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Abstract

A secure set of a graph is, intuitively, a set that can refute any attack from the
neighborhood to its subsets. Formally, it is defined as a set S ⊆ V (G) such that
|N [X] ∩ S| ≥ |N [X] − S| for all X ⊆ S. Although finding a minimum secure set is
a computationally intractable problem, the minimum size of secure sets, called the se-
curity number, is studied for some specific graphs. Especially, determining the security
number of the Cartesian product of graphs is one of the developed directions in this
area. In this paper, we present an upper bound on the security number of the Cartesian
product of general graphs, which is tight for some sparse graphs. We then determine the
security number of K3m �K3n, the Cartesian product of complete graphs K3m and K3n,
as well as good lower and upper bounds of the security number of the Cartesian product
of complete graphs with any number of vertices.
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1 Introduction and preliminaries

The concept of secure sets was introduced by Brigham, Dutton, and Hedetniemi [3] by re-
stricting defensive alliances [17] to be more “secure”. Let us first recall the definition of
defensive alliances. Let G be a graph. (Throughout the paper, all graphs considered are
simple, finite, and undirected.) A nonempty set S ⊆ V (G) is a defensive alliance of G if
|N [x]∩S| ≥ |N [x]−S| holds for each x ∈ S, where N [x] denotes the closed neighborhood of
x. For secure sets, we ask such a condition also for each subset of S. That is, a non-empty
set S ⊆ V (G) is a secure set of G if |N [X] ∩ S| ≥ |N [X] − S| holds for each X ⊆ S, where
N [X] =

⋃
x∈X N [x]. The security number of G, denoted s(G), is the size of a minimum

secure set of G. The formal definition of a secure set is much longer than the one given in
this paper. It requires a clever partitioning of the given attack and defense sets (see [3] for
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all the details). The definition given above is actually a very nice characterization theorem
for secure sets proved by Brigham et al. in the same paper [3]. Its formal statement is given
in Theorem 1.

The security graph parameter has been studied extensively after its introduction [1, 2, 4,
5, 6, 19]. (See also [11, 18] for closely related parameters.) A variation of secure sets and the
security number called global secure sets and the global security number, respectively, were
treated in [12, 13, 14, 15] with an additional condition that the secure set must also dominate
the vertices in a graph.

Studies of security in Cartesian product graphs were initiated already in [3], where several
upper bounds were determined for grid-like graphs. Afterwards the studies continued in [16]
where exact formulae and some other bounds on the security number of grid-like graphs were
established. Global secure sets on grid-like graphs were studied in [8, 9, 10]. Strong product
graphs were considered in [20], where the security number of grids, cylinders, and toruses was
derived. One of the first general results on graph products were given for the lexicographic
product of graphs [7]. The statements in the latter article assume at least one factor to be
an arbitrary graph. Since there are no results for arbitrary Cartesian product of graphs any
step in this direction would be a nice improvement, and this is precisely what we study in
this paper. We present two upper bounds of the security number for the Cartesian product
of arbitrary graphs. We also investigate a special case where we consider the Cartesian
product of complete graphs. In this case, we can determine the security number exactly if
each complete graph has order divisible by 3. Such results for special cases were previously
known only for the Cartesian product of sparse graphs such as paths and cycles [3, 16].

Note that, in general, it is very hard to determine the security number of a graph. Ho [8]
showed that given a set S ⊆ V (G), it is coNP-complete to determine whether S is a secure
set of G. The complexity of the problem for determining the security number of a graph was
unknown for years and then finally shown to be ΣP

2 -complete by Bliem and Woltran [2].
Given two graphs G and H, the Cartesian product G�H of G and H has the vertex set

V (G)×V (H) and (x, y)(x′, y′) ∈ E(G�H) whenever x = x′ and yy′ ∈ E(H), or xx′ ∈ E(G)
and y = y′. For a vertex y ∈ V (H) we define the set Gy = {(x, y) ∈ V (G�H) |x ∈ V (G)},
which is called a G-layer in the Cartesian product of G and H. For x ∈ V (G), the H-layer xH
is defined as xH = {(x, y) ∈ V (G�H) | y ∈ V (H)}. We may consider G-layers and H-layers
as induced subgraphs when appropriate. For a subset S ⊆ V (G�H) we define

pG(S) = {x | (x, y) ∈ S} ⊆ V (G)

as the projection set of S onto the base graph G and

pH(S) = {y | (x, y) ∈ S} ⊆ H(G)

as the projection set of S onto the base graph H.
We finish this section with one of the most important results on secure sets of graphs.

