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Abstract

Indicated coloring game is played on a simple graph G by two players, and a fixed
set C of colors. In each round of the game Ann indicates an uncolored vertex, and Ben
colors it using a color from C, obeying just the proper coloring rule. The goal of Ann
is to achieve a proper coloring of the whole graph, while Ben is trying to prevent this.
The minimum cardinality of the set of colors C for which Ann has a winning strategy is
called the indicated chromatic number, χi(G), of a graph G. In this paper, we prove that
the indicated chromatic number of the Cartesian product G�Kn,m is equal to 3 if and
only if χi(G) = 3. We also prove that χi(G�T ) = χ(G), where G is a block graph and
T is a tree. Indicated colorings in some other classes of Cartesian products of graphs are
also studied. The investigations lead us to propose a Sabidussi-type equality as an open
problem.
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1 Introduction

The study of coloring games in graphs was initiated independently by Gardner [11] and Bod-
lander [5]. The initial version of the coloring game triggered numerous investigations, which
resulted in the development of various methods and strategies [4]. Interesting connections be-
tween the game coloring numbers and some established graph invariants were found [7, 8, 14].
In addition, several variations of the coloring game were introduced [1, 3, 6, 15, 17]; see a
recent survey on coloring games [21], a dynamic survey on combinatorial games [9], and the
corresponding references therein.

In this paper, we consider a variation of the coloring game, which was introduced by
Grzesik under the name indicated coloring game [12] (the idea for this game is contributed to
Grytczuk). It is played on a simple graph G by two players, Ann and Ben, with a fixed set
of available colors. Each round in the game consists of Ann selecting a previously unselected
vertex and Ben assigning to that vertex a color, which has not been assigned to any of its
neighbors (that is, the coloring must be proper). Players have opposite goals, Ann wants to
achieve a (proper) coloring of all vertices, while Ben wants to prevent this to happen (i.e.,
his goal is to eventually have an uncolored vertex such that all available colors appear in its
neighborhood). The minimum number of available colors that Ann needs to win the game
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on a graph G, regardless of how Ben plays, is called the indicated chromatic number of G,
denoted χi(G).

Clearly, χi(G) is bounded from above by ∆(G) + 1, and it is easy to see that in bipartite
graphs G, χi(G) = 2. However, one of the basic questions that are usually posed for invariants
of this type, whether for any graph G the indicated chromatic number χi(G) is bounded by
a function f dependent only on the chromatic number χ(G), is still open. It is shown in [12]
that there are graphs G with χi(G) ≥ 4

3χ(G), yet it is suspected that such a function f
exists. Grzesik also proposed an innocently looking question whether more available colors
may only help Ann to win, that is, whether Ann can win the game with k available colors
as soon as k ≥ χi(G). The question was investigated in [18, 19], where it was answered in
the affirmative for various classes of graphs. In addition, in [10] the positive answer to the
question was given for several families of Cartesian products of graphs. (We remark that a
version of the indicated chromatic number was considered in matroids and was shown to be
equal to the chromatic number [16].)

Given two graphs G and H, the Cartesian product G�H of G and H has the vertex set
V (G)×V (H) and (g, h)(g′, h′) ∈ E(G�H) whenever g = g′ and hh′ ∈ E(H), or, gg′ ∈ E(G)
and h = h. The Cartesian product is arguably the most investigated graph product with
many applications and relations to different topics [13]. For the chromatic number, a classical
result by Sabidussi [20] states that χ(G�H) = max{χ(G), χ(H)}. As shown in [2, 22], the
game chromatic number behaves much less tamely under the Cartesian product of graphs. On
the other hand, for the indicated chromatic number of Cartesian products, as studied in [10],
a large majority of results assert that χi(G1�G2) = χ(G1�G2), where for all considered
factor graphs Gk, χi(Gk) = χ(Gk). Additional example was presented in [10] showing that
χi(D�K2) > χ(D�K2), however, the corresponding graph D has χi(D) > χ(D).

