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Koroška cesta 160, 2000 Maribor, Slovenia

marko.jakovac@um.si

Abstract

The 2-domination number γ2(G) of a graph G is the order of a smallest set D ⊆ V (G)
such that each vertex of V (G)\D is adjacent to at least two vertices inD. The annihilation
number a(G) of G is the largest integer k such that there exist k different vertices in G
with degree sum of at most |E(G)|. It is conjectured that γ2(G) ≤ a(G) + 1 holds for
every nontrivial connected graph G. The conjecture was proved for graphs with minimum
degree at least 3, and remains unresolved for graphs with minimum degree 1 or 2. In this
paper we establish the conjecture for block graphs.
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1 Introduction

Graphs considered in this paper are nontrivial, finite, simple, and undirected. A nontrivial
graph means a graph on at least two vertices. Let G = (V,E) be a graph. Then V = V (G)
denotes the set of vertices of order n(G) = |V |, and E = E(G) denotes the set of edges of
size m(G) = |E|. The degree of a vertex v ∈ V in graph G is the number of edges incident
with vertex v and is denoted by dG(v). A vertex v of degree 1 is called a pendant vertex (or a
leaf), while its only neighbor is called a support vertex. If a vertex has at least two neighbors
which are pendant vertices, then we refer to it as a strong support vertex. The minimum and
maximum degree among all vertices of G are denoted by δ(G) and ∆(G), respectively. For
a vertex v ∈ V (G), the set of its neighbors is called the open neighborhood of v and denoted
by NG(v). If G is clear from the context, then instead of dG(v) and NG(v) we will write d(v)
and N(v), respectively.

For a set X ⊆ V we define the graph G−X as the graph obtained from G by deleting the
vertices in X and all edges incident with them. Moreover, if u1u2 ∈ E and v1v2 /∈ E, where
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u1, u2, v1, v2 ∈ V , notations G−u1u2 and G+v1v2 will be used for the graphs (V,E \{u1u2})
and (V,E ∪ {v1v2}), respectively.

A connected graph is called a block graph if each 2-connected component of G is a clique.
An example of a block graph can be seen in Figure 2.

For k ≥ 1, a k-dominating set of a graph G is a set D ⊆ V (G) such that each vertex
of V (G)\D is adjacent to at least k vertices in D. The k-domination number of G is the
minimum cardinality of a k-dominating set of G, and is denoted by γk(G). Thus, a 1-
dominating set is a usual dominating set, and the 1-dominating number equals the well-known
and studied domination number γ(G). The notion of a k-dominating set was introduced by
Fink and Jacobson [15]. More on k-domination can be found in the book written by Haynes,
Hedetniemi, and Slater [19], and a nice survey was written on this topic by Chellali, Favaron,
Hansberg, and Volkamnn [7].

Domination has applications in sensor networks which can be modeled as graphs such that
the vertices represent the sensors and two vertices are adjacent if and only if the corresponding
devices can communicate with each other. Then, a dominating set D of such a graph G can
be interpreted as a collection of cluster-heads, as each sensor which does not belong to D has
at least one head within communication distance. In this sense, a k-dominating set D may
represent a dominating set which is (k − 1)-fault tolerant, which means that in the case of
failure of at most (k− 1) cluster-heads, each remaining vertex is either in connection with at
least one head or is a head by itself. The price of this k-fault tolerance can be very high, but
for the usual cases arising in practice, 2-domination might be enough and it does not require
extremely many heads. Since it is important to lower the cost of sensors, it is necessary to
obtain good bounds for this invariant. Therefore, the concept of 2-domination was studied
extensively. Good bounds for k-domination number, and in particular 2-domination number,
were obtained in [5, 6, 13, 14, 17, 18]. There are many further kinds of applications of k-
domination, e.g. in [20] a facility location problem was described, and requires that each
region is either served by its own facility or has at least two neighboring regions with such a
service. Recently, different versions of 2-domination were considered, for instance 2-rainbow
domination and Roman 2-domination [1, 2, 8, 9].

In this paper we focus on the 2-domination number and its relation to another invariant
called the annihilation number. For a subset S ⊆ V (G) we define

∑

(S,G) =
∑

v∈S

dG(v).

Let v1, v2, . . . , vn be an ordering of the vertices of G such that d(v1) ≤ d(v2) ≤ · · · ≤ d(vn).
The annihilation number a(G) is the largest integer k such that

∑k
i=1 d(vi) ≤ m(G), or

equivalently, the largest integer k such that
∑k

i=1 d(vi) ≤
∑n

i=k+1 d(vi). The value a = a(G)
is the only integer satisfying both

a
∑

i=1

d(vi) ≤ m(G) and
a+1
∑

i=1

d(vi) ≥ m(G) + 1.

The annihilation number was first introduced by Pepper in [23]. A relation between the
annihilation number and independence number was considered by the same author in [21].
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The annihilation process is very similar to a reduction process on the degree sequence called
the Havel-Hakimi process [16, 24]. The Havel-Hakimi algorithm gives an answer if there
exists for a finite list of nonnegative integers a simple graph such that its degree sequence is
exactly this list.

We call a set S of vertices an annihilation set if
∑

v∈S d(v) ≤ m(G), and S is an optimal
annihilation set, if

|S| = a(G) and max{d(v) | v ∈ S} ≤ min{d(u) |u ∈ V (G) \ S}.