The result in Theorem 1 will be heavily used throughout this article.

Theorem 1 (Brigham, Dutton, Hedetniemi [3]) Set S ⊆ V (G) is a secure set of a
graph G if and only if

|N [X] ∩ S| ≥ |N [X]− S|

for all X ⊆ S.
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Remark 2 The expression |N [X] ∩ S| ≥ |N [X] − S| is called the security condition for
X ⊆ S.

2 Upper bounds

We begin this section with an upper bound for the security number of the Cartesian product
of two arbitrary graphs.

Proposition 3 If G and H are arbitrary connected graphs, then

s(G�H) ≤ min{s(G)|V (H)|, |V (G)|s(H)}.

Proof. Denote with V (G) = {x1, . . . , xm} and V (H) = {y1, . . . , yn}, m,n ∈ N, the vertices
of graphs G and H, respectively.

Let S be a minimum secure set of G, i.e. |S| = s(G), and let S′ = S × V (H). We prove
that S′ is a secure set of G�H. Suppose that X is an arbitrary subset of S′. For each
i ∈ {1, . . . , n} we define Si = S′ ∩ V (Gyi) and Xi = X ∩ V (Gyi). Clearly Si is a secure set of
Gyi for every i ∈ {1, . . . , n}, and hence the inequality

|N [Xi] ∩ Si| = |(N [Xi] ∩ V (Gyi)) ∩ Si| ≥ |(N [Xi] ∩ V (Gyi))− Si| = |N [Xi]− S′|

is fulfilled for every i ∈ {1, . . . , n}. Before we prove the security condition for the set X, note
that

|N [X] ∩ S′| ≥
n∑

i=1

|N [Xi] ∩ Si|,

since Xi might have some neighbours in other layers than the Gyi-layer. It follows that

|N [X] ∩ S′| ≥
n∑

i=1

|N [Xi] ∩ Si| =
n∑

i=1

|(N [Xi] ∩ V (Gyi)) ∩ Si|

≥
n∑

i=1

|N [Xi]− S′| = |N [X]− S′|.

Since this is true for any subset X ⊆ S′, S′ must be a secure set of G�H, and hence

s(G�H) ≤ s(G)|V (H)|.

Similarly, we can show the following: if S is a minimum secure set of H, then S′ = V (G)×S
is a also a secure set of G�H, and thus

s(G�H) ≤ |V (G)|s(H).

Clearly, the statement from the proposition follows. �

The upper bound in Proposition 3 is tight in some cases. For example, it is known
from [16] that s(Cm�Cn) = min{2m, 2n, 12} for max{m,n} ≥ 4. Hence, if 1 ≤ m,n ≤ 6,
then s(Cm�Cn) = min{2m, 2n} = min{s(Cm)|V (Cn)|, |V (Cm)|s(Cn)}. However, in general,
this bound does not perform so well. Therefore, it is natural to search for a better upper
bound. In this sense, we define the notion of an extended secure set.
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Definition 4 Let G be a connected graph. Suppose there exists a minimum secure set S ⊆
V (G) such that S′ = N [S] = S ∪N(S) fulfills the following property:

• for every subset X ⊆ (S′ − S), |N [X] ∩ S| ≥ |N [X]− S′|.

The set S′ is called an extended secure set of G, and we call the set S′−S the extended part
of the set S′.

The condition |N [X] ∩ S| ≥ |N [X] − S′| in Definition 4 is very similar to the security
condition; the difference is that in this condition every subset X from S′ − S is protected
from the inside, i.e. from the set S. We will later show that not every graph G contains an
extended secure set. With this definition we are able to define the extended security number
of a graph.

Definition 5 Let G be a connected graph with at least one extended secure set. We name

es(G) = min{|S′| | S′ is an extended secure set of G}

the extended security number of G.

The following remark obviously follows directly from the definition of an extended secure
set.

Remark 6 If G is a connected graph with at least one extended secure set, then

s(G) < es(G) ≤ |V (G)|.