In this paper, we further investigate the indicated chromatic number of Cartesian products
of graphs. We prove that for a graph G, χi(G) = 3 if and only if χi(G�Km,n) = 3 (where
Km,n is the complete bipartite graph). The result is in a sense stronger than previous results
on this topic, because it does not rely on the structure of a graphG (since it is not known which
graphs G have χi(G) = 3), but only on the property that their indicated chromatic number is
3. In addition, we prove that if G is a block graph and T a tree, then χi(G�T ) = χ(G), which
generalizes the result from [10] about the Cartesian products of cliques and trees. Finally, we
consider the indicated chromatic number of the Cartesian product of two cycles (at least one
of which is not even), and show that χi(C3�Cn) = 3 for all integers n ≥ 3. While we believe
that the indicated chromatic number of a non-bipartite Cartesian product of two cycles is
always 3, we could not prove it in all detail due to enormous technical difficulties. Instead,
we present a strategy of Ann, which we believe serves the purpose of proving it, and leave it
as an open problem.

All results in this paper and in [10] give the equality

χi(G1�G2) = max{χi(G1), χi(G2)},

and we suspect that this could be true for all pairs of graphs G1 and G2, which would give a
Sabidussi-type result, where the indicated chromatic number replaces the chromatic number.

In the next section, we first give some necessary definitions and establish the notation.
We continue with all the mentioned results and their proofs. In the last section, we give some
concluding remarks. In particular, we present Ann’s strategy for which we believe it enables
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her to win in Cn�Cm for all m and n when the game is played with 3 available colors. We
also pose some open problems.

2 Results

We begin this section with some more definitions.
Given two graphs G and H, and a vertex y ∈ V (H), the set Gy = {(x, y) ∈ V (G�H) :

x ∈ V (G)} is called a G-fiber in the Cartesian product of G and H. For x ∈ V (G), the
H-fiber xH is defined as xH = {(x, y) ∈ V (G�H) : y ∈ V (H)}. We may consider G-
fibers and H-fibers as induced subgraphs when appropriate. The projection to G is the map
pG : V (G�H)→ V (G) defined by pG(x, y) = x. We let [k] = {1, . . . , k}.

Recall that a block of a graph G is a maximal connected subgraph of G, which has no cut
vertices (that is, a maximal 2-connected subgraph or a K2 whose edge is a cut-edge of G). A
graph in which each block is a complete graph, is called a block graph.

Definition 1 Suppose that Ann and Ben play an indicated coloring game on a graph G using
a fixed set of colors C. If at some point in the game Ann selects a vertex x ∈ V (G) for which
Ben can use only one color from C, then we say that x is a fixed vertex or that a color is
fixed for x.

Lemma 2 Let G,H be connected graphs. If χi(G�H) ≤ k, then χi(G) ≤ k for each positive
integer k.

Proof. We show the contrapositive statement, that χi(G) > k implies χi(G�H) > k.
First, if χ(H) > k, then χi(G�H) ≥ χ(G�H) = max{χ(G), χ(H)} > k. Next supppose

χ(H) = l ≤ k. This means there is a proper coloring of H, say c : V (H)→ [k], using k colors.
Let B1, B2, . . . , Bk be the color classes of this coloring, such that c(v) = i for v ∈ Bi, where
i ∈ [k]. By the assumption, Ben has a winning strategy in G when k colors are available.
Now, the indicated coloring game is played on G�H with k colors.

Ben will imagine that simultaneously an indicated coloring game is played on G by using k
colors, denoted α1 = (1, 2, . . . , k), α2 = (2, 3, . . . k, 1), . . . , αk−1 = (k−1, k, 1, 2, . . . , k−2), αk =
(k, 1, 2, . . . , k− 1). Whenever Ann will select a vertex (v, yi) such that no vertex from vH has
been selected before, Ben will consider this as a selection of vertex v ∈ V (G) by Ann in the
imagined game. He will color v by one of the colors α1, . . . , αk according to his strategy in
G. At the same time, he will copy the corresponding coordinate of that color to the original
game in the following way: if Ann selected (v, y) for some y ∈ Bi (and no vertex from vH has
been selected before), and αn, where n ∈ [k], is the color in the imagined game on G that
Ben uses according to his strategy, then he will color (v, y) with the i-th coordinate of αn.

