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Abstract

For a non-decreasing sequence S = (s1, s2, . . .) of positive integers, a partition
of the vertex set of a graph G into subsets X1, . . . , X`, such that vertices in Xi are
pairwise at distance greater than si for every i ∈ {1, . . . , `}, is called an S-packing
`-coloring of G. The minimum ` for which G admits an S-packing `-coloring is
called the S-packing chromatic number of G, denoted by χS(G). In this paper,
we consider S-packing colorings of distance graphs G(Z, {k, t}), where k and t are
positive integers, which are the graphs whose vertex set is Z, and two vertices
x, y ∈ Z are adjacent whenever |x − y| ∈ {k, t}. We complement partial results
from two earlier papers, thus determining all values of χS(G(Z, {k, t})) when S
is any sequence with si ≤ 2 for all i. In particular, if S = (1, 1, 2, 2, . . .), then
the S-packing chromatic number is 2 if k + t is even, and 4 otherwise, while if
S = (1, 2, 2, . . .), then the S-packing chromatic number is 5, unless {k, t} = {2, 3}
when it is 6; when S = (2, 2, 2, . . .), the corresponding formula is more complex.

Key words: S-packing coloring, S-packing chromatic number, distance graph, dis-
tance coloring.

AMS Subj. Class: 05C15, 05C12

1 Introduction

Given a graph G and a non-decreasing sequence S = (s1, s2, . . .) of positive integers,
the mapping f : V (G) → [`] = {1, . . . , `} is an S-packing `-coloring of G if for any
distinct vertices u, v ∈ V (G) with f(u) = f(v) = i, i ∈ {1, . . . , `}, the distance between
u and v in G is greater than si. The smallest ` such that G has an S-packing `-
coloring is the S-packing chromatic number of G, denoted by χS(G). This concept
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was introduced by Goddard, Hedetniemi, Hedetniemi, Harris, and Rall [13], and was
studied in a number of papers; see the recent survey [3] and the references therein.
The main focus of the seminal paper and a number of subsequent papers was on the
specific sequence S = (n)n≥1 in which positive integers appear in the natural order,
where the resulting graph invariant is simply called the packing chromatic number [4].
Goddard and Xu [14] started consideration of various non-decreasing sequences S, and
a number of authors followed them. Arguably the most interesting sequences are those
that involve only integers 1 and 2, since they are in a sense between standard coloring,
where S is the constant sequence of 1s, and 2-distance coloring, where S is the constant
sequence of 2s (note that a 2-distance coloring is equivalent to a coloring of the square
of a graph and it has been intensively studied in the last decades [17]). In particular,
S-packing colorings of subcubic graphs were investigated with respect to such sequences
S [5,12,18]. Roughly a decade ago, Ekstein et al. [10] and Togni [19] initiated the study
of S-packing colorings in integer distance graphs, which we present next. Their study
was motivated by a series of papers on proper vertex coloring of distance graphs, see
e.g. [6–9] and references therein.

Given a set D = {d1, . . . , dh}, h ≥ 1, of positive integers, the (integer) distance
graph, G(Z, D), is the infinite graph with Z as the vertex set, while vertices x and y are
adjacent if |x− y| ∈ D. That is, two vertices/integers are adjacent in the graph if their
distance in Z is one of the integers in {d1, . . . , dh}. We will simplify the notation, and
instead of G(Z, D) write G(D), and for distance sets with two integers we will write
D = {k, t}, and always assume that k < t; thus the corresponding distance graph will
be written as G(k, t). The packing chromatic numbers of distance graphs G(k, t) were
investigated in [11]. In addition, the S-packing colorings of distance graphs G(k, t)
where k ∈ {1, 2} and t is arbitrary were studied in [2, 16]. Concerning the sequences
S which involve only integers that are not greater than 2, exact values for χS(G(1, t)),
where t ≥ 2, were determined in [1, 16], while the values χS(G(2, t)), where t ≥ 3,
were established in [2]. Hence, for this type of sequences S, the S-packing chromatic
numbers of G(k, t) were left open when k ≥ 3, and the main goal of this paper is to
establish these remaining values.

In the next section, we establish the notation and give some preliminary observa-
tions. In particular, we present two main tools that are used in the proofs. First, we
present a representation of the graph G(k, t) in the so-called shifted grid. Second, we
introduce color patterns and shift sequences, which enable us a relatively brief presen-
tation of colorings. In Section 3, we follow with proving the main results, which are the
values of χS(G(k, t)), for all 3 ≤ k < t, and for all possible sequences S involving only
integers 1 and 2. In Section 4, we give an overview of results on S-packing colorings
of the graph G(k, t) by combining the results from [2, 16] with new results from this
paper.
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2 Notation and preliminaries

When presenting sequences S, we will often use ip, where i and p are positive integers,
as a shortened notation of the (sub)sequence (i, . . . , i), where i appears p times. For
instance, (12, 25) stands for the (sub)sequence (1, 1, 2, 2, 2, 2, 2). We may also write
i∞ which coincides with the infinite (sub)sequence (i, i, i, ...). In the case of distinct
integers in the sequence S, the integer with the power to infinity is the largest among
the integers in S. For instance, (12, 2∞) presents the sequence with two integers 1 and
all other integers 2.

Note that G(k, t) is connected if and only if gcd(k, t) = 1. Thus, when determining
the S-packing chromatic numbers, we restrict to graphs G(k, t) such that k and t
are coprime integers. Note that if gcd(k, t) = g, then G(k, t) consists of connected
components all of which are graphs G(kg ,

t
g ), implying that χS(G(k, t)) = χS(G(kg ,

t
g )).