The following conjecture can be found in a slightly different form in Graffiti.pc [12], and
was restated in [10] as follows.

Conjecture 1 [11, 12] If G is a connected graph with at least 2 vertices, then γ2(G) ≤
a(G) + 1.

By definition, every graph satisfies a(G) ≥
⌊

n(G)
2

⌋

. Also, if δ(G) ≥ 3, it was observed in [6]

that the 2-domination number is at most
⌊

n(G)
2

⌋

. Hence, if δ(G) ≥ 3, then γ2(G) ≤ a(G)

clearly holds, even if G is disconnected. Therefore, it is interesting to study this conjecture
for graphs with small minimum degree, i.e. δ(G) ∈ {1, 2}. So far, Conjecture 1 has been
proved for only one further important graph class. The result was established for trees by
Desormeaux, Henning, Rall, and Yeo in 2014.

Theorem 2 [11] For a tree T the following hold.

(a) γ2(T ) ≤ a∗(T ).

(b) γ2(T ) ≤ a(T ) + 1.

(c) γ2(T ) = a(T ) + 1 if and only if T ∈ T .

The value a∗(T ) in Theorem 2 is called the upper annihilation number (of a tree) and
denotes the largest integer k such that the sum of the first k terms of the degree sequence of
T arranged in the non-decreasing order is at most m(T )+1, and T is a family of trees which
was also defined by Desormeaux et al. [11, Definition 2]. Another proof of Theorem 2(b)
was given as a corollary by Lyle and Patterson [22], and in this paper we give another, much
shorter proof of the same result. The reason for this is that the idea of the proof is later used
for proving our main theorem.

It is interesting to note, that Conjecture 1 still holds if we replace the 2-domination number
with the total domination number of a tree, and this result was proved by Desormeaux,
Haynes, Henning in [10]. The result was recently extended for the family of cactus and block
graphs by Bujtás and Jakovac [4].

In this paper we prove Conjecture 1 for the family of block graphs, which is one of natural
generalizations of trees. Block graphs are a well-studied class with several applications, for
instance [3]. The main result is the following one.
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Theorem 3 If G is a nontrivial block graph, then γ2(G) ≤ a(G) + 1.

The paper is organized as follows. In Section 2, we establish a lemma and another, shorter
proof of Theorem 2(b). In Section 3 we prove Theorem 3. In the proof we follow the same line
of thought as in [4] with some key differences. In the last section we discuss the possibilities
of using similar methods for proving the conjecture for cactus graphs.

2 Another, shorter proof for trees

In this section we prove a useful lemma which concentrates on strong support vertices of
graph G.

Lemma 4 Assume that G is a graph on at least four vertices and u ∈ V (G) is a strong
support vertex which is the common neighbor of pendant vertices v1, . . . , vℓ ∈ V (G), ℓ ≥ 2. If
G′ = G−{u, v1, . . . , vℓ} is a connected graph, then γ2(G

′) ≤ a(G′)+1 implies γ2(G) ≤ a(G)+1.

Proof. By our assumption G′ = G − {u, v1, . . . , vℓ} is connected, and we have m(G′) =
m(G) − dG(u). Suppose that γ2(G

′) ≤ a(G′) + 1. If D′ is a minimum 2-dominating set
of G′, then D = D′ ∪ {v1, . . . vℓ}, ℓ ≥ 2, is a 2-dominating set of graph G, which implies
γ2(G) ≤ |D| = |D′|+ ℓ = γ2(G

′) + ℓ. Regardless of whether the neighbors of u are inside S′

or not we have
∑

(S′, G) ≤
∑

(S′, G′) + dG(u)− ℓ ≤ m(G)− ℓ.

Let S = S′ ∪ {v1, . . . , vℓ}. Then, we have

∑

(S,G) =
∑

(S′, G) + d(v1) + · · ·+ d(vℓ) =
∑

(S′, G) + ℓ ≤ m(G),

and hence a(G) ≥ |S| = |S′|+ ℓ = a(G′) + ℓ. Therefore,

γ2(G) ≤ γ2(G
′) + ℓ ≤ a(G′) + ℓ+ 1 ≤ a(G) + 1.

�

In the remainder of this section we give another, shorter proof of Theorem 2(b). For the
purpose of the proof in Section 3 we state it again with an alternative formulation.

Theorem 5 If T is a nontrivial tree, then γ2(T ) ≤ a(T ) + 1.

Proof. We proceed by induction on the number of vertices n of T . For n = 2 we have
T ∼= K2, and γ2(K2) = 2 = a(K2) + 1. For the inductive hypothesis, let n ≥ 3, and assume
that for every nontrivial tree T ′ with less than n vertices we have γ2(T

′) ≤ a(T ′) + 1. Let T
be a tree of order n. If diam(T ) = 2, then T is a star K1,n−1, and we have a(T ) = n− 1 and
γ2(T ) = n− 1, which implies γ2(T ) ≤ a(T ) + 1. Hence, we may suppose that diam(T ) ≥ 3.