On the other hand, if Ann selects a vertex (v, z), and (v, y) has been selected earlier
for some y 6= z, then in the imagined game on G Ben does nothing, because he already
colored v by one of the colors from {α1, . . . , αk} in this game. He only colors (v, z) with the
corresponding coordinate (jth coordinate if z ∈ Bj) of the color αn he used in the imagined
game for v ∈ V (G).

With this strategy, the coloring of vertices in a fiber vH will be proper, and will be
(pre)determined by the imagined game in G, as soon as one of these vertices is picked by
Ann. However, since Ben wins the game on G with k colors, this means that there will be a
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vertex v in the imagined game on G, which will have in the neighborhood all k colors α1, . . . ,
αk. This implies that in some Gy (in whichever Ann will select the corresponding neighbors
of (v, y) first) there will be a vertex in vH such that v will have all k colors 1, 2 . . . , k in its
neighborhood before it will be selected by Ann. Hence, χi(G�H) > k. �

Theorem 3 If G is a graph, then χi(G) = 3 if and only if χi(G�K2) = 3.

Proof. Let G be a graph, V (G) = {v1, . . . , vn} and V (K2) = {x, y}.
First suppose that χi(G) = 3. Hence, Ann has a winning strategy in G when three colors

are available. Ann can use the same winning strategy in the fiber Gx of G, which is isomorphic
to G, by which Gx is properly colored by colors from {1, 2, 3}. In the remainder, we present
the strategy of Ann by which she selects vertices in Gy. This will be done in several steps,
in which a partition of Gy into sets Ui will be built. Let U1 = ∅. Now, Ann picks any vertex
from Gy, say (v1, y), and Ben colors it with any color available. (Note that Ben has two
colors to choose from.) At the same time, U1 = {(v1, y)}. In the next moves Ann picks all
neighbors of (v1, y) with a fixed color, and adds those vertices to U1. Ann continues to pick
an arbitrary vertex of U1 that still has some neighbors in Gy\U1 that are fixed, and adds
them to U1. She continues with this procedure until there are no more vertices in U1 with
a fixed neighbor in Gy\U1. If U1 = V (G), then all vertices of G have been properly colored,
and the proof is done. Otherwise, U1 ( Gy. Let U2 = ∅. Ann picks an arbitrary vertex (v2, y)
from Gy\U1. Ben colors (v2, y) with any one of the two available colors, and Ann adds it
to U2. Now, Ann repeats the procedure starting from (v2, y), and continues to select a fixed
vertex, that is a neighbor of a vertex in U2, adds it to U2, until there are no more vertices in
U2 that have a fixed neighbor in Gy\(U1 ∪U2). If U1 ∪U2 6= V (Gy), Ann selects an arbitrary
vertex in Gy\(U1 ∪U2) and starts to build a new set U3. When repeating this procedure, we
produce pairwise disjoint sets U1, . . . , Uk. We claim that

⋃n
k=1 Uk = Gy. (Note, that for each

i ∈ [k] the set Ui contains exactly one vertex that was not fixed, namely the vertex that was
added to Ui first.). To finish the proof of this direction we have to show that the procedure
described above is indeed Ann’s winning strategy, that is, the sets U1, . . . , Uk form a partition
of Gy.