During our study we make use of the following presentation. Notably, a connected
distance graph G(k, t) can be represented by the square lattice {0, 1, . . . , t} × Z with
vertices given by points, which are ordered pairs (i, j), i ∈ {0, 1, . . . , t}, j ∈ Z, such that
vertex/point (i, j) of the grid is a representative of the integer j · t+ i · k from G(k, t).
These representatives are unique with the exception of the points whose first coordinate
equals to 0 or t, since a point (0, j) on the grid represents the same integer of G(k, t) as
the point (t, j′), where j′ = j− k. See Fig. 1, where ordered pairs in red present points
on the grid, while integers in black present the corresponding integers from Z.

Furthermore, let column i denote the set of vertices Bi = {(i, j) : j ∈ Z}, where
0 ≤ i ≤ t. As mentioned earlier, integers from V (G(k, t)) of the form jt, j ∈ Z, are
represented twice on the grid, notably by a vertex in the column 0 and a vertex in
column t. That is, jt is represented by vertex (0, j) as well as vertex (t, j − k). For
instance, points (0, 0) and (t,−k) represent 0 ∈ V (G(k, t)).

2.1 Color patterns

In this paper, we will often present an S-packing coloring c by using periodic patterns
applied on columns Bi, where i ∈ {0, . . . , t}. A periodic pattern of length d ≥ 2 is a
sequence of colors [c1, . . . , cd] (denoted by square brackets), where the colors cn, n ∈ [d],
are not necessarily pairwise distinct. These colors are given to consecutive vertices
within one column and the pattern is applied downwards. That is, if the coloring c is
using a pattern P = [c1, . . . , cd] in the column Bx such that c(x, y) = c1 for some y, then
c(x, y−n) = cn+1 for each n ∈ [d−1]. This pattern is then periodically copied upwards
and downwards to cover all the vertices of Bx. Thus, c(x, y+1) = cd, c(x, y+2) = cd−1
and so on.

In order for c to be an S-packing coloring of G(k, t), patterns must be often shifted
in consecutive columns. We define the notion of shift sequence (pi)

t−1
i=0 where pi ∈ N0.

To describe it, we also need the concept of reference point (i, j) in Bi, which is a unique
point in each column. Without loss of generality we may declare the reference point in
column B0 to be (0, 0). The integer pi ≥ 0 represents the value by which the reference
point in Bi+1 shifts downwards with respect to the reference point in Bi. That is, if

3



Figure 1: Representation of the distance graph G(k, t) in the square grid.

the reference point in Bi is (i, j), for some j ∈ Z, then (i + 1, j − pi) is the reference
point in column Bi+1. (Note that pi = 0 means that there is no shift.) To make the
elements of the shift sequence correspond to the application of periodic patterns to the
columns Bi, we will always assume that the reference point of each column Bi always
receives the first color of the corresponding pattern applied to this column. That is,
if a coloring c is using the pattern P = [c1, . . . , cd] in a column Bx with the reference
point (x, j) then c(x, j) = c1. Thus, the pattern P used together with the reference
point (x, j) completely determines the coloring of points in Bx.

When shifting the patterns, there are two cases to consider: either columns Bi and
Bi+1 are using the same pattern or they are using different patterns. First, suppose
that a coloring c uses the same pattern [c1, . . . , cd] in columns Bi and Bi+1. In this case
the integer pi defines the value by which the color c1 in Bi+1 is shifted with respect to
the color c1 in Bi. In other words, if c(i, j) = c1 for some j ∈ Z, then c(i+1, j−pi) = c1.
This implies that pi 6= 0 (the pattern must be shifted) since the adjacent vertices must
not receive the same color. Next, let c assign a pattern [a1, . . . , ad1 ] to the column Bi

and a pattern [b1, . . . , bd2 ] to the column Bi+1. In this case, the integer pi defines the
value by which the color b1 given to the reference point of Bi+1 is shifted with respect
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to the color a1 given to the reference point of Bi. This means that if c(i, j) = a1, where
(i, j) is the reference point in Bi, then c(i+ 1, j − pi) = b1 (note that (i+ 1, j − pi) is
the reference point in Bi+1).

Since the points (0, j) represent the same vertices as points (t, j − k), the relation
c(0, j) = c(t, j − k) must hold for each j ∈ Z. Thus, if c is an S-packing coloring of
G(k, t), then columns B0 and Bt must use the same periodic pattern and

∑t−1
i=0 pi ≡ k

(mod d), where d is the length of the pattern used on B0. Note that it is sufficient to
consider only shifts pi < dmax where dmax denotes the length of the longest pattern.

In this paper, all colorings given by periodic patterns and shift sequences will either
use one or two different patterns. If the second option occurs, it is necessary to specify
which column receives which pattern. Let c be an S-packing coloring of G(k, t) given
by the shift sequence (pi)

t−1
i=0 and two periodic patterns P1 = [a1, . . . , ad1 ] and P2 =

[b1, . . . , bd2 ] such that pattern P2 is used for example on columns B1 and B3, and the
rest of the columns obtain pattern P1. We will abbreviate such description as:

[a1, . . . , ad1 ]p0 [b1, . . . , bd2 ]p1 [a1, . . . , ad1 ]p2 [b1, . . . , bd2 ]p3 [a1, . . . , ad1 ]p4→t−1 [a1, . . . , ad1 ],

provided that the shift sequence has p4 = . . . = pt−1.
For a better understanding of the concepts, we next provide a more specific example.

Let c be an (16)-coloring of G(k, t) given by P1 = [1, 2, 3], P2 = [4, 5, 6] and the shift
sequence (0, 1, 1, 0, 1t−4) where the notation 1t−4 stands for the (sub)sequence (1, . . . , 1),
where 1 appears (t− 4) times. Again, the pattern P2 is applied in columns B1 and B3,
while the rest of the columns use the pattern P1. Thus, the (16)-coloring c is given by:

[1, 2, 3]p0=0[4, 5, 6]p1=1[1, 2, 3]p2=1[4, 5, 6]p3=0[1, 2, 3]p4→t−1=1[1, 2, 3].