In the proof tree T ′ will be formed from T by removing a set of vertices in such a way
that T ′ will still be a tree. Throughout, S′ will denote an optimal annihilation set in T ′.
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Let u and z be two endvertices of a longest path in T . We root tree T in u. Then both u
and z must be leaves (pendant vertices). Let w be the parent of z, and v be the parent of w.
Since diam(T ) = d(u, z) ≥ 3, v 6= u. If w is a strong support vertex, then we can settle this
case with Lemma 4. Thus, we may suppose that w is not a strong support vertex and has
degree d(w) = 2. We denote with v1, . . . , vb, b ≥ 1, the leaf-neighbors of vertex v if it has any.
For b = 0 this means that v has no leaf-neighbors. We also denote with w1, . . . , wc, c ≥ 1, the
children of vertex v which are not leaves (note that we have at least one such vertex, namely
w). Each of these children must be support vertices, since d(u, z) is a longest distance in tree
T . If any vertex of w1, . . . , wc is a strong support vertex, we can again settle this case with
Lemma 4. Thus, we may suppose that d(wi) = 2 for all i ∈ {1, . . . , c}. For any i ∈ {1, . . . , c}
we denote with zi the only child of wi (note that z is one of those children). It is also clear
that dT (v) = b+ c+ 1 because tree T is rooted in u (Figure 1).

u

v1

v

v2v

z1 z2 z

b

w1 w2 wc

c

Figure 1: Tree T rooted in vertex u with all of its descendants.

Now, let T ′ = T − {v1, . . . , vb, w1, . . . , wc, z1, . . . , zc}, and so m(T ′) = m(T )− b− 2c, and
dT ′(v) = 1. Vertex v must belong to any minimum 2-dominating set of T ′, since it is a leaf.
Hence, if D′ is a minimum 2-dominating set of T ′, then D = D′ ∪ {v1, . . . , vb, z1, . . . , zc} is a
2-dominating set of tree T , which implies γ2(T ) ≤ |D| = |D′|+b+c = γ2(T

′)+b+c. If v /∈ S′,
then

∑

(S′, T ) =
∑

(S′, T ′) ≤ m(T )− b− 2c. In this case let S = S′ ∪ {v1, . . . , vb, z1, . . . , zc}.
Then, for c ≥ 1,

∑

(S, T ) =
∑

(S′, T ) + d(v1) + · · ·+ d(vb) + d(z1) + · · ·+ d(zc)

=
∑

(S′, T ) + b+ c ≤ m(T )− b− 2c+ b+ c = m(T )− c ≤ m(T ).

We have a(T ) ≥ |S| = |S′|+ b+ c = a(T ′) + b+ c. Applying our inductive hypothesis to T ′,
we get γ2(T

′) ≤ a(T ′) + 1. Therefore,

γ2(T ) ≤ γ2(T
′) + b+ c ≤ a(T ′) + b+ c+ 1 ≤ a(T ) + 1.

But if v ∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) + b + c ≤ m(T ′) + b + c = m(T ) − c. Let
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S = (S′\{v}) ∪ {v1, . . . , vb, w1, z1, . . . , zc}. Since dT (v) = b+ c+ 1, we have for c ≥ 1,

∑

(S, T ) =
∑

(S′, T )− d(v) + d(v1) + · · ·+ d(vb) + d(w1) + d(z1) + · · ·+ d(zc)

=
∑

(S′, T )− b− c− 1 + b+ 2 + c =
∑

(S′, T ) + 1 ≤ m(T )− c+ 1 ≤ m(T ),

and hence a(T ) ≥ |S| = |S′| + b + c = a(T ′) + b + c. Applying our inductive hypothesis to
T ′, we have that γ2(T

′) ≤ a(T ′) + 1. Therefore,

γ2(T ) ≤ γ2(T
′) + b+ c ≤ a(T ′) + b+ c+ 1 ≤ a(T ) + 1.

�

3 Block graphs

Recall that a block graph is a connected graph in which every 2-connected component (block)
is a clique. Block graphs have minimum degree at least 3 if their building blocks are complete
graphs Kk, k ≥ 4. Thus, Conjecture 1 obviously holds for them. On the other hand,
block graphs also contain blocks K2 and K3, and therefore, it clearly makes sense to study
Conjecture 1 on block graphs.

If all cliques in a block graph are K2, then it is a tree. For every k ≥ 3 we will call the
complete graph Kk a complex clique. If a block graph has two complex cliques K1 and K2,
then we define

d
(

K1,K2
)

= min
{

d(u, v) |u ∈ V
(

K1
)

, v ∈ V
(

K2
)}

where d(u, v) denotes the distance between vertices u and v. Let x1 ∈ V
(

K1
)

and x2 ∈
V
(

K2
)

be two vertices such that d(x1, x2) = d(K1,K2). Then we call x1 and x2 exit-vertices
of complex cliques K1 and K2, respectively. A complex clique will be called an outer complex
clique if it has at most one exit-vertex. If a block graph is not a tree, then by its definition it
must contain at least one outer complex clique. Note that a block graph, which is neither a
tree nor a clique, does not contain exit-vertices if and only if it contains exactly one complex
clique, say Kk, k ≥ 3. In this case, we will take an arbitrary vertex of the unique complex
clique Kk whose degree is at least k for the role of the exit-vertex. In the right-hand side
graph of Figure 2, we have four possibilities for the choice of that vertex (either x1 or x2 or
x3 or x4).

Now, we are ready to present a proof of Theorem 3 and we recall its statement.