Suppose there is a step in Ann’s strategy where she picks a vertex (v, y) in Gy, and
Ben cannot color it. This means that in the neighborhood of (v, y) all colors from {1, 2, 3}
were used. Without loss of generality, let (v, x) have color 1, and (va, y), (vb, y) be any two
neighbors of (v, y) with colors 2 and 3, respectively. If (va, y) ∈ Ui and (vb, y) ∈ Uj , for some
i < j, then by Ann’s strategy vertex (v, y) would be colored before any vertex in Uj , because
it would have been fixed. Hence, both vertices (va, y) and (vb, y) must belong to the same
set Ui for some i ∈ [k]. As mentioned above, Ui contains exactly one non-fixed vertex, say
(vc, y). Note that c 6= a and c 6= b, for otherwise (v, y) would have been fixed and would be
properly colored as one of the fixed neighbors of (vc, y). According to the construction of the
U -sets, the subgraph G[Ui] is connected. Hence, there exists a path P ′ in G[Ui] from vertex
(va, y) to vertex (vc, y) such that all vertices in P ′, except for (vc, y), were fixed. Similarly,
there is a path P ′′ in G[Ui] from vertex (vb, y) to vertex (vc, y) such that all vertices in P ′′,
except for (vc, y), were fixed. (Note that paths P ′ and P ′′ might have more than one vertex,
i.e. vertex (vc, y), in common.) Since the color of (va, y) is 2, and because all vertices (except
(vc, y)) of P ′ were fixed, there is a unique way how Ben assigned colors to them. The same
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must be true for the vertices of P ′′, since (vb, y) has color 3. Figure 1 shows the initial parts
of the colorings of both paths.

(v, x)

1 2 3 1

(v, y) (vb, y)

3 1 2

321

213

(va, y)

Figure 1: Proper colorings of paths P ′ and P ′′

Suppose that vertex (vc, y) received color 1. According to the colors on the path P ′, vertex
(vc, x) must have received color 2, and according to the colors on the path P ′′, vertex (vc, x)
must have been colored by 3, which is clearly a contradiction. Analogously, if (vc, y) received
color 2, then (vc, x) must be simultaneously colored with 3 and 1, and if (vc, y) received color
3, then (vc, x) must be simultaneously colored with 1 and 2. In either of the three cases we
get a contradiction to the fact that there is a step in Ann’s strategy in which Ben cannot
color a vertex.

We have shown that Ann’s strategy produces an indicated coloring of G�K2 with three
colors. Hence, χi(G�K2) ≤ 3, and since G�K2 is not bipartite, χi(G�K2) = 3.

The converse is a special case of Lemma 2 for H = K2 and k = 3, combined with the fact
that the indicated chromatic number is 2 precisely for bipartite graphs. �

Theorem 4 Let G be a graph. Then χi(G) = 3, if and only if χi(G�Km,n) = 3 for m,n ≥ 1.

Proof. Let V (G) = {v1, v2, . . . , vr} and V (Km,n) = {x1, x2, . . . , xm, y1, y2, . . . , yn}.
Suppose χi(G) = 3. This means that Ann has a winning strategy in G with three colors.

Ann can use the same winning strategy in the fiber Gx1 of G, which is isomorphic to G.
Thus, Gx1 can be properly colored with colors from {1, 2, 3}. The subgraph Gx1 �Gy1 is
isomorphic to the graph G�K2, hence Ann has a winning strategy in the fiber Gy1 using the
same strategy as described in the proof of Theorem 3. Ann also uses the winning strategy
described in the proof of Theorem 3 for the fibers Gy2 , Gy3 , . . . , Gyn (note that there are no
edges between fibers Gy2 , Gy3 , . . . , Gyn). After this step, all the fibers Gx1 , Gy1 , Gy2 , . . . , Gyn

are properly colored with three colors. In the remainder of the proof, Ann will use the
following strategy.