Figure 2 demonstrates how the reference point (marked in red) is shifted with respect
to the given shift sequence and how the patterns are applied.

To verify that c is an S-packing coloring of G(k, t) we will use equivalent conditions,
which can be derived from the above notation. Notably, c is an S-packing coloring of
G(k, t) if and only if every two vertices with the same color are at sufficient distance,
columns B0 and Bt obtain the same pattern and

∑t−1
i=0 pi ≡ k (mod d), where d is

the length of the pattern in B0. The first among these three conditions requires the
following verification. Note that for every two points (x, y) and (u, v) their distance in
G(k, t) equals min{|x−u|+|y−v|, x+(t−u)+|(y−k)−v|}. Hence, if c(x, y) = i = c(u, v),
then

min{|x− u|+ |y − v|, x+ (t− u) + |(y − k)− v|} > si.

In particular, if si = 1, then it is sufficient to verify that two vertices with color i are
not adjacent in the grid. Similarly, if si = 2, then two vertices with color i must not
be adjacent in the grid, must not have a common neighbor in the grid, and c(1, j) = i
implies c(t− 1, j − k) 6= i and vice versa.

3 S-packing colorings of graphs G(k, t)

In this section, we present values of χS(G(k, t)), where 3 ≤ k < t are positive integers,
for all possible infinite sequences S whose elements are in {1, 2}.
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Figure 2: (16)-coloring of G(k, t) given by patterns [1, 2, 3] and [4, 5, 6], and the shift
sequence (0, 1, 1, 0, 1t−4).

For completeness of our study of S-packing colorings of graphs G(k, t), we first
recall the known results about the standard chromatic number. That is, we consider
the sequence S = (1∞). Concerning the chromatic number of distance graphs G(D),
Walther proved the general bound χ(G(D)) ≤ |D|+ 1; see [1,20]. Since |D| = 2 in our
case, we infer that χ(G(k, t)) ∈ {2, 3} depending on whether G(k, t) is bipartite or not.
Notably, for 3 ≤ k < t, we derive

χ(G(k, t)) =

{
2; k + t even,
3; k + t odd.

Therefore, whenever a sequence S contains three 1s, the above result may be applied.
In the next subsection, we deal with the three remaining subcases of sequences S
depending on the number of 1s.
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3.1 S = (1, 1, 2, 2, 2 . . . )

Theorem 3.1 If G(k, t) is the distance graph, where k, t are coprime positive integers
such that 3 ≤ k < t, and S = (1, 1, 2∞), then

χS(G(k, t)) =

{
2; k + t even,
4; k + t odd.

Proof. If k + t is even, G(k, t) is bipartite, hence χS(G(k, t)) = 2. In the rest of the
proof, we assume k + t is odd, which implies χS(G(k, t)) ≥ 3.

Suppose that χS(G(k, t)) = 3, and let c : V (G(k, t)) → [3] be a (1, 1, 2)-coloring
of G(k, t). Suppose that there is a vertex (x, y) ∈ V (G(k, t)) in column Bx, where
x /∈ {0, t}, with c(x, y) = 3. For this choice of x, the neighborhood of (x, y) is the set
N((x, y)) = {(x, y + 1), (x− 1, y), (x+ 1, y), (x, y − 1)}.

Note that all vertices in N((x, y)) have to receive either color 1 or 2, since every
two vertices with color 3 must be at the distance at least 3. Let c(x, y + 1) = a, where
a ∈ {1, 2}, and let {a, b} = {1, 2}. Hence, we derive the following chain of implications:

c(x, y + 1) = a⇒ c(x+ 1, y + 1) = b⇒ c(x+ 1, y) = a⇒ c(x+ 1, y − 1) = b
⇒ c(x, y − 1) = a⇒ c(x− 1, y − 1) = b⇒ c(x− 1, y) = a⇒ c(x− 1, y + 1) = b.

We infer that, for every vertex (x, y) with c(x, y) = 3, all neighbors receive the same
color. (If x ∈ {0, t}, we get the same conclusion either by checking the neighborhood
of (x, y) as above, or by noting that columns B0 and Bt represent the same yet shifted
column by which the coloring can be reassigned so that the corresponding point with
color 3 is in one of columns between 1 and t−1.) Hence, the coloring c′ : V (G(k, t))→ [2]
obtained from c by recoloring every vertex (i, j) with c(i, j) = 3 by using the color
in {1, 2} which does not appear in its neighborhood with respect to coloring c is a
(1, 1)-coloring of G(k, t). Thus, G(k, t) is bipartite, which is a contradiction with the
assumption that k + t is odd. We derive that χS(G(k, t)) ≥ 4.

For the proof of the upper bound, we present a (1, 1, 2, 2)-coloring c given by the
shift sequence (pi)

t−1
i=0 = (0, 2, 0, 1t−3) and two periodic patterns [1, 2] and [3, 4, 2, 1]

such that the pattern [3, 4, 2, 1] is used on columns B1 and B2, and rest of the columns
obtain pattern [1, 2]. That is, c is defined by:

[1, 2]p0=0[3, 4, 2, 1]p1=2[3, 4, 2, 1]p2=0[1, 2]p3→t−1=1[1, 2].

Note that c is a (1, 1, 2, 2)-coloring of G(k, t) if and only if three conditions hold: every
two vertices with the same color are at sufficient distance, columns B0 and Bt must
obtain the same pattern and

∑t−1
i=0 pi ≡ k (mod 2). The matrix below demonstrates the

presented coloring c of G(k, t) in the first five columns (note that bold integers indicate
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the location of reference points):

...
...