Theorem 3. If G is a nontrivial block graph, then γ2(G) ≤ a(G) + 1.

Proof. We proceed by induction on the number of vertices n of block graph G. For
n = 2, we have G ∼= K2, and γ2(K2) = 2 = a(K2) + 1. For the inductive hypothesis, let
n ≥ 3, and assume that for every nontrivial block graph G′ with less than n vertices we have
γ2(G

′) ≤ a(G′)+1. If G does not contain complex cliques, then it is a tree, and by Theorem 5
the result follows. Also, if G is a clique, i.e. G ∼= Kℓ, ℓ ≥ 2, we have γ2(Kℓ) = 2 ≤ a(Kℓ) + 1.
Thus, we my suppose that G is neither a tree nor a clique, but contains at least one complex
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x

x1

x2

x3

x4

Figure 2: Two examples of block graphs. The first one has five outer complex cliques (two
cliques K4 and three cliques K3) each having only one exit-vertex (filled with black). The
second block graph has only one complex clique, and has no exit-vertices.

clique as a proper subgraph. We denote with Kk an outer complex clique of G. All outer
complex cliques in the figures will be drawn with an exit-vertex x even though a unique
complex clique in a block graph does not have one. As we mentioned before, in the later
case, we denote with x an arbitrary vertex of clique Kk whose degree is at least k. We denote
all vertices in V (Kk)\{x} with u1, . . . , uk−1.

Throughout the proof, we will consider block graphs G′ formed from G by removing a
set of vertices in such a way that graph G′ will still be a connected block graph, and S′ will
denote an optimal annihilation set in G′. We consider two cases.

Case 1: All vertices from V (Kk)\{x} have degree k − 1.
We analyze two subcases with respect to k.

Case 1.1: k ≥ 4.
Let G′ = G − {u3, . . . , uk−1} − u1u2, and so m(G′) = m(G) − k(k−1)

2 + 2. Then dG′(u1) =
dG′(u2) = 1. Vertices u1 and u2 must both belong to any minimum 2-dominating set of G′,
since they are both pendant vertices in G′. Hence, if D′ is a minimum 2-dominating set
of G′, then it is also a 2-dominating set of graph G, which implies γ2(G) ≤ |D′| = γ2(G

′).
Regardless of whether x, u1 and u2 are inside S′ or not we have

∑

(S′, G) ≤
∑

(S′, G′) + 3k − 8 ≤ m(G′) + 3k − 8

= m(G)−
k(k − 1)

2
+ 2 + 3k − 8 = m(G)−

k2 − 7k + 12

2
.

Since k2−7k+12 ≥ 0 for k ≥ 4, we have
∑

(S′, G) ≤ m(G), which implies a(G) ≥ |S′| = a(G′).
Applying our inductive hypothesis to G′, we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) ≤ a(G′) + 1 ≤ a(G) + 1.

Case 1.2: k = 3.
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This case will be more involved than the previous one, since we only have two vertices, u1
and u2, to work with.

First suppose that dG(x) = 3. Let G′ = G − {u1, u2}, and so m(G′) = m(G) − 3. Then
dG′(x) = 1. Vertex x must belong to any minimum 2-dominating set of G′, since it is a
pendant vertex. Hence, if D′ is a minimum 2-dominating set of G′, then D = D′ ∪ {u1} is a
2-dominating set of graph G, which implies γ2(G) ≤ |D| = |D′| + 1 = γ2(G

′) + 1. If x /∈ S′,
then

∑

(S′, G) =
∑

(S′, G′) ≤ m(G)− 3. In this case let S = S′ ∪ {u1}. Then
∑

(S,G) =
∑

(S′, G) + d(u1) =
∑

(S′, G) + 2 ≤ m(G)− 3 + 2 ≤ m(G),

which implies a(G) ≥ |S| = |S′| + 1 = a(G′) + 1. Applying our inductive hypothesis to G′,
we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + 1 ≤ a(G′) + 2 ≤ a(G) + 1.

But if x ∈ S′, then
∑

(S′, G) =
∑

(S′, G′) + 2 ≤ m(G) − 1. Let S = (S′\{x}) ∪ {u1, u2}.
Since dG(x) = 3, it follows that

∑

(S,G) =
∑

(S′, G)− d(x) + d(u1) + d(u2)

=
∑

(S′, G)− 3 + 2 + 2 ≤ m(G)− 1− 3 + 4 = m(G),

which implies a(G) ≥ |S| = |S′| + 1 = a(G′) + 1. Applying our inductive hypothesis to G′,
we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + 1 ≤ a(G′) + 2 ≤ a(G) + 1.

Now, let dG(x) = ℓ ≥ 4 and denote the neighbors of x outside cliqueK3 with v1, v2, . . . , vℓ−2.
Since G is a block graph, the connected components of the induced graph on vertices
v1, . . . , vℓ−2 must be cliques. Denote these cliques with Q1, . . . , Qp, p ≤ ℓ− 2.

