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Abstract

For an integer k ≥ 3, a k-path vertex cover of a graph G = (V,E) is a set
T ⊆ V that shares a vertex with every path subgraph of order k in G. The
minimum cardinality of a k-path vertex cover is denoted by ψk(G). We give
estimates — mostly upper bounds — on ψk(G) in terms of various parameters,
including vertex degrees and the number of vertices and edges. The problem is
also considered on chordal graphs and planar graphs.
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1 Introduction

A k-path vertex cover (or Pk-transversal) in a graph G is a set T ⊆ V (G) that shares
at least one vertex with every path of order k in G; i.e., G − T does not contain any
Pk subgraph. In this paper we study the minimum cardinality of a k-path vertex cover
in G, denoted by ψk(G). Remark that the case of k = 2 means just the vertex cover
(transversal) that is the complement of an independent set. It immediately follows
that ψ2(G) = |V (G)| − α(G), where α(G) denotes the size of a maximum stable set
and is called the independence number of G. Since these are central notions in graph
theory and the literature contains many related deep results, here we concentrate on
the cases with k ≥ 3. The case of k = 3 is in close relation to the so-called dissociation
number, which was firstly studied by Yannakakis [26]. A subset of vertices in a graph
G is called a dissociation set if it induces a subgraph with maximum degree at most 1.
The size of a maximum dissociation set in G is called the dissociation number of G and
is denoted by diss(G). Thus, ψ3(G) = |V (G)|−diss(G). Several other connections can
be found; for instance in [3], k-path vertex cover was shown to be related to k-path
partition.

Application in Information Technology. The motivation for the invariant ψk(G),
which was introduced in [5], arises from communications in wireless sensor networks,
where the data integrity is ensured by using Novotný’s k-generalized Canvas scheme
[19]. The topology of wireless sensor networks can be represented by a graph, in
which vertices represent sensor devices and edges represent communication channels
between them. We suppose that there are protected and unprotected sensor devices in
the model. The attacker is unable to copy secrets from a protected device; however,
an unprotected device can be captured by the attacker who can gain control over it.
During the deployment and initialization of a sensor network, it should be ensured
that at least one protected vertex exists on each path of order k in the communication
graph. The placement of protected sensors in a network is usually expensive. Thus an
important goal is to minimize the cost of the network by minimizing the number of
protected vertices, which coincides with the calculation of a minimum k-path vertex
cover in a graph that represents such a network.

Known results on algorithmic complexity. It was proved in the pilot paper that
the computation of ψk(G) is in general an NP-hard problem, but was shown to be
solvable in linear time over the class of trees.

The k-path vertex cover problem has gained much attention in the area of compu-
tational graph theory. Approximation algorithms for ψ3(G) were given by Tu et al.
in [24, 23] and an exact algorithm for computing ψ3(G) in running time1 O∗(1.5171n)
for a graph of order n was presented in [12], and was later improved to O∗(1.366n) in
[25]. The parametrized version of the same problem was also considered. The goal

1suppressing polynomially bounded factors by the O∗-notation
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is to decide whether there is a k-path vertex cover in G of size at most `, where k
and ` are fixed positive integers. A fixed parameter tractable (FPT) algorithm for the
3-path vertex cover whose time complexity is O∗(1.713`) was given by Tsur in [22].
Tsur recently presented a FPT algorithm for the 4-path vertex cover which runs in
O∗(2.619`) [21].

The weighted version of k-path vertex cover was introduced by Brešar et al. in [6].
In this version vertices are given weights and the problem is to find a minimum-weight
set such that the graph obtained by deleting this set of vertices has no path Pk as
a subgraph. Some special classes of graphs were considered, for instance, complete
graphs and cycles, and an algorithm that computes the weighted k-path vertex cover
number of a tree with time complexity O(k · |V (G)|) was presented. Approximation
algorithms for the weighted and connected versions of the k-path vertex cover were
considered in [15], and later also in [20] where the emphasis was primarily on k = 3. In
both cases an extra assumption was present, namely that the subgraph induced by a
k-path vertex cover was connected. The connected version of the k-path vertex cover
was also studied in [7, 17].

Known results on graph products. The k-path vertex cover problem was heavily
studied on several types of graphs products. Already in [4] the Cartesian product of
two paths, i.e. grid graphs, was considered. In [16] those results were extended to the
Cartesian product of three paths. The results on grid graphs were later improved in
[11], and the ideas of the proofs were used on the strong product of paths. In the
same paper an upper an a lower bound were given for the k-path vertex cover of the
lexicographic product of arbitrary graphs. The upper bound was shown to be tight for
any choice of factor graphs when k = 3. The k-path vertex cover of the rooted product
of arbitrary graphs was considered in [10].

Some known lower and upper bounds. Throughout many articles on the k-path
vertex cover the following problem appeared to gain much attention.

Problem 1 For a given k, determine the set of pairs (a, b) of nonnegative reals such
that ψk(G) ≤ an + bm holds for every graph with n vertices and m edges. Study the
same also for interesting classes of graphs.

In the next theorems we cite some tight related results from the paper of Brešar et
al. [5], which will be applied later.

Theorem 2 ([5]) Let T be a tree of order n and k an integer with k ≥ 3. Then, we
have ψk(T ) ≤ n/k.

Theorem 3 ([5]) Let G be a graph of order n and size m. Then

ψ3(G) ≤ 2n+m

6
and ψ3(G) ≤ m

2
.