First, if there is a fiber viKm,n, for some i ∈ [r], in which there exist vertices (vi, yl)
and (vi, yk), l, k ∈ [n], which were colored with two different colors (note, that vertices
(vi, y1), (vi, y2), . . . , (vi, yn) could have been colored with the same color, because there are
no edges between them, or at most with two different colors, but they could not be colored
with the color which was given to the vertex (vi, x1), since this vertex is a neighbor of
all vertices (vi, y1), (vi, y2), . . . , (vi, yn)). In the next step Ann shows to Ben all vertices
(vi, x2), (vi, x3), . . . , (vi, xm). These vertices have in their neighborhood two different colors
(the colors of vertices (vi, yl) and (vi, yk)), hence Ben must color them with the color with
which the vertex (vi, x1) is colored. Next, Ann repeats this procedure in all fibers viKm,n,
i ∈ [r], in which there exist vertices (vi, yl) and (vi, yk), l, k ∈ [n], which were colored with
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two different colors. After this step, uncolored vertices exist only in the fibers vjKm,n, j ∈ [r],
in which all vertices (vj , yh), h ∈ [n], have the same color. Therefore, two colors are available
for them.

In the next moves, Ann will show to Ben uncolored vertices in the fibersGx2 , Gx3 , . . . , Gxm ,
in this order. She will use a similar procedure as in the first part of the proof of Theorem 3,
namely, she will again construct partitions of those fibers into sets Ui. She starts with the
fiber Gx2 . Let U1 be the set of vertices in the fiber Gx2 , which are already colored. Let us
prove that they do not have a neighbor with a fixed color. Let (vi, x2) be an arbitrary vertex
in Gx2-fiber already colored and (vj , x2) its uncolored neighbor in the same fiber.

We prove that (vj , x2) is not a fixed vertex. Without loss of generality suppose that (vi, x2)
received color 1. The vertex (vi, x2) was colored as a fixed vertex, otherwise it would not have
been colored yet. This means there is some neighbor of vertex (vi, x2), say (vi, yl), for some
l ∈ [n], with color 2 and some neighbor, say (vi, yk), for some k ∈ [n], with color 3. Since the
vertex (vj , x2) is not yet colored, all its neighbors (vj , y1), (vj , y2), . . . , (vj , yn) have the same
color. But the color of these vertices is not 2, because the vertex (vi, yl), which is a neighbor
of the vertex (vj , yl), has neither color 2 nor color 3, because the vertex (vi, yk), which is a
neighbor of the vertex (vj , yk), has color 3. Therefore the vertices (vj , y1), (vj , y2), . . . , (vj , yn)
are colored with color 1. It follows that all neighbors of (vj , x2) have color 1, thus a color is
not fixed for (vj , x2).

Since no neighbor of vertices in U1 has a fixed color, Ann lets U2 = ∅ and choses an
arbitrary uncolored vertex and adds it to U2. Then she picks all its neighbors with a fixed
color and adds them to U2. She continues to choose an arbitrary vertex of U2, that still
has some fixed neighbors in Gx2\(U1 ∪ U2) and adds them to U2. Ann continues with this
procedure until there are no more vertices in U2 with a fixed neighbor in Gx2\(U1 ∪ U2). If
U1∪U2 = V (G), then all vertices of Gx2 have been properly colored, otherwise U1∪U2 ( Gx2 ,
therefore Ann sets U3 = ∅ and repeats the procedure starting from an arbitrary uncolored
vertex of Gx2\(U1 ∪U2). After some steps, we construct pairwise disjoint sets U1, U2, . . . , Uk

for which we claim that
⋃n

k=1 Uk = Gx2 .
To finish the proof we have to show that with the procedure described above all vertices

of the fiber Gx2 have been properly colored. The proof is similar to the proof of Theorem
3. Indeed, each set Ui, for i ∈ {2, . . . , k}, contains exactly one vertex that was not fixed
when it was colored, and this is the vertex that was added to Ui first. In the same way as in
the proof of Theorem 3 we find paths P ′ and P ′′ within a fixed Ui for some i ∈ {2, . . . , k},
that follow a fixed pattern. Note that for every vertex (vj , x2) from Ui all its neighbors
(vj , y1), (vj , y2), . . . , (vj , yn) have the same color, which is a similar situation as in the strategy
for G�K2 in the proof of Theorem 3, where there is only one color in the first G-fiber which
affects the coloring of each vertex in the second G-fiber.