If p = 1, we take G′ = (G−{u1, u2})−xv2−· · ·−xvℓ−2, and so m(G′) = m(G)−ℓ. Clearly,
G′ is also connected, and dG′(x) = 1. Vertex x must belong to any minimum 2-dominating
set of G′, since it is a pendant vertex. Hence, if D′ is a minimum 2-dominating set of G′,
then D = D′∪{u1} is a 2-dominating set of graph G, which implies γ2(G) ≤ |D| = |D′|+1 =
γ2(G

′) + 1. If x /∈ S′, then
∑

(S′, G) =
∑

(S′, G′) ≤ m(G)− ℓ. In this case let S = S′ ∪ {u1}.
Then we have for ℓ ≥ 4,

∑

(S,G) =
∑

(S′, G) + d(u1) =
∑

(S′, G) + 2 ≤ m(G)− ℓ+ 2 ≤ m(G),

which implies a(G) ≥ |S| = |S′| + 1 = a(G′) + 1. Applying our inductive hypothesis to G′,
we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + 1 ≤ a(G′) + 2 ≤ a(G) + 1.

But if x ∈ S′, then
∑

(S′, G) =
∑

(S′, G′) + ℓ − 1 ≤ m(G′) + ℓ − 1 = m(G) − 1. Let
S = (S′\{x}) ∪ {u1, u2}. Since dG(x) = ℓ, we have for ℓ ≥ 4,

∑

(S,G) =
∑

(S′, G)− d(x) + d(u1) + d(u2)

=
∑

(S′, G)− ℓ+ 2 + 2 ≤ m(G)− ℓ+ 3 ≤ m(G),
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and hence a(G) ≥ |S| = |S′| + 1 = a(G′) + 1. Applying our inductive hypothesis to G′, we
have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + 1 ≤ a(G′) + 2 ≤ a(G) + 1.

Now suppose that p ≥ 2. For every i ∈ {1, . . . , p} we choose an arbitrary vertex of
clique Qi and denote it with wi. Note, that for every i ∈ {1, . . . , p} vertex wi is one of
the vertices v1, . . . , vℓ−2. We define G′ = (G − {x, u1, u2}) + w1w2 + . . . + w1wp, and so
m(G′) = m(G)−ℓ−1+(p−1) = m(G)−ℓ+p−2. Note that by adding edges w1w2, . . . , w1wp,
graph G′ will become a connected (block) graph. Also, the degrees of vertices w2, . . . , wp are
the same in G′ and in G. Only the degree of w1 is higher in G′ than in G by exactly p−2. Let
D′ be a minimum 2-dominating set of G′, and define D = D′ ∪ {x, u1} in G. Since x belongs
to D, it is clear that D will be a 2-dominating set in G, because it does not matter that edges
w1w2, . . . w1wp are not present in G. This implies that γ2(G) ≤ |D| = |D′|+ 2 = γ2(G

′) + 2.
Regardless of whether v1, . . . , vℓ−2 are inside S′ or not we have

∑

(S′, G) ≤
∑

(S′, G′) + (ℓ− 2)− 2(p− 1) ≤ m(G′) + (ℓ− 2)− 2(p− 1)

= m(G)− ℓ+ p− 2 + (ℓ− 2)− 2(p− 1) = m(G)− p− 2.

Since p ≥ 2, we have
∑

(S′, G) ≤ m(G)− 4. Let S = S′ ∪ {u1, u2}. Then, we have

∑

(S,G) =
∑

(S′, G) + d(u1) + d(u2) =
∑

(S′, G) + 2 + 2 ≤ m(G),

and hence a(G) ≥ |S| = |S′| + 2 = a(G′) + 2. Applying our inductive hypothesis to G′, we
have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + 2 ≤ a(G′) + 3 ≤ a(G) + 1.

Case 2: There exists a vertex from V (Kk)\{x} that has degree at least k.
Since V (Kk)\{x} contains vertices of degree at least k, and Kk is an outer complex clique,
there are trees attached to those vertices. Suppose we root all trees in the vertices u1, . . . , uk−1 ∈
V (Kk)\{x} to which these trees are attached. Amongst those trees we consider the tree T
with the largest height h(T ) = max{d(u, v) |u = V (Kk) ∩ V (T ), v ∈ V (T )}. Denote this
maximum height with h ≥ 1 and without loss of generality let u1 be the vertex of V (Kk)\{x}
to which tree T is attached. We consider three subcases.

Case 2.1: h ≥ 3.
Since h ≥ 3, there exists a leaf (pendant vertex) z ∈ V (T ) such that d(u1, z) = h ≥ 3.
Henceforth, the proof is the same as the proof for Theorem 5. Thus, the result follows.

Case 2.2: h = 2.
Since h = 2, vertex u1 ∈ V (Kk)\{x} has a path of length 2 attached to it. The only two
cases which are left to consider are shown in Figure 3.

First consider the case in Figure 3(a). In this case, we suppose that vertex u1 has at least
two paths of length 2 attached to it. We denote with v1, . . . , vb, b ≥ 2, the children of u1,
and we may again suppose that vi’s are not strong support vertices, since otherwise Lemma 4
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Figure 3: Cases for h = 2.

settles this case. For each i ∈ {1, . . . , b} let wi be the only child of vi. Let z1, . . . , zc,
c ≥ 0, be any possible pendant vertices that are also attached to u1. We consider graph
G′ = G−{v1, . . . , vb, w1, . . . wb}. Hence, m(G′) = m(G)−2b. IfD′ is a minimum 2-dominating
set of G′, then D = D′ ∪ {u1, w1, . . . , wb} is a 2-dominating set of graph G, which implies
γ2(G) ≤ |D| = |D′|+b+1 = γ2(G

′)+b+1. If u1 /∈ S′, then
∑

(S′, G) =
∑

(S′, G′) ≤ m(G)−2b.
In this case let S = S′ ∪ {v1, w1, . . . , wb}. Then we have for b ≥ 2,

∑

(S,G) =
∑

(S′, G) + d(v1) + d(w1) + · · ·+ d(wb)

≤ m(G)− 2b+ 2 + b = m(G)− b+ 2 ≤ m(G),

which implies a(G) ≥ |S| = |S′| + b+ 1 = a(G′) + b+ 1. Applying our inductive hypothesis
to G′, we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + b+ 1 ≤ a(G′) + b+ 2 ≤ a(G) + 1.