Moreover, if G is subcubic, then ψ3(G) ≤ n/2 also holds.
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Note that ψ3(G) ≤ m/2 follows from the procedure in which we sequentially remove
a vertex of degree at least 2 from G and put it into the 3-path vertex cover. During
this procedure, we delete at most m/2 vertices and what remains at the end is a graph
with maximum degree at most 1, hence P3-free. Further, if ∆(G) ≥ 3, then the strict
inequality ψ3(G) < m/2 holds as we may remove a vertex and at least three incident
edges in the first step of the procedure.

The relation ψ3(G) ≤ n/2 can also be obtained via an iterated algorithmic process.
Here, starting with any partition (V1, V2) of the vertex set of a subcubic graph, a vertex
which has more than one neighbor in its partition class is moved to the other class,
and hence increasing the size of the cut, until no such vertices remain. Then each of
V1 and V2 is a 3-path vertex cover.

In [4] the upper bound

ψ3(G) ≤ `

`+ 2
n+

1

(`+ 1)(`+ 2)
m

is established, where ` =
⌈
m
n

⌉
− 1. Also this bound is tight.

Our results. In this paper we continue this track of research and prove upper bounds
on ψk(G) in terms of various parameters, including vertex degrees and the number of
vertices and edges. We generalize the result of [4] for d-regular graphs,

ψk(G) ≥ d− k + 2

2d− k + 2
n, (1)

to arbitrary graphs in terms of minimum and maximum degree. We also consider the
k-path vertex cover problem on some famous classes of graphs, such as chordal graphs
and planar graphs. Our paper is structured as follows. In Section 2 we study Problem 1
and prove general upper bounds on ψ3(G), ψ4(G), and ψk(G) in terms of the order and
size of G.

We also present a method that can be applied to generate, from feasible pairs (a, b)
of Problem 1, further feasible pairs (a′, b′). In Section 3 we give lower and upper bounds
on ψk(G) with functions of vertex degrees. Chordal graphs are considered in Section 4.
Section 5 describes a way to improve the estimates further, and contains more open
problems. In particular, Subsection 5.2 discusses the problem on planar graphs. Some
further problems are mentioned in the concluding section.

Notation

We use standard notation as follows. For a simple undirected graph G we usually
denote the order |V (G)| and the size |E(G)| by n and m. The notations δ(G), ∆(G),
χ(G), and ω(G) stand for the minimum vertex degree, the maximum vertex degree, the
chromatic number, and the clique number of G, respectively. We will simply write δ,
∆, χ, and ω if G is clear from the context. The degree of a vertex v ∈ V (G) in graph
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G is denoted by dG(v), and the set of its neighbors is denoted by NG(v) and called
the open neighborhood of v. Moreover, we define NG[v] = NG(v) ∪ {v} as the closed
neighborhood of v. Also here, if G is understood, we will simply write d(v), N(v) and
N [v]. The average vertex degree is d = d(G) = 2m/n. The subgraph induced by vertex
set Y ⊆ V (G) in G is referred to as G[Y ]. Notations Pk, Ck, and Kk stand for the
path, cycle, and complete graph of order k, respectively.

2 Upper bounds related to Problem 1

Here our goal is to make a modest step in the direction of solving Problem 1. Suppose
that an + bm is a general upper bound on ψk(G) for an integer k ≥ 3. If b = 0,
the best estimation is obtained with a = 1, as shown by complete graphs which have
ψk(Kn) = n − k + 1; and for a = 0 with k = 3 the best pair is b = 1/2. The
corresponding upper bound is attained by graphs in which every component is a P3.
Also, (a, b) = (1/3, 1/6) provides a valid upper bound, by Theorem 3.

Theorem 4 If G is a graph of order n and size m, then

ψ3(G) ≤ n+m

4
,

where equality holds if and only if all components of G are isomorphic to C4.

Proof. We proceed by induction on n and suppose that G is given on n ≥ 3 vertices.
If ∆(G) ≤ 3, the inequalities ψ3(G) ≤ n/2 and ψ3(G) ≤ m/2 from Theorem 3 imply
the statement. Otherwise, there exists a vertex v ∈ V (G) with dG(v) ≥ 4. By the
induction hypothesis, G′ = G− v satisfies the inequality. Note that G′ has n′ = n− 1
vertices and m′ ≤ m − 4 edges and further, if T ′ is a 3-path vertex cover in G′, then
T ′ ∪ {v} is a 3-path vertex cover in G. We may conclude that

ψ3(G) ≤ ψ3(G′) + 1 ≤ n′ +m′

4
+ 1 ≤ n+m− 5

4
+ 1 <

n+m

4
.

This completes the proof for the upper bound.
Now, we consider the graphs attaining the upper bound in the theorem. Let G be

any graph with ψ3(G) = n+m
4

. It suffices to prove that if G is connected, then G ∼= C4.
It follows from Theorem 3 that n = m, for otherwise ψ3(G) ≤ min{n

2
, m

2
} < n+m

4
. As

we discussed after Theorem 3, ∆(G) ≥ 3 would imply ψ3(G) < m/2 and, therefore,
ψ3(G) < n+m

4
which is a contradiction. Hence, G satisfies ∆(G) ≤ 2 and n = m. This

implies G ∼= Cn. Then ψ3(G) =
⌈
n
3

⌉
, which is easily seen to be smaller than n/2 unless

n = 4. �

For the upper bound stated in Theorem 5 below, we also have a sharp example,
namely H = K6 −M which is obtained from the complete graph K6 by removing a
perfect matching M. Then we have n = 6, m = 12, and ψ3(H) = 4.
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Theorem 5 Let G be a graph of order n and size m. Then

ψ3(G) ≤ 4n+m

9
.