We will call the family of graphs which satisfy the condition in Definition 4 the family of
extended-securable graphs, and we will denote this family with G. Clearly, not all connected
graphs belong to G. Take for example the path on 4 vertices v1v2v3v4, and identify the leaves
v1 an v4 each with any vertex of a complete graph Kn, n ≥ 3. The only minimum secure
set in this graph is formed by both inner vertices v2 and v3. Its closed neighbourhood is
the whole path, which means that both leaves v1 and v4 belong to the extended part of the
secure set. It is easy to check that the vertices v2 and v3 cannot protect the leaves v1 and v4
against the attack from the vertices of the complete graphs.

One can also show that the set G is infinite. We can take a similar example as before by
taking the path on 6 vertices v1v2v3v4v5v6. We may take any two connected graphs H1 and
H2 with δ(H1), δ(H2) ≥ 2, and identify any vertex from H1 with the leaf v1, and identify any
vertex from H2 with the leaf v6. It is again clear that the security number of such a graph is
2. A minimum secure sets is formed by the vertices v3 and v4. The closed neighbourhood of
this set it {v2, v3, v4, v5}, where vertices v2 and v5 belong to the extended part of the secure
set. Those vertices are attacked only by at most two vertices, v1 and v6, and the inner two
vertices v3 and v4 can easily repel this attack. Hence, this graph belongs to the family G, and
since we can chose H1 and H2 almost arbitrarily, there are infinitely many graphs that lie in
G. The construction of such graphs was based on the assumption that the security number
is 2. One can find many more examples, for larger values of the security number, that lie in
G. We are now ready to prove the following theorem.

4



Theorem 7 Let G and H be two arbitrary graphs from G and let S1 and S2 be minimum
secure sets of G and H, respectively, that satisfy the following two conditions:

1. S′1 = N [S1] is a minimum extended secure set of G,

2. S′2 = N [S2] is a minimum extended secure set of H.

Moreover, let A = S1 × S2, B = S1 × (S′2 − S2) and C = (S′1 − S1)× S2. If

|N [X ∩B] ∩N [X ∩ C] ∩A| ≤ |(N [X ∩B] ∩N [X ∩ C])−A|,

holds true for any subset X ⊆ A ∪B ∪ C, then

s(G�H) ≤ s(G)s(H) + s(G)(es(H)− s(H)) + (es(G)− s(G))s(H),

and the bound is sharp.

Proof. Let V (G) = {x1, . . . , xm} and V (H) = {y1, . . . , yn}, m,n ∈ N, be the vertices of
graphs G and H, respectively. Without loss of generality let us assume S1 = {x1, . . . , xk1},
S′1 − S1 = {xk1+1, . . . , xk2}, 1 ≤ k1 < k2 ≤ m, and S2 = {y1, . . . , x`1}, S′2 − S2 =
{y`1+1, . . . , x`2}, 1 ≤ `1 < `2 ≤ n.

Additionally to the sets A, B and C we define the sets

D = (N [B] ∩ (S1 × V (H)))− (A ∪B),

E = (N [B] ∩N [C])−A,
F = (N [C] ∩ (V (G)× S2))− (A ∪ C).

For the visualisation of all these sets see Figure 1. We will show that S = A ∪ B ∪ C is a
secure set of G�H. The sets A, B and C form the defenders and the sets D, E and F are
the attackers of the set S. Take an arbitrary subset X ⊆ S. We define the sets XA = X ∩A,
XB = X ∩B and XC = X ∩ C.

According to Figure 1, XA is not attacked at all, therefore we need to show that XB and
XC can be both protected at the same time. We first turn our attention to XB. For every
j ∈ {`1 + 1, . . . , `2} we have

|(N [XB] ∩ V (Gyj )) ∩B| ≥ |(N [XB] ∩ V (Gyj ))−B|,

since V (Gyj ) ∩ B is by assumption a secure set of the Gyj -layer. Moreover, for every i ∈
{1, . . . , k1} we also have

|(N [XB] ∩ V (xiH)) ∩A| ≥ |(N [XB] ∩ V (xiH))− (A ∪B)|,

since V (xiH) ∩ (A ∪ B) is by assumption an extended secure set of the xiH-layer. We are
ready to prove that the set XB can be protected:

|N [XB] ∩ S| ≥
`2∑

j=`1+1

|(N [XB] ∩ V (Gyj )) ∩B|+
k1∑
i=1

|(N [XB] ∩ V (xiH)) ∩A|

≥
`2∑

j=`1+1

|(N [XB] ∩ V (Gyj ))−B|+
k1∑
i=1

|(N [XB] ∩ V (xiH))− (A ∪B)|

= |N [XB]− S|.
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Figure 1: The sets A, B, C, D, E, F and the sets XA, XB, XC in the graph G�H.