...
...

...
1 3 2 1 2
2 4 1 2 1
1 2 3 1 2
2 1 4 2 1
1 3 2 1 2
2 4 1 2 1
1 2 3 1 2
2 1 4 2 1
...

...
...

...
...

It is easy to verify that all vertices with the same color are at sufficient distance and
due to t ≥ 4, columns B0 and Bt always use the same pattern [1, 2]. Thus, the first
and the second condition hold. From the following sum we obtain:

t−1∑
i=0

pi = 2 + (t− 3) = t− 1 ≡
{

0 (mod 2); t odd,
1 (mod 2); t even.

Since k and t are of opposite parity, the condition
∑t−1

i=0 pi ≡ k (mod 2) also holds.
Therefore, χS(G(k, t)) = 4 for k + t odd. �

3.2 S = (1, 2, 2, 2, . . . )

Theorem 3.2 If G(k, t) is the distance graph, where k, t are coprime positive integers
such that 3 ≤ k < t, and S = (1, 2∞), then χS(G(k, t)) = 5.

Proof. Due to the representation of G(k, t) as the (shifted) square grid {0, 1, . . . , t}×Z,
when determining the lower bound of χS(G(k, t)), we can use results known for the
infinite grid Z2. Goddard and Xu [15] proved that χS(Z2) = 5, hence χS(G(k, t)) ≥
5. (Alternatively, the same conclusion is derived when observing a vertex in G(k, t)
receiving color 1, and noting that its neighbors must receive pairwise distinct colors
from {2, . . . , 5}.)

Next, we determine (1, 24)-colorings of G(k, t) with respect to the values k and t.

1. Let t ≥ 12. In this case, we present six different (1, 24)-colorings cn, where
n ∈ {0, 1, 2, 3, 4, 5}, which are then applied with respect to k and t. The first
(1, 24)-coloring c0 is given by just one periodic pattern A = [1, 2, 3, 1, 4, 5] and
the shift sequence q0 = (2t), while the rest of cn given by the shift sequences
qn, n ∈ {1, 2, 3, 4, 5}, also use another pattern B = [4, 1, 5, 2, 1, 3] in addition to
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pattern A. More precisely,

q1 = (0, 5, 2t−2),
q2 = ((0, 5)2, 2t−4),
q3 = ((0, 5)3, 2t−6),
q4 = ((0, 5)4, 2t−8),
q5 = ((0, 5)5, 2t−10),

and

c1 : Ap0=0Bp1=5Ap2→t−1=2A,
c2 : Ap0=0Bp1=5Ap2=0Bp3=5Ap4→t−1=2A,
c3 : Ap0=0Bp1=5Ap2=0Bp3=5Ap4=0Bp5=5Ap6→t−1=2A,
c4 : Ap0=0Bp1=5Ap2=0Bp3=5Ap4=0Bp5=5Ap6=0Bp7=5Ap8→t−1=2A,
c5 : Ap0=0Bp1=5Ap2=0Bp3=5Ap4=0Bp5=5Ap6=0Bp7=5Ap8=0Bp9=5Ap10→t−1=2A.

Recall that cn is a (1, 24)-coloring of G(k, t) if and only if three conditions hold:
every two vertices with the same color are at sufficient distance, columns B0 and
Bt obtain the same pattern, and

∑t−1
i=0 pi ≡ k (mod 6). From the definition of

colorings cn we immediately see that both columns B0 and Bt obtain the pattern
A, hence the second condition holds.

To verify the first condition, we consider the possible pattern layouts in three
consecutive columns, Bi, Bi+1, Bi+2, using the patterns A and B. Since B0 and
Bt represent the same, yet shifted column, the case when i = t−1 is interpreted as
Bt−1, Bt, B1. We have five possibilities: AAA, BAA, ABA, AAB and BAB. Note
that when AAA is used, in all presented sequences the two shifts are pi = 2 = pi+1,
and it is easy to verify that the points with the same colors are at sufficient
distances. This correspondence will be presented as:

AAA←→ 2, 2.

Similarly, we have the following correspondences between pattern layouts and
shifts, which can be derived from the definitions of sequences qn:

BAA←→ 5, 2,
ABA←→ 0, 5,
AAB ←→ 2, 0,
BAB ←→ 5, 0.

(Note that AAB appears when considering the columns Bt−1, Bt and B1.) The
corresponding matrices for each of the five cases are placed below.
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A A A
...

...
...

1 4 3
2 5 1
3 1 4
1 2 5
4 3 1
5 1 2
1 4 3
2 5 1
...

...
...

A A B
...

...
...

1 4 1
2 5 3
3 1 4
1 2 1
4 3 5
5 1 2
1 4 1
2 5 3
...

...
...

A B A
...

...
...

1 4 2
2 1 3
3 5 1
1 2 4
4 1 5
5 3 1
1 4 2
2 1 3
...

...
...

B A A
...

...
...

4 2 5
1 3 1
5 1 2
2 4 3
1 5 1
3 1 4
4 2 5
1 3 1
...

...
...

B A B
...

...
...

4 2 1
1 3 5
5 1 2
2 4 1
1 5 3
3 1 4
4 2 1
1 3 5
...

...
...

Again, in all cases it is easy to verify that the points with the same colors are at
sufficient distances. In this way, the first condition is also verified.

What remains is to use the third condition
∑t−1

i=0 pi ≡ k (mod 6) to determine
which sequence qn is suitable for G(k, t) with respect to values k, t. Let t ≡
` (mod 6) where ` ∈ {0, 1, 2, 3, 4, 5}. For each qn we calculate the value of∑t−1

i=0 pi:

qn :
t−1∑
i=0

pi = 5n+ 2(t− 2n) = 2t+ n.