Proof. By Theorem 3, every graph satisfies ψ3(G) ≤ 2n+m
6

. To show that ψ3(G) ≤
4n+m

9
is also true, we first note that the inequality clearly holds for graphs of order at

most 2. Then, we proceed by induction on the order n of G and consider two cases.

• If m ≤ 2n, the inequality chain

4n+m

9
=
n

3
+
m

6
+
(n

9
− m

18

)
≥ n

3
+
m

6
≥ ψ3(G)

establishes the statement without using the induction hypothesis.

• If m > 2n, then ∆(G) ≥ 5 follows. Let v be a vertex of degree at least 5.
Deleting v from G, we obtain the graph G′ which is of order n′ = n − 1 and
of size m′ ≤ m − 5. By the induction hypothesis, G′ satisfies the inequality,
i.e. ψ3(G′) ≤ (4n′ + m′)/9. Moreover, if T ′ is a 3-path vertex cover in G′, then
T ′ ∪{v} covers all P3 subgraphs in G. This yields ψ3(G) ≤ ψ3(G′) + 1. Then, we
have the desired result by the following relations:

ψ3(G) ≤ ψ3(G′) + 1 ≤ 4n′ +m′

9
+ 1 ≤ 4(n− 1) + (m− 5)

9
+ 1 =

4n+m

9
.

This completes the proof. �

We also present a general result that shows how one can obtain new feasible pairs
(a′, b′) if a feasible pair (a, b) is already given.

Theorem 6 Let a and b be nonnegative reals and k an integer with k ≥ 3 such that
ψk(G) ≤ an + bm holds for every graph G. Moreover, let x be an arbitrary positive
integer which satisfies

1− a− b
b

≤ x ≤ 2− 2a

b
, (2)

and define a′ and b′ as follows:

a′ = a+ bx− x(1 + b− a)

x+ 2
, b′ =

2− 2a− bx
x+ 2

.

Then, the inequality
ψk(G) ≤ a′n+ b′m (3)

holds for every graph G.
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Proof. Let a, b, a′, b′ and x satisfy the conditions in the theorem. We introduce the
notation

y =
x(a+ b+ bx− 1)

x+ 2
.

By (2), we have a+ b+ bx− 1 ≥ 0 that implies y ≥ 0. One can check that a′ = a+ y
and b′ = b− 2y

x
. As the second inequality in (2) is equivalent to bx ≥ 2y, we have b′ ≥ 0

and a′ ≥ a ≥ 0. Consequently, the right-hand side of (3) is always nonnegative and
inequality (3) clearly holds for small graphs with n ≤ k − 1. We proceed by induction
on n. Consider a graph G of order n and size m.

• First, suppose that m ≤ xn
2

. This implies n − 2m
x
≥ 0. Using this relation and

rewriting the formula a′n+ b′m, we get

a′n+b′m = (a+y)n+

(
b− 2y

x

)
m = (an+bm)+y

(
n− 2m

x

)
≥ an+bm ≥ ψk(G)

that verifies (3) for the first case.

• Next, suppose that the strict inequality m > xn
2

holds. It implies d̄(G) > x and
therefore ∆(G) ≥ x + 1 holds. Let v be a vertex with dG(v) ≥ x + 1. Deleting
v from G, we obtain a graph G′ with n′ = n − 1 vertices and m′ ≤ m − (x + 1)
edges. Since every edge that was deleted from G is covered by v, we have ψk(G) ≤
ψk(G

′)+1. By our hypothesis, G′ satisfies (3). The following computation proves
the same property for G:

a′n+ b′m ≥ (a′n′ + b′m′) + a′ + b′(x+ 1)

≥ ψk(G
′) + (a+ y) +

(
b− 2y

x

)
(x+ 1)

= ψk(G
′) + a+ bx+ b− x+ 2

x
y

= ψk(G
′) + a+ bx+ b− (a+ b+ bx− 1)

= ψk(G
′) + 1 ≥ ψk(G).

This finishes the proof of the theorem. �

Since the formulation of the above theorem is quite technical, we present some
upper bounds which can be obtained starting with Theorem 5 and applying Theorem 6
iteratively. We begin with the case of k = 3 and with the upper bound 4

9
n + 1

9
m and

set a0 = 4/9, b0 = 1/9. Then for each 1 ≤ i ≤ 10, we apply Theorem 6 with x = i+ 4,
a = ai−1, and b = bi−1.

7



Corollary 7 For every graph G of order n and size m, the following inequalities hold:

ψ3(G) ≤ 11

21
n+

5

63
m,

ψ3(G) ≤ 7

12
n+

5

84
m,

ψ3(G) ≤ 17

27
n+

5

108
m,

ψ3(G) ≤ 2

3
n+

1

27
m,

ψ3(G) ≤ 23

33
n+

1

33
m,

ψ3(G) ≤ 13

18
n+

5

198
m,

ψ3(G) ≤ 29

39
n+

5

234
m,

ψ3(G) ≤ 16

21
n+

5

273
m,

ψ3(G) ≤ 7

9
n+

1

63
m,

ψ3(G) ≤ 19

24
n+

1

72
m.

Proposition 8 If G is a graph of maximum degree ∆(G) ≤ 2, then

ψk(G) ≤ 2

k + 1
n and ψk(G) ≤ 2

k + 1
m

hold for every k ≥ 3. Further, the first inequality is tight if and only if each component
of G is a (k + 1)-cycle; the second one is tight if and only if each component is either
an isolated vertex or a (k + 1)-cycle.