The calculation shows that the set XB can be horizontally protected against the vertices from
E with the help of the vertices from B because S1 is a secure set, and it can also be vertically
protected against the vertices from D with the help of the vertices from A because S′2 is an
extended secure set. By symmetry, we can show with a similar proof than above that XC

can be vertically protected against the vertices from E with the help of the vertices from C
because S2 is a secure set, and it can also be horizontally protected against the vertices from
F with the help of the vertices from A because S′1 is an extended secure set. The problem
that remains is that vertices from A are counted twice for protecting both sets XB and XC ,
and the same is true for the vertices in E, which are also counted twice for attacking both
sets XB and XC . Hence we need to show that both sets XB and XC can still be protected
at the same time.

We denote with a, b and c the number of the vertices from A, B and C, respectively, that
protect the vertices from X. Additionally, we assume that a1 is the number of the vertices
that can protect only the vertices from XB, a3 the number of the vertices that can protect
only the vertices from XC , and a2 the number of the vertices that can protect vertices from
both XB and XC . It is clear that a = a1 + a2 + a3, a1, a2, a3 ≥ 0. As for the attackers,
we denote with d, e and f the number of the vertices from D, E and F , respectively, that
attack the vertices from X. Additionally, we assume that e1 is the number of the vertices
that can attack only the vertices from XB, e3 the number of the vertices that can attack
only the vertices from XC , and e2 the number of the vertices that can attack vertices from
both XB and XC . Again, it is clear that e = e1 + e2 + e3, e1, e2, e3 ≥ 0. We first note that
|N [X ∩ B] ∩N [X ∩ C] ∩ A| = a2 and |(N [X ∩ B] ∩N [X ∩ C])− A| = e2. According to the
assumption |N [X ∩B]∩N [X ∩C]∩A| ≤ |(N [X ∩B]∩N [X ∩C])−A| from the theorem we
have a2 ≤ e2. To end the proof we need to show that a + b + c ≥ d + e + f or equivalently
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(a+ b+ c)− (d+ e+ f) ≥ 0.
Since we already know that XB and XC can each separately be protected, we have

a1 + a2 + b ≥ d+ e1 + e2 and a2 + a3 + c ≥ e2 + e3 + f . We sum up both inequalities:

a1 + 2a2 + a3 + b+ c ≥ d+ e1 + 2e2 + e3 + f

a+ b+ c+ a2 ≥ d+ e+ f + e2

(a+ b+ c)− (d+ e+ f) ≥ e2 − a2 ≥ 0

where in the last inequality we used the fact that a2 ≤ e2. It follows that

s(G�H) ≤ |A ∪B ∪ C| = s(G)s(H) + s(G)(es(H)− s(H)) + (es(G)− s(G))s(H). (1)

To show the sharpness of the bound we take G = Cm, and H = Cn, where V (Cm) =
{x1, . . . , xm}, xixi+1 ∈ E(Cm) for all i (modulo m), V (Cn) = {y1, . . . , yn}, yjyj+1 ∈ E(Cn)
for all j (modulo n), and m,n ≥ 6. The sets S1 = {x2, x3} and S2 = {y2, y3} are secure
sets of graphs Cm and Cn, respectively. Both graphs also belong to the family G, where
S′1 = {x1, x2, x3, x4} and S′2 = {y1, y2, y3, y4} are the corresponding extended secure sets.
Therefore, s(Cm) = s(Cn) = 2 and es(Cm) = es(Cn) = 4. It is also very easy to check the
condition |N [X ∩B]∩N [X ∩C]∩A| ≤ |(N [X ∩B]∩N [X ∩C])−A|, since both sides of the
inequality are always equal for any subset X ⊆ A ∪B ∪ C. By (1), we have

s(Cm�Cn) ≤ s(Cm)s(Cn)+s(Cm)(es(Cn)−s(Cn))+(es(Cm)−s(Cm))s(Cn) = 4+4+4 = 12.