Ann then repeats the same procedure, as described for the fiber Gx2 , for the fibers
Gx3 , . . . , Gxm and produces a proper coloring of the whole graph G�Km,n with three colors.

The converse again follows from Lemma 2. �

Given a graph G, ω(G) denotes the size of the largest clique in G.

Lemma 5 If G is a block graph, then χi(G) = χ(G) = ω(G).

Proof. Let G be a block graph and B1, B2, . . . , Bk its blocks, and let ω(G) = m. Ann
chooses a block Bi, for any i ∈ [k], and shows to Ben all the vertices of Bi in an arbitrary
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order. Since all vertices in Bi are adjacent, Ben will have to use different colors for these
vertices, but he will not use more than m colors. Note that blocks of G share cut-vertices.
Hence there exists a block Bj of G, j 6= i, which has one of its vertices already colored.
Ann chooses such a block Bj and shows to Ben all uncolored vertices of this block in an
arbitrary order. He will again have to use different colors on those vertices. Ann can repeat
this procedure by finding a new uncolored block of G which has not been completely colored
but has one vertex already colored from previous steps. It is clear that Ann’s strategy will
work since there exists only one path between any two blocks of G. In the end, all vertices
will be colored by Ben, and he will be able to do this with m colors. Thus, χi(G) ≤ m. Since
Km is a subgraph of G, we have χi(G) = m = ω(G). �

Theorem 6 If G is a block graph, then χi(G�K2) = χi(G).

Proof. Let V (G) = {v1, . . . , vn}, V (K2) = {x, y}, and B1, B2, . . . , Bk, k < n, be the blocks
of G.

Suppose that χi(G) = m. By Lemma 5, Ann has a winning strategy for G, and since Gx is
isomorphic to G, she can use the same strategy for Gx. After Gx is colored by m colors, Ann
chooses an arbitrary block, say B1. Let V (B1) = {v1, . . . , vl}, and note that l ≤ m = ω(G).
Ann’s next move is picking an arbitrary vertex (vi, y), vi ∈ V (B1), and Ben colors it with a
color c ∈ [m] which is different to the color of (vi, x).

If l < m, than Ann can pick all the remaining vertices of clique By
1 in any order. Ben

colors them with l < m different colors from the set [m].
On the other hand, if l = m, then the clique B1 × {x} contains a vertex (vj , x), j 6= i,

which is colored with color c. The strategy of Ann is to pick all the vertices of the clique
B1 × {y}, except the vertex (vj , y), in an arbitrary order. When all the vertices of the clique
By

1 , except the vertex (vj , y), have been colored, Ann picks the vertex (vj , y). With this she
ensures that Ben will be able to color all vertices of B1×{y} including the vertex she picked
last; notably, (vj , y) has m + 1 neighbors, two of which, (vj , x) and (vi, y), are colored with
the same color c. Hence, there is still one color available for the last vertex of the clique
B1 × {y}.

In the next step, Ann chooses an arbitrary clique Bi×{y}, for some i ∈ {2, . . . , k}, which
has at least one of its vertices colored (i.e., for Bi which shares a vertex with B1). Ann uses
the strategy she used for By

1 on the block By
i (keeping the vertex of By

i having the same color
as the vertex in V (By

1 ) ∩ V (By
i ) to be colored as the last vertex of V (By

i )). By repeating
this procedure, choosing blocks of Gy that have a non-empty intersection with one of the
blocks of Gy that have already been colored, all vertices of Gy will eventually be colored
using m colors. Thus, χi(G�K2) ≤ m, and since m = χ(G�K2) ≤ χi(G�K2), the proof
is complete. �

Theorem 6 can be extended as follows.

Corollary 7 Let G be a block graph and T be a tree. Then χi(G�T ) = χi(G).