Proof. It follows from ∆(G) ≤ 2 that every component of G is either a path or a
cycle. Since ψk is an additive invariant and

ψk(Pn) =
⌊n
k

⌋
=

⌊
m(Pn) + 1

k

⌋
≤ ψk(Cn) =

⌈n
k

⌉
=

⌈
m(Cn)

k

⌉
holds for every n ≥ k, moreover ψk(Pn) = ψk(Cn) = 0 holds if n < k, we easily derive

ψk(G) ≤ 2

k + 1
m ≤ 2

k + 1
n

and identify the sharp cases. �

Theorem 9 Let G be a graph of order n and size m. Then

ψ4(G) ≤ n+ 3m

10
.
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Proof. We proceed by induction on n. If ∆(G) ≤ 2, then 5ψ4(G) ≤ 2n and 15ψ4 ≤ 6m
follow by Proposition 8. Therefore, we have 20ψ4(G) ≤ 2n + 6m and the statement
follows. If ∆(G) ≥ 3, there is a vertex v of degree at least 3 and we may consider the
graph G′ = G − v. Since G′ has n′ = n − 1 vertices, m′ ≤ m − 3 edges and, by our
hypothesis, it satisfies ψ4(G′) ≤ (n′ + 3m′)/10,

ψ4(G) ≤ ψ4(G′) + 1 ≤ n′ + 3m′

10
+ 1 ≤ (n− 1) + 3(m− 3)

10
+ 1 =

n+ 3m

10

is obtained that completes the proof. �

Theorem 9 holds with equality if each component of G is a C5. (Currently the
5-cycle is the only connected graph for which we know the equality.) Moreover, using
Theorem 6, further upper bounds on ψ4 can be generated. However, we do not list such
bounds here. Instead, generalizing Theorem 6 we close this section with describing a
general class of recursions showing how further feasible pairs (a′, b′) can be obtained
from an already known feasible pair (a, b).

Theorem 10 Assume that ψk(G) ≤ an + bm is a universally valid inequality for all
graphs G. Suppose further that the real numbers q, w > 0 and the integer x > 0 satisfy
the following inequalities:

w ≤ 2q, a+ qx < 1, w ≤ (a+ b− 1) + (q + b)x

x+ 1
.

Then ψk(G) ≤ a′n+ b′m also holds for every graph G with the values

a′ = a+ qx, b′ = b− w.

Proof. Let us note first that under the given conditions we have b′ > 0. Indeed, from
the assumed inequalities we obtain

1 ≤ a+ qx+ bx+ b− (x+ 1)w < 1 + (b− w)(1 + x).

If G has average degree at most x, then m ≤ xn/2 holds, thus

ψk(G) ≤ an+ bm = (a′ − qx)n+ (b′ + w)m = a′n+ b′m− (qxn− wm)

≤ a′n+ b′m− (qxn− 2qm) ≤ a′n+ b′m.

Otherwise there exists a vertex v whose degree is at least x + 1. Supplementing any
k-path vertex cover of the graph G′ = G − v with v we obtain a k-path vertex cover
of G. Here G′ has order n′ = n − 1 and size m′ ≤ m − x − 1. Hence, assuming by
induction that (a′, b′) is a feasible pair for the smaller graph G′, we obtain:

ψk(G) ≤ 1 + ψk(G
′) ≤ 1 + a′(n− 1) + b′(m− x− 1)

= a′n+ b′m− (a+ qx+ (b− w)(x+ 1)− 1)

≤ a′n+ b′m.
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Based on this theorem, one can derive an infinite class of feasible pairs (a′, b′)
already from one single pair (a, b). Nevertheless, we think that the most interesting
case occurs when the two upper-bound conditions on w coincide. This special value is
the one exposed in Theorem 6 above. More explicitly, it is obtained by substituting
q = (a+b+bx−1)

x+2
and w = 2q.

3 Estimates in terms of vertex degrees

In this section we give general estimations on ψk(G) in terms of the order and of the
minimum, maximum, and average vertex degrees.

3.1 In terms of δ and ∆

In the proof of the first general upper bound we will refer to the following decomposition
theorem of Lovász.

Theorem 11 ([18]) If a and b are nonnegative integers and G is a graph of maximum
degree at most a+ b+1, then the vertex set of G can be partitioned into two sets which
induce subgraphs of maximum degree at most a and b.

The following theorem was proved by Brešar et al. [5] in 2011.

Theorem 12 ([5]) Let G be a graph of order n and of maximum degree ∆. Then

ψ3(G) ≤
⌈

∆−1
2

⌉⌈
∆+1

2

⌉ n.
By definition, ψk(G) ≤ ψ3(G) if k ≥ 3. Theorem 12 therefore implies ψk(G) ≤

∆−1
∆+1

n for every k ≥ 3 if ∆ is odd and ψk(G) ≤ ∆
∆+2

n if ∆ is even. For k = 3 and any
odd ∆ the bound is tight, as shown by the complete graphs K∆+1. Similarly, omitting
a perfect matching from K∆+2 we obtain tight examples for all even ∆ with k = 3.

Our next result shows that the upper bound can be improved for all k ≥ 4 and all
∆ ≥ 4. Note that part (i) of Theorem 13 gives the same bound as Theorem 12 for
k = 3 and that the bound stated for ∆ = 2 here is exactly the same as the one in
Proposition 8.

Theorem 13 Let k and ∆ be integers with k ≥ 3 and ∆ = 2 or ∆ ≥ 4, and let G be
a graph of order n and of maximum degree at most ∆. Then the following hold.