We already know from [16] that s(Cm�Cn) = 12, m,n ≥ 6. �

3 The Cartesian product of complete graphs

The bound in Theorem 7 can be also very bad. If we take for example the complete graphs
Km and Kn, which also belong to the family G, we have es(Km) = m and es(Kn) = n, and
the bound in Theorem 7 becomes even worse than the bound in Proposition 3. Therefore,
we turn our attention to the Cartesian product of complete graphs and derive a better upper
bound for them. For some values of m and n we even prove exact results. The following
theorem gives a better upper bound for the Cartesian product of complete graphs.

Theorem 8 Let m,n ≥ 1. Then

s(Km�Kn) ≤ min{ab | ab ≥ ad+ bc},

where a ∈ {1, . . . ,m}, b ∈ {1, . . . , n}, c = m− a and d = n− b.

Proof. Let a ∈ {1, . . . ,m} and b ∈ {1, . . . , n} be such values that ab ≥ ad + bc holds
true, where c = m − a and d = n − b. Let V (Km) = {x1, . . . , xa, . . . , xm} and V (Kn) =
{y1, . . . , yb, . . . , yn} be the vertices of graphs Km and Kn, respectively (note that a might be
1 or m, and b might be 1 or n). We will show that

S = {x1, . . . , xa} × {y1, . . . , yb}
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is a secure set of Km�Kn. Let X ⊆ S be an arbitrary subset of S, and let X1 = pKm(X) and
X2 = pKn(X) be the projection sets of X onto both factor graphs Km and Kn, respectively.
Clearly it can happen that the sets X1 and/or X2 are nonconsecutive. Since the Cartesian
product Km�Kn is formed from complete graphs, we can always rearrange the vertices of
{x1, . . . , xa} and/or {y1, . . . , yb} in such a way that the number of attackers and defenders
of every subset X ⊆ S will remain the same, but the corresponding sets X1 and X2 will be
consecutive. After this rearrangement, we define a1 = |X1|, b1 = |X2|, and a2 = a − a1,
b2 = b− b1 (see Figure 2).

a
1

Km

Kn

X
S

b1

a2

b
2

a

b

c=m  a

d=n  b

X1

X2

Figure 2: The sets S, X, X1 and X2 in the graph Km�Kn.

We have |N [X] ∩ S| = a1b1 + a1b2 + a2b1 and |N [X]− S| = a1d+ b1c. We have to show
that a1b1 + a1b2 + a2b1 = |N [X] ∩ S| ≥ |N [X]− S| = a1d+ b1c.

Suppose the opposite that a1b1+a1b2+a2b1 < a1d+b1c. Since ab = a1b1+a1b2+a2b1+a2b2
and ad+ bc = a1d+ a2d+ b1c+ b2c, we can rewrite the inequality ab ≥ ad+ bc as follows:

a1b1 + a1b2 + a2b1 + a2b2 ≥ a1d+ a2d+ b1c+ b2c.

Using a1b1 + a1b2 + a2b1 < a1d+ b1c, we get

a1d+ b1c+ a2b2 > a1d+ a2d+ b1c+ b2c

a2b2 > a2d+ b2c.

Since a2, b2, c and d are positive integers, it follows from the last inequality that a2b2 > a2d
and a2b2 > b2c. The first inequality yields b2 > d, and the second one yields a2 > c. Thus,

a1b1 + a1b2 + a2b1 > a1b2 + a2b1 > a1d+ b1c,

which is a contradiction, since we assumed that a1b1 + a1b2 + a2b1 < a1d + b1c. We proved
that ab is an upper bound of s(Km�Kn) for any a ∈ {1, . . . ,m}, b ∈ {1, . . . , n}, whenever
ab ≥ ad+bc (c = m−a and d = n−b) is fulfilled. It follows that s(Km�Kn) ≤ min{ab | ab ≥
ad+ bc}. �
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We will call the set S = {x1, . . . , xa} × {y1, . . . , yb} defined in the proof of Theorem 8 a
rectangular set of the graph Km�Kn. Theorem 8 also shows that for any rectangular set S
of Km�Kn one does not need to check the security condition |N [X]∩S| ≥ |N [X]−S| for all
subsets X ⊆ S in order for S to be a secure set. Namely, it is enough to check the security
condition only for the set S. We summarize this thoughts into the following corollary.