Proof. Let {v0, v1, . . . , vn} be the set of vertices of a tree T ordered with the BFS algorithm,
and let v0 denote the root of T . Suppose that χi(G) = m. By Lemma 5, Ann has a winning
strategy for G with m colors, and since Gv0 is isomorphic to G, she can use the same strategy
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for Gv0 . In the next step, Ann chooses the vertices of the fiber Gv1 by using the same strategy
as described in the proof of Theorem 6. The reason why she can use this strategy is that
the subgraph Gv0 �Gv1 of G�T is isomorphic to G�K2. After the vertices of Gv1 have
been colored by Ben, she chooses the fibers Gv2 , . . . , Gvn in the BFS order, and repeats her
strategy from Gv1 . In the end, a proper coloring of G�T using m colors is obtained. �

Finally, we consider the indicated chromatic number of the Cartesian product of two
cycles, where one cycle is C3, and show that χi(C3�Cn) = 3 for all integers n ≥ 3.

Proposition 8 Let Cn be a cycle of length n ≥ 3. Then χi(C3�Cn) = 3.

Proof. Let V (C3) = {x1, x2, x3} and V (Cn) = {y1, . . . , yn}. It is clear, that the indicated
chromatic number of the cycle is 3. Therefore Ann has a winning strategy in the fiber Cy1

3 ,
so she uses it. For the same reason, Ann has a winning strategy in the fiber x1Cn, and she
uses it. Now the first row and the first column of the product C3�Cn are colored. In the
remainder, Ann will use the following strategy, defined in the rows of the product: she will
handle the rows Cy2

3 , Cy3
3 ,. . . ,Cyn

3 in the natural order. In each row Cyi
3 , for i ∈ {2, 3, . . . , n},

she will pick the vertex (x2, yi) before the vertex (x3, yi) if the color of (x2, yi) is fixed, and
the vertex (x3, yi) before the vertex (x2, yi) if the color of (x3, yi) is fixed. Note, that exactly
one of these two vertices is always fixed. In this way, she will reach a fixed permutation of
the colors from the set {1, 2, 3} in all rows. Without loss of generality we can suppose that
the vertex (x1, y1) is colored with color 1, (x2, y1) with color 2 and (x3, y1) with color 3 as
shown in the Figure 2.

Using the described strategy, all vertices of the graph C3�Cn will be properly colored
with three colors. �

We believe that the indicated chromatic number of the product of two cycles of arbitrary
lengths is at most three. In the concluding remarks, we present a strategy of Ann, for which
we think that it is a winning strategy.

3 Concluding remarks

In the previous section we proved that χi(C3�Cn) = 3, where n ≥ 3. What follows is a
strategy for Ann to color the product Cn�Cm, n,m ≥ 3, where at least one of n or m is
odd. We strongly believe that the below described strategy is a winning strategy for Ann.
Unfortunately, we were not able to prove it.

Let V (Cn) = {x1, . . . , xn} and V (Cm) = {y1, . . . , ym}. As the indicated chromatic number
of Cn is at most 3, Ann has a winning strategy in the fiber Cy1

n , which she applies. From the
same reason, Ann has a winning strategy in the fiber x1Cm, which she applies next. After
this, the first row and the first column of the product Cn�Cm are colored.

Ann’s strategy will be defined in the rows of the product. We will say that Ann handles a
row from left to right and afterwards from right to left if she shows to Ben only the uncolored
fixed vertices from this row in the following way. Suppose that she chooses the fiber Cyk

n , for
some k ∈ {2, . . . ,m}. Let i ∈ [n] be the largest index such that (x1, yk), . . . , (xi, yk) were all
fixed uncolored vertices when Ann was picking them consecutively (Ann picks vertices from
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Figure 2: Proper colorings of product C3�Cn