(i) If ∆ ≥ 2 is even, then

ψk(G) ≤ (k − 1)(∆− 2) + 4

(k − 1)∆ + 4
n.

10



(ii) If ∆ ≥ 5 is odd, then

ψk(G) ≤ (k − 1)(∆− 3) + 8

(k − 1)(∆− 1) + 8
n.

Proof. We fix an integer k ≥ 3 and proceed by induction on ∆. If ∆(G) ≤ 2 then, by
Proposition 8, ψk(G) ≤ 2

k+1
n holds. This verifies the basic case of (i). Now, assume

that ∆ is even, ∆ ≥ 4, and that G has maximum degree at most ∆. By Theorem 11,
V (G) can be partitioned into two sets A and B, such that ∆(G[A]) ≤ ∆ − 2 and
∆(G[B]) ≤ 1. Since G[B] is Pk-free, ψk(G) ≤ |A| holds. On the other hand, if T is a
minimum k-path vertex cover in G[A], then B∪T covers all paths of order k in G, and

we have ψk(G) ≤ |B|+ |T |. If |A| ≤ (k−1)(∆−2)+4
(k−1)∆+4

n holds, then ψk(G) ≤ |A| establishes
the upper bound. In the other case, we observe that

ψk(G) ≤ |B|+ |T | ≤ n− |A|+ (k − 1)(∆− 4) + 4

(k − 1)(∆− 2) + 4
|A|

= n− 2(k − 1)

(k − 1)(∆− 2) + 4
|A| < (k − 1)(∆− 2) + 4

(k − 1)∆ + 4
n.

This proves (i).
Suppose next that ∆ is odd and ∆ ≥ 5. Say, ∆ = 2a+2b+1 where a, b are positive

integers. From Theorem 11 we know that there exists a vertex partition V (G) = A∪B
such that ∆(G[A]) ≤ 2a and ∆(G[B]) ≤ 2b. Moreover, by (i), there exist k-path vertex
covers TA in G[A] and TB in G[B] with

|TA| ≤
(k − 1)(a− 1) + 2

(k − 1)a+ 2
|A|, |TB| ≤

(k − 1)(b− 1) + 2

(k − 1)b+ 2
|B|.

Both TA ∪B and TB ∪A are k-path transversals of G. Hence, denoting x = |A|/n and
y = |B|/n = 1− x, we have

ψk(G)

n
≤ min

(
(k − 1)(a− 1) + 2

(k − 1)a+ 2
x+ (1− x),

(k − 1)(b− 1) + 2

(k − 1)b+ 2
(1− x) + x

)
.

The first term of minimization is a decreasing function of x while the second term is
an increasing function. Hence, the upper bound never exceeds the one obtained when
the two numbers are equal, that is

(k − 1)(a− 1) + 2

(k − 1)a+ 2
x+ (1− x) =

(k − 1)(b− 1) + 2

(k − 1)b+ 2
(1− x) + x, (3)

k − 1

(k − 1)b+ 2
=

(
k − 1

(k − 1)a+ 2
+

k − 1

(k − 1)b+ 2

)
x,

1 =

(
(k − 1)b+ 2

(k − 1)a+ 2
+ 1

)
x.
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Recalling that 2a+ 2b = ∆− 1, the worst case occurs when

x =
(k − 1)(2a) + 4

(k − 1)(∆− 1) + 8
, y =

(k − 1)(2b) + 4

(k − 1)(∆− 1) + 8
.

Thus, substituting this particular value of x into the left-hand side of (3) we obtain

ψk(G)

n
≤ [(k − 1)(2a− 2) + 4] + [(k − 1)(2b) + 4]

(k − 1)(∆− 1) + 8

=
(k − 1)(∆− 3) + 8

(k − 1)(∆− 1) + 8
.

This proves (ii) and completes the proof of the theorem. �

For ∆ = 2, 4, 5, 6, 7, 8, 9, . . . the following sequence is obtained for the coefficients
of n, which is strictly increasing for every k ≥ 4:

1

2
<

k + 1

2k
<

k + 3

2k + 2
<

2k

3k − 1
<

2k + 2

3k + 1
<

3k − 1

4k − 2
<

3k + 1

4k
< · · ·

To derive a general lower bound in terms of minimum and maximum degree, we
need the following extremal result due to Erdős and Gallai.

Theorem 14 ([8]) If G is a graph on n vertices that does not contain a path of order

k, then it cannot have more than n(k−2)
2

edges. Moreover, the bound is achieved when
the graph consists of vertex-disjoint cliques on k − 1 vertices.

Now we are in a position to extend the inequality (1) from regular graphs to arbi-
trary graphs, using the approach in [4].

Theorem 15 Let G be a graph of order n with minimum degree δ and maximum
degree ∆. If k ≥ 3 and δ ≥ k − 1, then

ψk(G) ≥ δ − k + 2

δ + ∆− k + 2
n.

Proof. Let T ⊆ V (G) be a minimum k-path vertex cover of G, i.e. |T | = ψk(G), and
let T = V (G) − T . Further, let ET and ET be the set of edges induced by T and by
T , respectively, and ETT be the set of edges with one endvertex in T and the other in
T . We observe that ∑

v∈V (G)

d(v) = 2|E(G)| = 2|ET |+ 2|ETT |+ 2|ET |

12



and also that ∆ · |T | ≥ 2|ET |+ |ETT | and δ · |T | ≤ |ETT |+ 2|ET |. Since the subgraph
induced by T with edge set ET does not contain a path Pk, Theorem 14 implies |ET | ≤
|T |(k−2)

2
. From these formulas we get

|T | ≥ 1

∆
(2|ET |+ |ETT |) ≥

1

∆
|ETT | ≥

1

∆

(
δ|T | − 2|ET |

)
≥ 1

∆

(
δ|T | − |T |(k − 2)

)
=
δ − k + 2

∆
|T |.