Corollary 9 Let m,n ≥ 1, and let V (Km) = {x1, . . . , xa, . . . , xm}, 1 ≤ a ≤ m, and V (Kn) =
{y1, . . . , yb, . . . , yn}, 1 ≤ b ≤ n, be the vertices of Km and Kn, respectively. The rectangular
set S = {x1, . . . , xa}×{y1, . . . , yb} is a secure set of Km�Kn if and only if |S| ≥ |N [S]−S|.
Moreover, if S = {x1, . . . , xa} × {y1, . . . , yb} is a secure set of Km�Kn, it follows that
a ≥ m+1

3 and b ≥ n+1
3 .

Proof. Let S = {x1, . . . , xa}× {y1, . . . , yb} rectangular set, where c = m− a and d = n− b.
If S is a secure set of Km�Kn, then it is obvious that |S| = |N [S] ∩ S| ≥ |N [S]− S|.

For the converse, suppose that |S| ≥ |N [X]−S| holds, which is equivalent to ab ≥ ad+bc.
By Theorem 8, S must be a secure set.

For the second part of the corollary, we again use ab ≥ ad+ bc:

ab ≥ ad+ bc = a(n− b) + b(m− a) = an− ab+ bm− ab
3ab ≥ an+ bm

a ≥ an

3b
+
m

3
≥ n

3n
+
m

3
=
m+ 1

3
.

Similarly, we can derive

3ab ≥ an+ bm

b ≥ n

3
+
bm

3a
≥ n

3
+

m

3m
=
n+ 1

3
.

�

For some special values of m and n in Km�Kn we can prove that the upper bound in
Theorem 8 is tight.

Theorem 10 Let m,n ≥ 1. Then s(K3m�K3n) = 4mn.

Proof. Using Theorem 8 and choosing a = 2m, b = 2n, c = 3m−2m = m, d = 3n−2n = n,
we get

4mn = ab ≥ ad+ bc = 4mn.

Hence, by Theorem 8 we have s(K3m�K3n) ≤ 4mn.
To prove the equality, we choose an arbitrary minimum secure set S of K3m�K3n with

|S| ≤ 4mn. Let a = |pK3m(S)| be the size of the projection set of S onto the base graph
K3m. Similarly, let b = |pK3n(S)| be the size of the projection set of S onto the base graph
K3n. Thus |S| = ab− k for some k ≥ 0. It is easy to see that |N [S] ∩ S| = |S| = ab− k and
|N [S]− S| = (3m− a)b+ (3n− b)a+ k (see Figure 3). Since S is a secure set of K3m�K3n,
it follows that |S| = |N [S] ∩ S| ≥ |N [S]− S|, and hence ab ≥ mb+ na+ 2k

3 .
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K3m

K3n

S

a

b

3m  a

3n  b

k

Figure 3: The set S in the graph K3m�K3n.

Firstly suppose that a ≤ m. Then

mb+ na+
2k

3
> mb ≥ ab,

which is a contradiction. Similarly, if b ≤ n, then

mb+ na+
2k

3
> na ≥ ba,

which is again a contradiction. Henceforth, we can assume that a > m and b > n.
Now we prove that |S| = 4mn. The following inequalities are equivalent:

ab ≥ mb+ na+
2k

3

ab− na ≥ mb+
2k

3

a(b− n) ≥ mb+
2k

3

a ≥ mb

b− n
+

2k

3(b− n)
.

Note that the last inequality does not turn because b > n. We continue with the next set of
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equivalent inequalities:

a ≥ mb

b− n
+

2k

3(b− n)

ab ≥ mb2

b− n
+

2kb

3(b− n)

ab− k ≥ mb2

b− n
+

2kb

3(b− n)
− 3k(b− n)

3(b− n)

ab− k ≥ mb2

b− n
+

2kb− 3kb+ 3kn

3(b− n)

ab− k ≥ mb2

b− n
+
k(3n− b)
3(b− n)

4mn ≥ |S| = ab− k ≥ mb2

b− n
+
k(3n− b)
3(b− n)

≥ mb2

b− n
+ 0.

The last inequality is true because n < b ≤ 3n. We get

4mn ≥ mb2

b− n
,

which is equivalent to
(b− 2n)2 ≤ 0.

The only logical solution to this inequality is b = 2n. We continue with a similar calculation
for a:

ab ≥ mb+ na+
2k

3

ab−mb ≥ na+
2k

3

b(a−m) ≥ na+
2k

3

b ≥ na

a−m
+

2k

3(a−m)

ab ≥ na2

a−m
+

2ka

3(a−m)

ab− k ≥ na2

a−m
+

2ka

3(a−m)
− 3k(a−m)

3(a−m)

ab− k ≥ na2

a−m
+

2ka− 3ka+ 3km

3(a−m)

ab− k ≥ na2

a−m
+
k(3m− a)

3(a−m)

4mn ≥ |S| = ab− k ≥ na2

a−m
+
k(3m− a)

3(a−m)
≥ na2

a−m
+ 0

4mn ≥ na2

a−m
(a− 2m)2 ≤ 0.