But, if u1 ∈ S, then
∑

(S′, G) =
∑

(S′, G′) + b ≤ m(G)− b. In this case let S = (S′\{u1}) ∪
{v1, v2, w1, . . . , wb}. Since dG(u1) = k−1+ b+ c ≥ b+2 (k ≥ 3 and c ≥ 0), we have for b ≥ 2,

∑

(S,G) =
∑

(S′, G)− d(u1) + d(v1) + d(v2) + d(w1) + · · ·+ d(wb)

≤ m(G)− b− b− 2 + 2 + 2 + b = m(G)− b+ 2 ≤ m(G).

This implies a(G) ≥ |S| = |S′|+ b+ 1 = a(G′) + b+ 1. Applying our inductive hypothesis to
G′, we again have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + b+ 1 ≤ a(G′) + b+ 2 ≤ a(G) + 1.

We proceed with the case in Figure 3(b). In this case, vertex u1 has only one path of
length 2 attached to it. We denote with v1 the only child of u1. If vertex v1 has more than
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one child, Lemma 4 again settles this case. Therefore, let w1 be the only child of v1. Again,
let z1, . . . , zc, c ≥ 0, be any possible pendant vertices that are also attached to u1. Consider
graph G′ = G−{v1, w1, z1, . . . , zc}−u1u2−· · ·−u1uk−1, and so m(G′) = m(G)−(k−2)−c−2,
and dG′(u1) = 1. Note that, by removing edges u1u2, . . . , u1uk−1, graph G′ is still a block
graph. Vertex u1 must belong to any minimum 2-dominating set of G′, since it is a pendant
vertex. Thus, if D′ is a minimum 2-dominating set of G′, then D = D′∪{w1, z1, . . . , zc} is a 2-
dominating set of graphG, which implies γ2(G) ≤ |D| = |D′|+c+1 = γ2(G

′)+c+1. If u1 /∈ S′,
then

∑

(S′, G) =
∑

(S′, G′) ≤ m(G)−(k−2)−c−2. In this case let S = S′∪{w1, z1, . . . , zc}.
Then, we get for k ≥ 3,

∑

(S,G) =
∑

(S′, G) + d(w1) + d(z1) + · · ·+ d(zc)

≤ m(G)− (k − 2)− c− 2 + 1 + c ≤ m(G).

We have a(G) ≥ |S| = |S′|+ c+ 1 = a(G′) + c+ 1. Applying our inductive hypothesis to G′,
we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + c+ 1 ≤ a(G′) + c+ 2 ≤ a(G) + 1.

But, if u1 ∈ S, then
∑

(S′, G) =
∑

(S′, G′) + (k − 2) + c + 1 ≤ m(G) − 1. In this case let
S = (S′\{u1}) ∪ {v1, w1, z1 . . . , zc}. Since dG(u1) = k + c, we have for k ≥ 3,

∑

(S,G) =
∑

(S′, G)− d(u1) + d(v1) + d(w1) + d(z1) . . .+ d(zc)

≤ m(G)− 1− k − c+ 2 + 1 + c = m(G)− k + 2 ≤ m(G).

This implies a(G) ≥ |S| = |S′|+ c+ 1 = a(G′) + c+ 1. Applying our inductive hypothesis to
G′, we again have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + c+ 1 ≤ a(G′) + c+ 2 ≤ a(G) + 1.

Case 2.3: h = 1.
Since h = 1, we have pendant vertices attached to some vertices of V (Kk)\{x}. We may also
suppose that vertices of V (Kk)\{x} are not strong support vertices, since otherwise we could
settle this case with Lemma 4. Thus, the only two cases we need to consider are shown in
Figure 4.

We start with the case in Figure 4(a). There exist a vertex different than u1, say u2 ∈
V (Kk)\{x}, with degree d(u2) = k − 1 (vertex u2 has no trees attached to it). Also denote
with v1 the only child of vertex u1, and let G′ = G − {u1, v1}. Furthermore, we have
m(G′) = m(G) − k. Any 2-dominating set of G either contains vertex u2 or it contains
two other vertices from V (Kk) that 2-dominate vertex u2. Hence, if D′ is a minimum 2-
dominating set of G′, then D = D′ ∪ {v1} is a 2-dominating set of graph G, which implies
γ2(G) ≤ |D| = |D′|+1 = γ2(G

′) + 1. Regardless of whether the neighbors of u1 are inside S′

or not we have
∑

(S′, G) ≤
∑

(S′, G′)+k−1 ≤ m(G′)+k−1 = m(G)−1. Let S = S′∪{v1}.
Then, we have

∑

(S,G) =
∑

(S′, G) + d(v1) ≤ m(G)− 1 + 1 = m(G),
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and hence a(G) ≥ |S| = |S′| + 1 = a(G′) + 1. Applying our inductive hypothesis to G′, we
have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + 1 ≤ a(G′) + 2 ≤ a(G) + 1.