It follows that

n = |T |+ |T | ≤ |T |+ ∆

δ − k + 2
|T | = δ + ∆− k + 2

δ − k + 2
|T |

and

ψk(G) = |T | ≥ δ − k + 2

δ + ∆− k + 2
n.

�

3.2 In terms of degree sequence and average degree

In this subsection, we improve the following upper bound that was proved in [5]:

ψk(G) ≤ n− 2k − 2

k

∑
v∈V (G)

1

1 + d(v)
.

Theorem 16 Let G be a graph of order n, without isolated vertices. Then for every
integer k ≥ 3 we have

ψk(G) ≤ n− 2k − 3

k − 1

∑
v∈V (G)

1

1 + d(v)
.

Proof. We take an ordering v1, v2, . . . , vn of the vertex set at random, each of
the n! orders being equally likely. Having an ordering, we define a weight function
w : V (G)→ {0, k−2

k−1
, 1} as follows. For each vertex vi, let w(vi) = 1 if vi has no neigh-

bor among v1, . . . , vi−1; let w(vi) = (k − 2)/(k − 1) if vi has exactly one neighbor with
an index smaller than i; and let w(vi) = 0 otherwise. Define Y as the set of vertices
assigned with positive weights. Hence, a vertex v belongs to Y if and only if it appears
as first or second vertex when the order is restricted to the closed neighborhood N [v]
of v. Since every order has the same probability, also the permutation of N [v] is a
random one and thus, each of the d(v) + 1 positions is equally likely to be taken by v.
Consequently the expected total weight is

E =

(
1 +

k − 2

k − 1

) ∑
v∈V (G)

1

1 + d(v)
.

13



Expectation of a random variable means a certain average over all outcomes of the
event, thus there must exist a vertex order under which the total weight on the vertices
of Y is at least E. Observe that G[Y ] is a forest. Indeed, should a cycle occur, its
vertex of largest index would have at least two neighbors preceding it, a contradiction
to the definition of Y . Remark further that any component of G[Y ] may contain at
most one vertex of weight 1. Otherwise adding an edge between two such vertices
would result in the same set Y and the subgraph induced by Y would contain a cycle
which is a contradiction.

Now, we prove that G[Y ] contains a set S of vertices such that G[S] is Pk-free and
|S| ≥

∑
v∈Y w(v). It suffices to prove the analogous statement for the components

of G[Y ]. If G[Yi] is a component that does not contain any Pk-subgraphs, we simply
set Si = Yi and |Si| ≥

∑
v∈Yi w(v) clearly holds. Otherwise, consider a minimum k-

path vertex cover Ti and its complement Si in the tree G[Yi]. By Theorem 2, we have
|Si| ≥ (k − 1)|Ti| and under the present assumption |Si| ≥ k − 1 holds. Moreover, at
most one vertex in Yi may have a weight of 1. We infer the following:∑
v∈Yi

w(v) =
∑
v∈Ti

w(v) +
∑
v∈Si

w(v) ≤ k − 2

k − 1
|Ti|+

k − 2

k − 1
|Si|+

1

k − 1

≤
(

k − 2

(k − 1)2
+
k − 2

k − 1

)
|Si|+

1

k − 1
= |Si| −

1

(k − 1)2
|Si|+

1

k − 1
≤ |Si|.

The set S =
⋃
Si induces a Pk-free subgraph in G and satisfies

|S| ≥
∑

v∈V (G)

w(v) ≥ E ≥ 2k − 3

k − 1

∑
v∈V (G)

1

1 + d(v)
.

Since the complement T = V (G) \ S is a k-path vertex cover in G, we conclude that

ψk(G) ≤ |T | ≤ n− 2k − 3

k − 1

∑
v∈V (G)

1

1 + d(v)
.

�

Corollary 17 If G is an isolate-free graph of order n and average degree d, then

ψk(G) ≤
(

1− 1

d+ 1
· 2k − 3

k − 1

)
n

for every k ≥ 3.

4 Chordal graphs

By definition, a graph is chordal if it does not contain any induced cycles on more than
three vertices. In this section we consider the well-studied class of chordal graphs and
prove upper bounds on ψk for its members, in terms of the chromatic number and the
order.

14



Theorem 18 If k ≥ 2 and G is a chordal graph of order n and chromatic number χ,
then

ψk(G) ≤
(

1− 2

χ
· k − 1

k

)
n.

Moreover, this bound is tight for every k with χ = 2 and also for every χ with k = 2.

Proof. Consider a χ-coloring of G, and let X1 and X2 be the two largest color classes.
Clearly, |X1|+ |X2| ≥ 2

χ
n. The subgraph induced by X1 ∪X2 is bipartite and chordal.

So, G[X1∪X2] is a forest, and it has a k-path vertex cover T with |T | ≤ (|X1|+|X2|)/k.
Since (V (G) \ (X1 ∪X2)) ∪ T is a k-path vertex cover in G, we have

ψk(G) ≤ n− (|X1|+ |X2|) +
1

k
(|X1|+ |X2|)

≤ n− k − 1

k
(|X1|+ |X2|)

≤
(

1− 2

χ
· k − 1

k

)
n.