Due to appropriate numbering of sequences we obtain
∑t−1

i=0 pi ≡ (2`+n) (mod 6)
for each qn. In order to determine which cn gives us the (1, 24)-coloring of G(k, t)
for fixed values k, t, let k ≡ m (mod 6) where m ∈ {0, 1, 2, 3, 4, 5}. Using the
condition

∑t−1
i=0 pi ≡ k (mod 6) we derive:

(2`+ n) (mod 6) = m =⇒ n = (m− 2`) (mod 6).

Thus, if k ≡ m (mod 6) and t ≡ ` (mod 6) then the (1, 24)-coloring of G(k, t) is
given by cn using the sequence qn such that n = (m− 2`) (mod 6).

2. Let t = 11, hence k ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For G(3, 11) and G(8, 11) we present
a (1, 24)-coloring given by the periodic pattern [1, 2, 3, 4, 5] and the shift sequence
(pi)

10
i=0 = (311). The matrix below demonstrates the presented (1, 24)-coloring of
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these graphs:
...

...
...

...
...

...
...

...
...

...
...

...
1 3 5 2 4 1 3 5 2 4 1 3
2 4 1 3 5 2 4 1 3 5 2 4
3 5 2 4 1 3 5 2 4 1 3 5
4 1 3 5 2 4 1 3 5 2 4 1
5 2 4 1 3 5 2 4 1 3 5 2
1 3 5 2 4 1 3 5 2 4 1 3
2 4 1 3 5 2 4 1 3 5 2 4
3 5 2 4 1 3 5 2 4 1 3 5
4 1 3 5 2 4 1 3 5 2 4 1
...

...
...

...
...

...
...

...
...

...
...

...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑10
i=0 pi ≡ 3 (mod 5) holds for both graphs.

For G(4, 11), G(5, 11), G(6, 11), G(7, 11), G(9, 11) and G(10, 11) we use (1, 24)-
colorings c0, c1, c2, c3, c5 and c0 from case 1, respectively.

3. Let t = 10, hence k ∈ {3, 7, 9}. For both G(3, 10) and G(9, 10) we use (1, 24)-
coloring c1 from case 1.

For G(7, 10) we present a (1, 24)-coloring given by two periodic patterns C =
[1, 2, 1, 3, 1, 4, 1, 5] and D = [4, 3, 5, 4, 2, 5, 3, 2], and the shift sequence (pi)

9
i=0 =

((0, 1)3, 34) such that:

Cp0=0Dp1=1Cp2=0Dp3=1Cp4=0Dp5=1Cp6→9=3C.

The matrix below demonstrates the presented (1, 24)-coloring of this graph:

...
...

...
...

...
...

...
...

...
...

...
1 4 5 2 1 3 4 1 5 1 2
2 3 1 4 5 2 1 3 1 4 1
1 5 2 3 1 4 5 1 2 1 3
3 4 1 5 2 3 1 4 1 5 1
1 2 3 4 1 5 2 1 3 1 4
4 5 1 2 3 4 1 5 1 2 1
1 3 4 5 1 2 3 1 4 1 5
5 2 1 3 4 5 1 2 1 3 1
...

...
...

...
...

...
...

...
...

...
...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑9
i=0 pi ≡ 7 (mod 8) holds.

4. Let t = 9, hence k ∈ {4, 5, 7, 8}. For G(4, 9) we present a (1, 24)-coloring given
by two periodic patterns C = [1, 2, 1, 3, 1, 4, 1, 5] and D = [4, 3, 5, 4, 2, 5, 3, 2], and

11



the shift sequence (pi)
8
i=0 = ((0, 1)3, 33) such that:

Cp0=0Dp1=1Cp2=0Dp3=1Cp4=0Dp5=1Cp6→8=3C.

The matrix below demonstrates the presented (1, 24)-coloring of this graph:

...
...

...
...

...
...

...
...

...
...

1 4 5 2 1 3 4 1 5 1
2 3 1 4 5 2 1 3 1 4
1 5 2 3 1 4 5 1 2 1
3 4 1 5 2 3 1 4 1 5
1 2 3 4 1 5 2 1 3 1
4 5 1 2 3 4 1 5 1 2
1 3 4 5 1 2 3 1 4 1
5 2 1 3 4 5 1 2 1 3
...

...
...

...
...

...
...

...
...

...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑8
i=0 pi ≡ 4 (mod 8) holds.

For G(5, 9) we present a (1, 24)-coloring given by the periodic pattern C =
[1, 2, 1, 3, 1, 4, 1, 5] and the shift sequence (pi)

8
i=0 = (59). Again, the matrix below

demonstrates the presented (1, 24)-coloring of this graph:

...
...

...
...

...
...

...
...

...
...

1 3 1 2 1 5 1 4 1 3
2 1 5 1 4 1 3 1 2 1
1 4 1 3 1 2 1 5 1 4
3 1 2 1 5 1 4 1 3 1
1 5 1 4 1 3 1 2 1 5
4 1 3 1 2 1 5 1 4 1
1 2 1 5 1 4 1 3 1 2
5 1 4 1 3 1 2 1 5 1
...

...
...

...
...

...
...

...
...

...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑8
i=0 pi ≡ 5 (mod 8) holds.

For G(7, 9) and G(8, 9) we use (1, 24)-colorings c1 and c2 from case 1, respectively.