We continue with the case in Figure 4(b), and for every i ∈ {1, . . . , k − 1} denote with
vi the only child of ui. Let G′ = G − {u2, . . . , uk−1, v2, . . . , vk−1}, and so m(G′) = m(G) −
k(k−1)

2 − k + 3. Then dG′(u1) = 2 and dG′(v1) = 1. Vertex v1 must clearly belong to
any minimum 2-dominating set of G′, since it is a pendant vertex in G′. Also, if vertex
u1 is not in D′, then vertex x must be in D′. Hence, if D′ is a minimum 2-dominating
set of G′, then D = D′ ∪ {v2, . . . , vk−1} is a 2-dominating set of graph G, which implies
γ2(G) ≤ |D′| = γ2(G

′) + k − 2. Regardless of whether x and u1 are inside S′ or not we have
∑

(S′, G) ≤
∑

(S′, G′) + k(k−1)
2 − 1 ≤ m(G) − k(k−1)

2 − k + 3 + k(k−1)
2 − 1 = m(G) − k + 2.

Let S = S′ ∪ {v2, . . . , vk−1}. Then, we have
∑

(S,G) =
∑

(S′, G) + d(v2) + · · ·+ d(vk−1)

≤ m(G)− k + 2 + k − 2 = m(G),

and hence a(G) ≥ |S| = |S′| + k − 2 = a(G′) + k − 2. Applying our inductive hypothesis to
G′, we have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + k − 2 ≤ a(G′) + k − 1 ≤ a(G) + 1.

We have considered all possible cases when deleting vertices in the block graph. Hence,
Conjecture 1 is true for the family of block graphs. �

The bound in Theorem 3 is sharp since trees are also block graphs. Therefore, we may
take the family of trees defined in [11, Definition 2], and used in Theorem 2, which attain
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the upper bound. Clearly, the bound is also sharp for the graph K3, since γ2(K3) = 2 and
a(K3) = 1.

There are also arbitrarily large block graphs G that are not trees, but satisfy γ2(G) =
a(G) + 1. Let us define such a family of block graphs. For k ≥ 2, we take an arbitrary
tree T with the vertex set {u1, . . . , uk}. For every i ∈ {1, . . . , k} we add two new vertices vi
and wi, and make three new edges uivi, uiwi, and viwi. With this construction we obtain
a graph G that contains exactly k triangles K3, k − 1 edges K2, and has minimum degree
δ(G) = 2. We will call this family of graphs the triangle-block graphs, and denote it with T B.
An example of such a graph can be seen in Figure 5. One can easily check that m(G) = 4k−1
and a(G) = 2k − 1. For the 2-domination number of such graph, we use the fact that every
triangle contains exactly two vertices of degree 2, which means that at least two vertices from
every triangle must belong to any 2-dominating set. Thus, γ2(G) = 2k, and Theorem 3 holds
with equality for the family T B.

Figure 5: A graph from the family T B.

However, graphs from the family T B are not the only graphs that attain the upper bound.
Take for example the graph G1 formed from K3 with another pendant vertex attached to it
(this graph is called the paw graph). Clearly G1 /∈ T B. This graph has n(G1) = 4 vertices and
m(G1) = 4 edges. It is easy to see that γ2(G1) = 3 and a(G1) = 2. Thus, γ2(G1) = a(G1)+1.
Now suppose that G2 is the graph formed from two copies of G1 by identifying two vertices
(each belonging to different copy of G1) with degree 2. We get a graph on n(G2) = 7 vertices
and m(G2) = 8 edges. This graph does also not belong to T B. Again, it is easy to see
that γ2(G2) = 5 and a(G2) = 4. Thus, γ2(G2) = a(G2) + 1. It almost seems that block
graphs which have K2’s and K3’s for their building blocks attain the upper bound. Namely,
graphs from the family T B, and G1 and G2, are such graphs. But unfortunately, this is not
true. Let G3 be the graph formed from two copies of graph G1 by identifying both pendant
vertices (each belonging to different copy of G1). This graph has n(G3) = 7 vertices and
m(G3) = 8 edges. But, γ2(G3) = 4 and a(G2) = 4. Thus, γ2(G3) < a(G3) + 1. If we
summarize everything, it is hard to find a general rule of how to form a block graph from
K2’s and K3’s to attain the upper bound of Conjecture 1. Hence, it is interesting to pose the
following problem.