Let now n be a multiple of k χ. If G = Pn (hence χ = 2), then the equality ψk(G) = n/k
holds for any k because a vertex has to be chosen into a k-path vertex cover from any
k consecutive vertices of Pn. Also, for k = 2 with arbitrary χ let G = P χ−1

n , the graph
obtained from Pn by joining any two vertices whose distance along the path is less than
χ. Then ψ2(G) = n−n/χ because χ−1 vertices have to be chosen into a 2-path vertex
cover from any χ consecutive vertices of P χ−1

n . �

The above inequality is not tight in general; an improvement for almost all pairs
k, χ (but not for all, cf. Table 1) is given by the following result. We state it in terms of
the clique number, due to the nature of its proof. But every chordal graph G satisfies
χ(G) = ω(G), so the two theorems might be formulated in the same way.

Theorem 19 If k ≥ 3 and G is a chordal graph on n vertices with clique number ω,
then

ψk(G) ≤ ω

ω + k − 1
n.

Proof. The validity of the assertion is easy to see if n ≤ ω + k − 1 because deleting
n− k + 1 vertices no room remains for Pk, hence ψk(G) ≤ n− k + 1 ≤ ω

ω+k−1
n if n is

so small. In the rest of the proof we assume n > ω + k − 1 and apply induction on n.
The following argument is inspired by the theory of treewidth, and in particular by

the notion of nice tree decomposition, but the formalism here is simpler because the
graph G is assumed to be chordal. A detailed general treatment of tree decompositions
can be found e.g. in the monograph [13], therefore we shall adopt facts from it without
further references.

Let v1, . . . , vn be the vertices of G. Then there exists a rooted binary tree, say F ,
and subtrees F1, . . . , Fn in it, where subtree Fi will represent vertex vi for i = 1, . . . , n,
with the following properties. For every node x of F , let us denote Sx = {i | x ∈ Fi}.

15



χ = ω 2 3 4 5 2 3 4 5

k = 2 1/2 2/3 3/4 4/5 2/3 3/4 4/5 5/6
k = 3 1/3 5/9 2/3 11/15 1/2 3/5 2/3 5/7
k = 4 1/4 1/2 5/8 7/10 2/5 1/2 4/7 5/8
k = 5 1/5 7/15 3/5 17/25 1/3 3/7 1/2 5/9
k = 6 1/6 4/9 7/12 2/3 2/7 3/8 4/9 1/2

Table 1: Comparison of Theorem 18 and Theorem 19, indicating best current bounds

• V (Fi) ∩ V (Fj) 6= ∅ if and only if vivj ∈ E(G).

• |Sx| ≤ ω for all x ∈ V (F ).

• If x has two children x′ and x′′, then Sx = Sx′ = Sx′′ .

• If x has one child x′, then Sx ⊂ Sx′ or Sx′ ⊂ Sx, moreover |Sx| = |Sx′| + 1 or
|Sx| = |Sx′ | − 1.

For every x ∈ V (F ) let Vx denote the set of those vertices vi for which there exists
an x′ in the subtree rooted at x in F such that i ∈ Sx′ . Then we have, in particular,
that |Vx| = n > ω + k − 1 if x is the root of F , while |Vx| = |Sx| ≤ ω if x is a leaf.
By the property expressed in the fourth bullet above, |Vx| can increase by at most 1
when we move from a node to its parent towards the root. Thus we can choose a node
x such that |Vx| = ω + k− 1. Now we put all v ∈ Sx into the k-path vertex cover T to
be constructed, delete the entire Vx from G, moreover omit those Fi which belong to
vertices vi ∈ Vx. After this, we keep only those nodes of F which are incident with at
least one of the remaining subtrees.

Observe that the Fj not containing x either are entirely in the subtree rooted at x
(hence they are omitted during this step) or are disjoint from the subtree rooted at x.
Consequently the vertex set corresponding to Sx is a vertex cut in G, and there is no
edge from Vx \T to G−Vx. It follows that G[Vx \T ] is Pk-free, and every k-path vertex
cover of G− Vx is completed to a k-path vertex cover of G with the current vertices of
T . Thus, applying the induction hypothesis we obtain

ψk(G) ≤ |Sx|+
ω

ω + k − 1
(n− |Vx|) ≤

ω

ω + k − 1
n.

�

5 Concluding remarks and open problems

In this concluding section we discuss a method which leads to further improved upper
bounds, study the case of planar graphs, and raise some problems which remain open
for future research.
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5.1 Bounds from maximum degree

An interesting aspect of Theorem 13 is that it offers a self-improving scheme. We
illustrate this with the case of ∆ = 11.

Theorem 20 If G is a graph on n vertices and ∆(G) = 11, then

ψk(G) ≤ 3k + 5

4k + 4
n

for every k ≥ 6.

Proof. By Theorem 11, G admits a vertex partition A ∪ B such that both G[A]
and G[B] have maximum degree at most 5. Assume without loss of generality that
|A| ≤ n/2 ≤ |B| holds, and let TB be a k-path vertex cover in G[B]. By Theorem 13
we can ensure

|TB| ≤
k + 3

2k + 2
|B| = |B| − k − 1

2k + 2
|B| ≤ |B| − k − 1

4k + 4
n.

Since A ∪ TB is a k-path vertex cover, and |A| + |B| = n, the claimed upper bound
follows. �

Certainly the inequality in the theorem is valid also for k ≤ 5, but to beat the
earlier formula 4k

5k−1
n we need (k − 1)(k − 5) > 0.