left to right in this row while they are fixed). If i 6= n, then let j ∈ {2, . . . , n} be the smallest
index, if it exists, such that (xn, yk), . . . , (xj , yk) were all fixed uncolored vertices when Ann
was picking them consecutively (Ann picks vertices from right to left in this row while they
are fixed). Note that i+ 1 ≤ j. If j = i+ 1, then all vertices were colored in this row (in this
case it can be easily seen why the last vertex in this row can be colored). But if j > i + 1,
then the vertices (xi+1, yk), . . . , (xj−1, yk) stay uncolored. In the case of i = n, we must check
that Ben really can color the last vertex in the last fiber Cyk

n , since this vertex now has tree
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colored vertices in its neighborhood.
Without loss of generality suppose that (x1, yk−1) was colored with color 1 and (x1, yk)

with color 2. Then (x2, yk−1) must have color 3 and (x2, yk) fixed color 1.

1. If n ≡ 0, 3 (mod 6), then the vertices (x1, yk) and (xn, yk−1) have color 2, (xn−1, yk)
color 1, hence Ben can color (xn, yk) with color 3.

2. If n ≡ 1 (mod 6), then the vertices (xn−1, yk) and (xn, yk−1) have color 3, (x1, yk) color
2, hence Ben can color (xn, yk) with color 1.

3. If n ≡ 2, 4 (mod 6), then the vertices (xn−1, yk) and (xn, yk−1) have color 3, (x1, yk)
color 2, hence Ben can color (xn, yk) with color 1.

4. If n ≡ 5 (mod 6), then the vertices (x1, yk) and (xn−1, yk) have color 2, (xn, yk−1) color
3, hence Ben can color (xn, yk) with color 1.

The coloring of the graph Cn�Cm can be done in several steps, in which a partition of
Cn�Cm into sets Ui is built. In the beginning, let U1 contain the vertices of the first row and
the first column, which are already colored. Now, Ann handles the rows Cy2

n , Cy3
n ,. . . , Cym

n in
this order, and adds the vertices, which were colored in this step, to U1. After Ann handled
the last row Cym

n , there could be some new fixed uncolored vertices in the row C
ym−1
n , which

were not fixed before. Therefore Ann handles again the row C
ym−1
n and adds newly colored

vertices to U1. But after C
ym−1
n is handled, again there could be some new fixed uncolored

vertices in the row C
ym−2
n , so Ann handles again this row. It is obvious that Ann must again

handle the rows C
ym−1
n , . . . ,Cy2

n in this order (some of those fibers might have already been
colored before, so she just skips those rows), and add all newly colored vertices to U1. We call
this procedure, when Ann handles the rows from the top to the bottom and afterwards from
the bottom to the top, the backtracking procedure. Ann continuous to apply the backtracking
procedure until either the whole graph Cn�Cm has been colored or until there are no more
uncolored fixed vertices available. She adds all vertices colored during that process to U1.

If U1 = V (Cn�Cm), then all vertices of Cn�Cm have been colored. Otherwise U1 (
V (Cn�Cm). Let U2 = ∅. Ann now determines the first row in which there is some uncolored
vertex and shows to Ben the uncolored vertex with the smallest second index, and repeatedly
applies the backtracking procedure on the graph Cn�Cm starting from this row/vertex.
She adds newly colored vertices to U2. The procedure again ends if either the whole graph
Cn�Cm has been colored or there are no more uncolored vertices with a fixed color. If
U1 ∪ U2 6= V (Cn�Cm), Ann again selects the first row in which there is some uncolored
vertex, and repeats the backtracking procedure. When repeating this process, we produce
pairwise disjoint sets U1, . . . , Uk, for which

⋃n
k=1 Uk = V (Cn�Cm). However, one needs to

show that this is indeed always possible to achieve, and that we consequently obtain a proper
coloring of the whole graph.

We think that this strategy enables Ann to win the game on the Cartesian product of two
cycles with only 3 available colors, which would give χi(Cn�Cm) = 3 for all integers m and
n, where at least one of them is odd. Moreover, we pose the following, much more general
question, for which we suspect it has a positive answer.

Question 1 Is it true that χi(G�H) = max{χi(G), χi(H)} holds for all graphs G and H?
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