11



We get that a = 2m is the only logical solution to this inequality. It follows that |S| = 4mn−k.
Since the inequality ab ≥ mb + na + 2k

3 still need to be fulfilled, we get 4mn ≥ 4mn + 2k
3 ,

which is only possible for k = 0. Thus |S| = 4mn and s(K3m�K3n) = 4mn. �

For all other values of m and n, which are not congruent 0 modulo 3, we can give a lower
and an upper bound for the security number of the graph Km�Kn.

Proposition 11 Let m,n ≥ 1 and k, ` ∈ {0, 1, 2}. Then

4mn ≤ s(K3m+k �K3n+`) ≤ 4(m+ 1)(n+ 1).

Proof. The upper bound follows from Theorem 8 by setting a = 2(m + 1), b = 2(n + 1),
c = (3m+ k)− a, and d = (3n+ `)− b, which gives

ab− ad− bc = 2(m+ 1) · 2(n+ 1)− 2(m+ 1)(n+ `− 2)− 2(n+ 1)(m+ k − 2)

= 2((m+ 1)(3− `) + (3− k)(n+ 1)) > 0.

Let S be a minimum secure set ofK3m+k �K3n+`. Observe that |N [S]| ≥ max{|pK3m+k
(S)|·

(3n+`), (3m+k)·|pK3n+`
(S)|}. Hence, if |pK3m+k

(S)| ≥ 3m or |pK3n+`
(S)| ≥ 3n, then |N [S]| ≥

9mn, and thus |S| ≥ 9mn
2 > 4mn. Assume that |pK3m+k

(S)| < 3m and |pK3n+`
(S)| < 3n. By

removing k vertical and ` horizontal layers that do not intersect S, we can get an induced sub-
graph H of K3m+k �K3n+` such that H is isomorphic to K3m�K3n and S ⊆ V (H). We can
see that S is a secure set of H since any subset X ⊆ S has more attackers in K3m+k �K3n+`

than it has in H. Therefore,

s(K3m+k �K3n+`) = |S| ≥ s(H) = s(K3m�K3n) = 4mn.

�

Corollary 12 Let n ≥ 1. Then

lim
n→∞

s(Kn�Kn)

|V (Kn�Kn)|
=

4

9
.

Proof. By Proposition 11 we have 4n2 ≤ s(K3n+k �K3n+`) ≤ 4(n+1)2 for all k, ` ∈ {0, 1, 2}.
Since |V (K3n+k)| = 3n+ k and |V (K3n+`)| = 3n+ `, we have

4n2

9n2 + 3n`+ 3nk + k`
≤ s(K3n+k �K3n+`)

|V (K3n+k)||V (K3n+`)|
≤ 4(n+ 1)2

9n2 + 3n`+ 3nk + k`
.

When n tends to infinity, we get

4

9
≤ lim

n→∞

s(K3n+k �K3n+`)

|V (K3n+k �K3n+`)|
≤ 4

9

for all k, ` ∈ {0, 1, 2}. �
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4 Concluding remarks

It would be interesting to find at least one non-trivial lower bound for the security number
of the Cartesian product of arbitrary graphs. It is however clear that this would be consider-
ably more difficult than proving the upper bounds which are usually given by constructions.
Nevertheless, our investigations lead us to propose a Vizing-type inequality for the security
number as an open problem.

Problem 13 Is s(G�H) ≥ s(G)s(H) true for arbitrary connected graphs G and H?

A simpler inequality to the one above could be s(G�H) ≥ max{s(G), s(H)}, but this one
turned out to be challenging to prove as well.

In this paper a construction for an infinite family of extended-securable graphs with the
security number 2 is given. Since the characterization of graphs with the security number
2 is very well known (see [3]), it almost seems that the extended-securable graphs with the
security number 2 constructed in this paper are the only such graphs. Hence, it would be
appropriate to pose the following problem.

Problem 14 Let k be a positive integer. Characterize graphs from the family of extended-
securable graphs G with the security number equal to k.
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