Essential Lower Bounds on the Matching Number and Essential Upper Bounds on the Total Domination Number

Michael A. Henning Department of Pure and Applied Mathematics University of Johannesburg South Africa

Abstract

The matching number, $\alpha'(G)$, of a graph G is the number of edges in a maximum matching of G. The total domination number, $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G, where a set S of vertices in a graph G is a total dominating set of G if every vertex has a neighbor in S. Let n_G and m_G denote the number of vertices and edges, respectively, in G.

The first result in this talk is to prove that all essential lower bounds on the matching number of a graph with maximum degree k can be written in a unified form for all $k \geq 3$. For this purpose, we give a complete description of the set L_k of pairs (γ, β) of real numbers with the following property. There exists a constant K such that $\alpha'(G) \geq \gamma n_G + \beta m_G - K$ for every connected graph G with maximum degree at most k.

Our second result is to prove that all the essential upper bounds on the total domination number of a graph G without isolated vertices and isolated edges can be written in the unified form $\gamma_t(G) \leq (2an_G + 2bm_G)/(3a + 2b)$ for constants $b \geq 0$ and $a \geq \frac{2}{3}(1-b)$.

References

- M. A. Henning, Essential upper bounds on the total domination number. Discrete Applied Math. 244 (2018), 103–115.
- [2] M. A. Henning and A. Yeo, Total domination and minimum degree. Chapter 5 in Total Domination in Graphs (Springer Monographs in Mathematics) 2013, pp. 39–54.
- [3] M. A. Henning and A. Yeo, Tight lower bounds on the matching number in a graph with given maximum degree. J. Graph Theory. Published online: 06 February, 2018.