5. Let t = 8, hence k ∈ {3, 5, 7}. For G(3, 8) we present a (1, 24)-coloring given by
two periodic patterns C = [1, 2, 1, 3, 1, 4, 1, 5] and D = [4, 3, 5, 4, 2, 5, 3, 2], and the
shift sequence (pi)

7
i=0 = (0, 1, 36) such that:

Cp0=0Dp1=1Cp2→7=3C.

12



The matrix below demonstrates the presented (1, 24)-coloring of this graph:

...
...

...
...

...
...

...
...

...
1 4 5 1 2 1 3 1 4
2 3 1 4 1 5 1 2 1
1 5 2 1 3 1 4 1 5
3 4 1 5 1 2 1 3 1
1 2 3 1 4 1 5 1 2
4 5 1 2 1 3 1 4 1
1 3 4 1 5 1 2 1 3
5 2 1 3 1 4 1 5 1
...

...
...

...
...

...
...

...
...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑7
i=0 pi ≡ 3 (mod 8) holds.

For G(5, 8) and G(7, 8) we use (1, 24)-colorings c1 and c3 from case 1, respectively.

6. Let t = 7, hence k ∈ {3, 4, 5, 6}. For G(3, 7), G(4, 7) and G(5, 7) we use (1, 24)-
colorings c1, c2 and c3 from case 1, respectively.

For G(6, 7) we present a (1, 24)-coloring given by the periodic pattern [1, 2, 3, 4, 5]
and the shift sequence (pi)

6
i=0 = (37). The matrix below demonstrates the pre-

sented (1, 24)-coloring of this graph:

...
...

...
...

...
...

...
...

1 3 5 2 4 1 3 5
2 4 1 3 5 2 4 1
3 5 2 4 1 3 5 2
4 1 3 5 2 4 1 3
5 2 4 1 3 5 2 4
1 3 5 2 4 1 3 5
2 4 1 3 5 2 4 1
3 5 2 4 1 3 5 2
...

...
...

...
...

...
...

...

It is easy to verify that all vertices with the same color are at a sufficient distance
and

∑6
i=0 pi ≡ 1 (mod 5), hence the condition

∑6
i=0 pi ≡ k (mod 5) holds.

7. Let t = 6, hence k = 5. For G(5, 6) we present an (1, 24)-coloring given by two
periodic patterns C = [1, 2, 1, 3, 1, 4, 1, 5] and D = [4, 3, 5, 4, 2, 5, 3, 2], and the
shift sequence (pi)

5
i=0 = (0, 1, 34) such that:

Cp0=0Dp1=1Cp2→5=3C.

13



The matrix below demonstrates the presented (1, 24)-coloring of this graph.

...
...

...
...

...
...

...
1 4 5 1 2 1 3
2 3 1 4 1 5 1
1 5 2 1 3 1 4
3 4 1 5 1 2 1
1 2 3 1 4 1 5
4 5 1 2 1 3 1
1 3 4 1 5 1 2
5 2 1 3 1 4 1
...

...
...

...
...

...
...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑4
i=0 pi ≡ 5 (mod 8) holds.

8. Let t = 5, hence k ∈ {3, 4}. For G(3, 5) we present an (1, 24)-coloring given by
the periodic pattern [(1, 2, 1, 3)2, (1, 4, 1, 5)2] and the shift sequence (pi)

4
i=0 = (75).

The matrix below demonstrates the presented (1, 24)-coloring of this graph.

...
...

...
...

...
...

1 4 1 5 1 4
2 1 3 1 2 1
1 5 1 4 1 5
3 1 2 1 3 1
1 4 1 5 1 2
2 1 3 1 4 1
1 5 1 2 1 3
3 1 4 1 5 1
1 2 1 3 1 2
4 1 5 1 4 1
1 3 1 2 1 3
5 1 4 1 5 1
1 2 1 3 1 4
4 1 5 1 2 1
1 3 1 4 1 5
5 1 2 1 3 1
...

...
...

...
...

...

It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑4
i=0 pi ≡ 3 (mod 16) holds.

For G(4, 5) we use coloring c0 from case 1.

9. Let t = 4, hence k = 3. For G(3, 4) we use coloring c1 from case 1.

14



After verifying all the possible cases for k and t, we conclude that χS(G(k, t)) = 5,
and the proof is complete. �

3.3 S = (2, 2, 2, . . . )

Lemma 3.3 If G(k, t) is the distance graph, where k, t are coprime positive integers
such that 3 ≤ k < t, and S = (2∞), then χS(G(k, t)) ≤ 6.

Proof. We determine (26)-colorings of G(k, t) with respect to the values of k, t.

1. Let t ≥ 6. In this case, we present six different (26)-colorings cn, where n ∈
{0, 1, 2, 3, 4, 5}, which we apply with respect to k and t. Each cn is given by the
periodic pattern [1, 2, 3, 4, 5, 6] and a shift sequence qn = (pi)

t−1
i=0 such that:

q0 = (2t),
q1 = (3, 2t−1),
q2 = (3, 2, 3, 2t−3),
q3 = (3, 2, 3, 2, 3, 2t−5),
q4 = (3, 4, 3, 2t−3),
q5 = (3, 4, 3, 2, 3, 2t−5).

Since the colorings are given by the unique pattern, cn is a (26)-coloring of G(k, t)
if and only if every two vertices with the same color are at the distance at least
3 and

∑t−1
i=0 pi ≡ k (mod 6). To verify the first condition, we observe a coloring

c : V (Z2)→ [6] of the infinite grid Z2 using the pattern [1, 2, 3, 4, 5, 6]. Since c is
(26)-coloring, the following must hold for each i, j ∈ Z:

c(i, j) 6= c(i+ 1, j),
c(i, j) 6= c(i+ 1, j ± 1),
c(i, j) 6= c(i+ 2, j).

