the two vertices in the rectangle, which are not adjacent to any vertex in
BD, do not belong to S. Therefore, for the set T of vertices inside the drawn
triangle we have |N [T ] ∩ S| = 7 and |N [T ]− S| = 8. Hence, the set S is not
secure, a contradiction.

Case 3: Both corner-like sets of S are simple. We consider the security
condition for W = Xr−1 ∪ Y0 ∪ Yt−1. We have

|N [W ] ∩ S| ≤ 2|Xr−1|+ 2|Y0|+ 2|Yt−1|

and
|N [W ]− S| ≥ |Xr−1|+ 2 + |Y0|+ 1 + |Yt−1|+ 1 + 2.

From the security of S and the inequalities above it follows that

|Xr−1|+ |Y0|+ |Yt−1| ≥ 8. (4)

Since r ≥ 3, there exists Xr−3. We observe that N [Xr−3] ∩ Xr−1 = ∅ and
|N [Y0]∩Xr−3| = 2, which follows from the construction of the graph. More-
over, by the structure of S, |N [Yt−1] ∩Xr−3| = 2. Hence,

|N [W ] ∩ S| ≤ |X0|+ |X1|+ . . .+ |Xr−1| − (|Xr−1| − 2)

and
|N [W ]− S| ≥ |Xr−1|+ 4 + 2(r − 1) + 2.
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(a) (b)

Figure 14: Possible borders of S with no simple corner-like sets.

Because |N [W ] ∩ S| ≥ |N [W ]− S|,

|X0|+ |X1|+ . . .+ |Xr−1| ≥ 2|Xr−1|+ 2r + 2. (5)

Analogously, if t ≥ 6, we obtain

|Y0|+ |Y1|+ . . .+ |Yt−1| ≥ 2(|Y0|+ |Yt−1|) + t+ 2. (6)

Since |S| = |X0|+ . . .+ |Xr−1| = |Y0|+ . . .+ |Yt−1|, we get from (4), (5) and
(6)

2|S| ≥ 2|Xr−1|+ 2r + 2 + 2(|Y0|+ |Yt−1|) + t+ 2 (from (5) and (6))

= 2(|Xr−1|+ |Y0|+ |Yt−1|) + 2r + t+ 4

≥ 16 + 2r + t+ 4 (from (4))

= 2r + t+ 20,

which leads to |S| ≥ r+ t/2+10. Since r ≥ 3 and t ≥ 6, we get |S| ≥ 16, and
this is a contradiction with our first assumption. This observation finishes
the proof.

Proposition 16. For any integers m,n ≥ 2,

s(Pm ⊠ Pn) ≥ min{m,n, 8}.
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(a) (b)

Figure 15: Possible borders of S with exactly one simple corner-like set.

Proof. Suppose to the contrary that s(Pm ⊠ Pn) < min{m,n, 8}. Let S be a
s(Pm ⊠Pn)-set. Consider the sets Xα and Yβ, where α ∈ {0, . . . ,m− 1} and
β ∈ {0, . . . , n−1}. If X0 = ∅, Xm−1 = ∅, Y0 = ∅ and Yn−1 = ∅, then similarly
as in the proof of Proposition 14 we can show that |S| ≥ min{2m, 2n, 32},
which is a contradiction. Moreover, if three of the sets X0, Xm−1, Y0 and Yn−1

are empty, then we can use the same arguments as in the proof of Proposition
15 to prove that |S| ≥ min{2m,n, 16}, a contradiction. Thus, at least two
of the sets X0, Xm−1, Y0 and Yn−1 are not empty. Since S is connected, if
at least three of the sets X0, Xm−1, Y0 and Yn−1 are not empty, then we
obtain that |S| ≥ m or |S| ≥ n. Similarly, if the sets (X0 and Xm−1) are not
empty or the sets (Y0 and Yn−1) are not empty, then |S| ≥ m or |S| ≥ n,
respectively.

Now suppose that X0 and Yn−1 are not empty. Consider the rectangle
R(0, f, g, n−1). If f+1 = r = 2, then, since n−1−g+1 = n−g = t < n−1,
there exist two vertices x, y ∈ (X0 ∪X1) ∩ (Yn−1 ∪ Yn−2) (these vertices are
marked with squares in Figure 16 (a) and (b)), such that either (|N [{x, y}]∩
S| ≤ 4 and |N [{x, y}] − S| ≥ 5) (See Figure 16 (a)) or (|N [{x, y}] ∩ S| ≤ 5
and |N [{x, y}] − S| ≥ 6) (See Figure 16 (b)), which is a contradiction. It
follows that r ≥ 3. Analogously we deduce that t ≥ 3. Thus, we have that
the rectangle R(0, f, g, n−1) has at least nine vertices. One can check that no
subset of less than eight vertices of R(0, f, g, n− 1) is a secure set. Therefore
|S| ≥ 8, and this contradiction finishes the proof.
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(a) (b)

X X0 1

Yn-1

Yg
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Yg
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Figure 16: Possible cases of corner-like sets of Pm ⊠ Pn.

As a conclusion of the sections above, the equalities of Theorem 2 for the
security number of the strong product graphs Pm⊠Pn, Pm⊠Cn and Cm⊠Cn

are proved.
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