It is not clear at the moment, how strong upper bound can be derived as a limit of
this approach as ∆ gets large, and how restricted it will be as regards the value of k.

We should also note that it was necessary to exclude ∆ = 3 from the range of
validity in Theorem 13. Indeed, the formula in (ii) would then yield 4

k+3
n, i.e., the

coefficient of n would tend to zero as k gets large. But this would not be a valid
formula, as the next result shows.

Theorem 21 For every k, there are infinitely many 3-regular connected graphs G
such that ψk(G) > 1

4
|V (G)|.

Proof. Fix any k ≥ 3. It follows from results of Erdős and Sachs [9] that for every
even n ≥ 2k there exists a 3-regular graph G of order n such that the length of the
shortest cycle (i.e., the girth of G) is larger than k. Let now T be any k-path vertex
cover in G, and consider the induced subgraph H = G − T . Say, H has connected
components H1, . . . , Hs. Each Hi is a tree (of diameter at most k − 2). Regularity
of degree 3 implies that there are exactly |V (Hi)| + 2 edges — that is, more than the
order of Hi — from V (Hi) to V (G) \ V (Hi). Altogether more than |V (H)| edges go
from H to the vertices of T , while at most 3|T | edges go from T to H. It follows that
|T | > 1

3
|V (H)| and hence |T | > 1

4
n. �
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5.2 Planar graphs

In this subsection we present some partial results related to a conjecture which was first
mentioned by Brešar et al. in 2011. Note that it is easy to construct planar graphs that
satisfy the relation with equality, e.g. the vertex-disjoint union of octahedron graphs,
adjacent in any planar way.

Conjecture 22 ([5]) If G is a planar graph of order n, then ψ3(G) ≤ 2
3
n.

It is a basic fact that ω(G) ≤ 4 holds for every planar graph. Then, Theorem 19
allows us to conclude that Conjecture 22 is true for those planar graphs which are also
chordal. We may also derive upper bounds on ψk(G) for k ≥ 4.

Corollary 23 If G is a graph of order n which is chordal and planar, then

ψ3(G) ≤ 2

3
n, ψ4(G) ≤ 4

7
n, and ψ5(G) ≤ 1

2
n.

On the class of K3-free planar graphs Theorem 5 and the inequality m ≤ 2n − 4
together imply

ψ3(G) ≤ 4n+m

9
≤ 4n+ 2n− 4

9
=

2

3
n− 4

9
.

Therefore, Conjecture 22 is also true for K3-free planar graphs. Moreover, Corollary 28
will show that the upper bound 2n/3 can be considerably improved on this graph class.

The forest number a(G) of a graph G is defined as the maximum number of vertices
in an induced forest of G. As it is mentioned shortly in the concluding section of [5],
there is an important relation between the k-path vertex cover number and the forest
number. For the sake of completeness, we present a proof for this statement.

Proposition 24 ([5]) For every integer k ≥ 3 and for every graph G of order n,

ψk(G) ≤ n− k − 1

k
a(G).

Proof. Consider a set S of vertices such that |S| = a(G) and G[S] is a forest. By
Proposition 2, every k-path inside G[S] can be covered by a set T of at most |S|/k
vertices. The set (V (G) \ S)∪ T is clearly a k-path vertex cover in G. Hence, we have

ψk(G) ≤ n− |S|+ |S|
k

= n− k − 1

k
|S| = n− k − 1

k
a(G).

�

The following is a famous unsolved problem on the forest number of planar graphs.

Albertson–Berman Conjecture ([1]) If G is a planar graph of order n, then
a(G) ≥ n/2.
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Proposition 24 shows that the Albertson–Berman Conjecture, if true, implies Con-
jecture 22. Combining Proposition 24 and the following two results we may also con-
clude some upper bounds on ψk(G).

Theorem 25 ([2]) If G is a planar graph of order n, then a(G) ≥ 2
5
n.

Theorem 26 ([14]) If G is a planar graph of order n that is K3-free, then a(G) ≥
71
128

n+ 9
16

.

Corollary 27 If G is a planar graph of order n, then

ψ3(G) ≤ 11

15
n < 0.734n

and

ψ6(G) ≤ 2

3
n.

Corollary 28 If G is a planar and K3-free graph on n vertices, then

ψ3(G) ≤ 121

192
n− 3

8
.

5.3 Further conjectures and open problems

Some of the estimates proved in this paper are tight, while some others probably aren’t.
In particular, on the class of chordal graphs we expect that the following improvement
can be made.

Conjecture 29 If k ≥ 3 and G is a chordal graph with clique number ω and n =
|V (G)|, then

ψk(G) ≤ ω − 1

ω + k − 2
n.

The analogous inequality for k = 2 can easily be seen for every graph in which
the equality χ = ω is valid — hence for all perfect graphs and in particular for every
chordal graph — by taking a proper vertex coloring with ω colors and deleting the
largest color class.

The following further problems arise in a natural way in connection with our results
on planar graphs.

Problem 30 Determine the smallest constants c1,k and c2,k such that

(i) if G is planar, then ψk(G) ≤ (c1,k + o(1))n;

(ii) if G is planar and K3-free, then ψk(G) ≤ (c2,k + o(1))n,

as n→∞.

Note that Conjecture 22 formulates the explicit guess c1,3 = 2/3.

Corollary 7 offers various upper bounds on ψ3(G). The following problem naturally
arises.

Problem 31 Are the upper bounds stated in Corollary 7 sharp?
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Discrete Appl. Math. 159 (2011) 1189–1195.
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