Thus, the periodic pattern [1, 2, 3, 4, 5, 6] in column Bi+1 can be shifted by 2, 3
or 4 with respect to the column Bi. In addition, the pattern in column Bi+2 can
be shifted by 1, 2, 3, 4 or 5 with respect to the column Bi. Thus, for the graph
G(k, t) we obtain pi ∈ {2, 3, 4}, and

pi = 2⇒ pi+1 6= 4,
pi = 3⇒ pi+1 6= 3,
pi = 4⇒ pi+1 6= 2,

holds for all i ∈ {0, . . . , t− 2}, and, furthermore,

p0 = 2⇒ pt−1 6= 4,
p0 = 3⇒ pt−1 6= 3,
p0 = 4⇒ pt−1 6= 2,
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because B0 and Bt represents the same yet shifted column.

Next, we use the second condition
∑t−1

i=0 pi ≡ k (mod 6) to determine which
sequence qn is suitable for G(k, t) with respect to values k, t. Let t ≡ ` (mod 6)
where ` ∈ {0, 1, 2, 3, 4, 5}. For each qn we calculate the value of

∑t−1
i=0 pi:

q0 :
∑t−1

i=0 pi = 2t ≡ 2` (mod 6),

q1 :
∑t−1

i=0 pi = 3 + 2(t− 1) = 2t+ 1 ≡ (2`+ 1) (mod 6),

q2 :
∑t−1

i=0 pi = 3 + 2 + 3 + 2(t− 3) = 2t+ 2 ≡ (2`+ 2) (mod 6),

q3 :
∑t−1

i=0 pi = 3 + 2 + 3 + 2 + 3 + 2(t− 5) = 2t+ 3 ≡ (2`+ 3) (mod 6),

q4 :
∑t−1

i=0 pi = 3 + 4 + 3 + 2(t− 3) = 2t+ 4 ≡ (2`+ 4) (mod 6),

q5 :
∑t−1

i=0 pi = 3 + 4 + 3 + 2 + 3 + 2(t− 5) = 2t+ 5 ≡ (2`+ 5) (mod 6).

Thus, for qn we obtain
∑t−1

i=0 pi ≡ (2`+ n) (mod 6). In order to determine which
cn gives us the (26)-coloring of G(k, t) for fixed values k, t, let k ≡ m (mod 6)
where m ∈ {0, 1, 2, 3, 4, 5}. From the condition

∑t−1
i=0 pi ≡ k (mod 6) we obtain:

(2`+ n) (mod 6) = m =⇒ n = (m− 2`) (mod 6),

hence if k ≡ m (mod 6) and t ≡ ` (mod 6) then the (26)-coloring of G(k, t) is
given by cn using the sequence qn such that n = (m− 2`) (mod 6).

2. Let t = 5, hence k ∈ {3, 4}. For G(3, 5) we present a (26)-coloring given by the
periodic pattern [1, 2, 3, 4, 5, 1, 6, 3, 2, 5, 4, 6] and the shift sequence (pi)

4
i=0 = (35).

The matrix below demonstrates the presented (26)-coloring of this graph.

...
...

...
...

...
...

1 5 6 4 1 5
2 4 3 5 2 4
3 6 2 1 3 6
4 1 5 6 4 1
5 2 4 3 5 2
1 3 6 2 1 3
6 4 1 5 6 4
3 5 2 4 3 5
2 1 3 6 2 1
5 6 4 1 5 6
4 3 5 2 4 3
6 2 1 3 6 2
...

...
...

...
...

...
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It is easy to verify that all vertices with the same color are at a sufficient distance
and the condition

∑4
i=0 pi ≡ 3 (mod 12) holds.

For G(4, 5) we use the coloring c0 from case 1.

3. Let t = 4, hence k = 3. For G(3, 4) we use the coloring c1 from case 1.

By considering all cases of k and t, we obtain χS(G(k, t)) ≤ 6, as desired. �

Theorem 3.4 If G(k, t) is the distance graph, where k, t are coprime positive integers
such that 3 ≤ k < t, and S = (2∞), then

χS(G(k, t)) =


5; (t ≡ 1, 4 (mod 5) and k ≡ 2, 3 (mod 5))

or (t ≡ 2, 3 (mod 5) and k ≡ 1, 4 (mod 5)),

6; otherwise.

Proof. Consider the infinite grid Z2. Goddard and Xu [15] proved that χS(Z2) = 5,
hence χS(G(k, t)) ≥ 5. Let c : V (Z2)→ [5] be a (25)-coloring of Z2. Consider a vertex
(x, y) ∈ V (Z2) with its neighborhood N((x, y)) = {(x, y+1), (x−1, y), (x+1, y), (x, y−
1)}. Each of these 5 vertices must receive a different color since they are at the distance
at most 2. Without loss of generality, let

c(x, y + 1) = 1, c(x− 1, y) = 2, c(x, y) = 3, c(x+ 1, y) = 4, c(x, y − 1) = 5.

Thus, the vertex (x+1, y+1) can obtain either color 2 or 5 with respect to the coloring
c. We consider both options.

1. Let c(x + 1, y + 1) = 2. Due to the assignment of colors to vertices in N([x, y])
and (x+ 1, y + 1), we derive the following chain of implications:

c(x+ 1, y + 1) = 2⇒ c(x+ 1, y − 1) = 1⇒ c(x− 1, y − 1) = 4
⇒ c(x, y − 2) = 2⇒ c(x+ 1, y − 2) = 3⇒ c(x− 1, y − 2) = 1
⇒ c(x, y − 3) = 4⇒ c(x+ 1, y − 3) = 5⇒ c(x− 1, y − 3) = 3
⇒ c(x, y − 4) = 1⇒ . . .