Problem 6 Characterize block graphs G which satisfy γ2(G) = a(G) + 1.
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4 Concluding remarks

The conjecture γ2(G) ≤ a(G) + 1 is true for all graphs G with minimum degree δ(G) ≥ 3.
Thus the most interesting cases, for which the conjecture still remains open, are graphs with
δ(G) = 1 or 2. For those two cases the conjecture is known to be true for trees [11], and in
this article we proved that it is also true for block graphs. Further, one could also consider
other natural generalizations of trees, e.g. cactus graphs. A connected graph is called a cactus
graph if its cycles are pairwise edge-disjoint (every edge belongs to at most one cycle). It is
therefore natural to ask if a similar approach that we used for block graphs could be used
for cactus graphs. The proof given in this paper uses induction and in each step carefully
chooses an outer complex clique with only one exit-vertex, and then properly removes some
vertices from this clique (together with some other vertices that lie on some trees which are
connected to this clique). However, this approach does not work in the case of cactus graphs.
For example, suppose we take the cactus graph in Figure 6 and chose one of its two cycles
(note that both cycles have one exit-vertex x in common), and try to remove some vertices
from it together with their leaf-neighbors. If we apply inductive hypothesis to the graph
that remains (say that the conjecture is true for it), then it is not possible to show that
also the whole graph satisfies the conjecture. Namely, the construction of a dominating set
from the smaller graph to the whole graph would require much more vertices to be added
to the 2-dominating set (note that all pendant vertices must belong to every 2-dominating
set) than we would be able to find vertices which would contribute to the degree sum to
increase the annihilation number. Thus, the 2-domination number would increase more than
the annihilation number. It is therefore clear that one needs to look at the graph in Figure 6
as a whole to show that it satisfies the conjecture. Or at least, in some bigger cases, one would
need to remove more vertices than just the vertices from one cycle. In some cases, where the
exit-vertex x is of high degree, it would be almost impossible to control the inductive step.

x

Figure 6: An example of a cactus graph

Induction is also not useful for many cactus graphs with minimum degree 2 (cactus graphs
without pendant vertices). Note that the graph in Figure 5 is also such a cactus graph (even
though it is also a block graph). We can even exchange any block K3 (which is isomorphic to
the cycle C3) with any odd cycle C2k+1, k ≥ 1. Since γ2(C2k+1) = k + 1 and a(C2k+1) = k,
it is clear that with this exchange we can obtain many extremal cases in the family of cactus
graphs. This fact further substantiates that proving the Conjecture 1 for cactus graphs is
even harder then proving it for block graphs. However, we can at least (easily) prove it for
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cactus graphs which are built only of even cycles.

Proposition 7 If G is a cactus graph such that every edge of G belongs to (exactly) one
even cycle, then γ2(G) ≤ a(G) + 1.

Proof. Let c denote the number of even cycles in G. We use induction on c. Graph G is
isomorphic to a cycle C2k, k ≥ 2, for c = 1. Thus, γ2(C2k) = k = a(C2k) < a(C2k) + 1. For
the inductive hypothesis let c ≥ 2, and assume that for every cactus graph G′ with less than
c cycles we have γ2(G

′) ≤ a(G′) + 1. Let S′ denote an optimal annihilation set in G′. Since
G is a finite graph, there exists a cycle C2ℓ, ℓ ≥ 2, in G with V (C2ℓ) = {u1, . . . , u2ℓ} such
that d(u1) ≥ 4, and d(ui) = 2 for each i ∈ {2, 3, . . . , 2ℓ}. Let G′ = G− {u2, u3, . . . , u2ℓ}, and
so m(G′) = m(G) − 2ℓ. Clearly G′ satisfies the inductive hypothesis. If D′ is a minimum
2-dominating set of G′, then D = D′ ∪ {u2, u4, . . . , u2ℓ} is a 2-dominating set of graph G,
which implies γ2(G) ≤ |D| = |D′|+ ℓ = γ2(G

′) + ℓ. If u1 /∈ S′, then
∑

(S′, G) =
∑

(S′, G′) ≤
m(G′) ≤ m(G)− 2ℓ. In this case let S = S′ ∪ {u2, u4, . . . , u2ℓ}. Then, we have

∑

(S,G) =
∑

(S′, G) + d(u2) + d(u4) + . . .+ d(u2ℓ) ≤ m(G)− 2ℓ+ 2ℓ = m(G),

and hence a(G) ≥ |S| = |S′| + ℓ = a(G′) + ℓ. Applying our inductive hypothesis to G′, we
have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + ℓ ≤ a(G′) + ℓ+ 1 ≤ a(G) + 1.

But if u1 ∈ S, then
∑

(S′, G) =
∑

(S′, G′) + 2 ≤ m(G′) + 2 = m(G) − 2ℓ + 2. Let S =
(S′\{u1}) ∪ {u2, u4, . . . , u2ℓ, u3}. Since dG(u1) ≥ 4, we have

∑

(S,G) =
∑

(S′, G)− d(u1) + d(u2) + d(u4) + . . .+ d(u2ℓ) + d(u3)

≤
∑

(S′, G)− 4 + 2ℓ+ 2 ≤ m(G)− 2ℓ+ 2− 4 + 2ℓ+ 2 = m(G).

This implies a(G) ≥ |S| = |S′|+ ℓ = a(G′) + ℓ. Applying our inductive hypothesis to G′, we
again have that γ2(G

′) ≤ a(G′) + 1. Therefore,

γ2(G) ≤ γ2(G
′) + ℓ ≤ a(G′) + ℓ+ 1 ≤ a(G) + 1.

�

In the end let us mention that induction was used on cactus graphs when proving the
conjecture γt(G) ≤ a(G) + 1 [4], where γt(G) stands for the total domination number of a
graph G. Because of the above reasoning, it is clear that another approach must be used in
the case of 2-domination if one wants to prove Conjecture 1 for cactus graphs.
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