Thus, the coloring c forces for each column Bi the periodic pattern [1, 3, 5, 2, 4].
Moreover, c(i, j) = c(i+ 1, j − 2) for all i, j ∈ Z.

2. Let c(x+ 1, y + 1) = 5. Similarly:

c(x+ 1, y + 1) = 5⇒ c(x− 1, y + 1) = 4⇒ c(x− 1, y − 1) = 1
⇒ c(x+ 1, y − 1) = 2⇒ c(x, y − 2) = 4⇒ c(x− 1, y − 2) = 3
⇒ c(x+ 1, y − 2) = 1⇒ c(x, y − 3) = 2⇒ c(x− 1, y − 3) = 5
⇒ c(x+ 1, y − 3) = 3⇒ c(x, y − 4) = 1⇒ . . .

In this case, the coloring c forces for each columnBi the periodic pattern [1, 3, 5, 4, 2]
and c(i, j) = c(i+ 1, j − 3) for all i, j ∈ Z.
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We have shown that (up to permutation of colors) there exist only two 25-packing
colorings of the square lattice Z2. We now apply these two colorings to G(k, t).

1. Consider the coloring given by the periodic pattern [1, 3, 5, 2, 4] with relation
c(i, j) = c(i+ 1, j − 2). Hence, this coloring enforces the constant shift sequence
(pi)

t−1
i=0 where pi = 2 for all i ∈ {0, . . . , t − 1}. Note that if c is a (25)-coloring

of G(k, t), then
∑t−1

i=0 pi ≡ k (mod 5). What remains is to determine for which
values of k, t this condition holds.

Let t ≡ ` (mod 5) where ` ∈ {0, 1, 2, 3, 4}. From the following sum we derive:

t−1∑
i=0

pi =

t−1∑
i=0

2 = 2t ≡ 2` (mod 5),

hence k ≡ 2` (mod 5). Note that for ` = 0 we obtain t, k ≡ 0 (mod 5) which
is a contradiction with the proposition gcd(k, t) = 1 and thus it is sufficient to
consider ` ∈ {1, 2, 3, 4}.

2. Consider the coloring given by the periodic pattern [1, 3, 5, 4, 2] with relation
c(i, j) = c(i+ 1, j − 3), which is equivalent to the constant shift sequence (pi)

t−1
i=0

where pi = 3 for all i ∈ {0, . . . , t − 1}. We again determine for which k, t the
condition

∑t−1
i=0 pi ≡ k (mod 5) holds.

Let t ≡ ` (mod 5) where ` ∈ {0, 1, 2, 3, 4}. Similarly to the previous case:

t−1∑
i=0

pi =
t−1∑
i=0

3 = 3t ≡ 3` (mod 5),

hence k ≡ 3` (mod 5). For ` = 0 we obtain t, k ≡ 0 (mod 5), contradicting
gcd(k, t) = 1 again, thus we consider ` ∈ {1, 2, 3, 4}.

By calculating the values of k, t for the given `, we obtain that χS(G(k, t)) = 5 if
and only if either (t ≡ 1, 4 (mod 5) and k ≡ 2, 3 (mod 5)) or (t ≡ 2, 3 (mod 5) and
k ≡ 1, 4 (mod 5)). From Lemma 3.3 we derive χS(G(k, t)) = 6 for the remaining values
of k, t. �

4 Concluding remarks

These results presented in this paper complement previously known results from [1,
2, 16, 20] on S-packing colorings of connected distance graphs G(k, t), which satisfy
the property that each integer in a sequence S belongs to {1, 2}. Note that such S-
packing colorings are classical colorings (S = (1∞)), 2-distance colorings (S = (2∞))
and S-packing colorings which lie between these two.

The amalgamation of the results presented herein with those established earlier
gives us the S-packing chromatic numbers of all connected distance graphs G(k, t),
where k ≥ 1 and t > k are coprime. With respect to the sequence S we summarize all
of these results as follows.
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1. S = (1∞).

χ(G(k, t)) =

{
2; k + t even,
3; k + t odd.

2. S = (1, 1, 2∞).

χS(G(k, t)) =

{
2; k + t even,
4; k + t odd.

3. S = (1, 2∞).

χS(G(k, t)) =

{
5; k 6= 2 or t 6= 3,
6; otherwise.

4. S = (2∞).

χ2(G(k, t)) =


5; (t ≡ 1, 4 (mod 5) and k ≡ 2, 3 (mod 5))

or (t ≡ 2, 3 (mod 5) and k ≡ 1, 4 (mod 5)),

7; k = 2 and t = 3,
6; otherwise.

As for other sequences S that contain elements greater than 2, investigations of
χS(G(k, t)) are far from complete. For the sequence S = (d∞), d ≥ 3, lower
and upper bounds are known for χS(G(k, t)) [2], which in some cases culminate
to exact results. For instance, if t ≥ 5 is an odd integer and d ≥ t − 3, then
χd(G(k, t)) = 1 + t ·

(
d− t−3

2

)
. Similarly, lower and upper bounds are known for

the sequence S = (1, 2, 3, . . .) which corresponds to the standard packing coloring.
This results focus on the distance graph G(1, t) [10,19]. Additionally, exact results
exist for certain sporadic sequences S, which came into fruition while studying the
S-packing chromatic numbers of G(k, t) for sequences that contain only elements
from {1, 2}. The S-packing coloring of G(1, t) provided in [16] partitions the color
classes in such a way that the vertices of some color classes are farther apart than
they need to be. As a consequence, this gives results for the sequences S with
larger elements.

There remains ample scope for research concerning the S-packing chromatic num-
ber of distance graphs G(k, t). In addition, for distance graphs G(D), where
|D| ≥ 3, only a few results on their S-packing colorings are known.
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