Rectangular patterns for (1,0)-relaxed $L(2,1)$-labelings of toroidal grids

1 Introduction

We use a rectangular pattern with m rows and n columns to represent a labeling of $T_{m, n}$ in a natural way. If P and Q are rectangular patterns which represent a labeling of $T_{m, n}$ and $T_{m, \ell}$, respectively, then $P Q$ denotes the rectangular pattern with m rows and $n+\ell$ columns obtained by concatenating P and Q, such that $P Q$ represents a labeling of $T_{m, n+\ell .}$. Moreover, P^{k} represents a labeling of $T_{m, k n}$ made by the rectangular pattern with m rows and $k n$ columns obtained by concatenating k copies of P.

2 Patterns for toroidal grids $T_{3, n}$

Let

$$
P=\left[\begin{array}{llll}
1 & 4 & 3 & 0 \\
5 & 2 & 1 & 4 \\
3 & 0 & 5 & 2
\end{array}\right] \text { and } Q=\left[\begin{array}{ll}
5 & 2 \\
3 & 0 \\
1 & 4
\end{array}\right]
$$

P^{k} represents a (1,0)-relaxed 5-L(2,1)-labeling of $T_{3,4 k}$, while $P^{k} Q$ represents a (1,0)-relaxed 5-$L(2,1)$-labeling of $T_{3,4 k+2}$.

Let

$$
\begin{aligned}
& R=\left[\begin{array}{lllllllll}
6 & 0 & 5 & 3 & 1 & 4 & 5 & 1 & 3 \\
2 & 4 & 1 & 0 & 5 & 6 & 2 & 4 & 0 \\
1 & 3 & 6 & 4 & 2 & 0 & 3 & 6 & 5
\end{array}\right] \text { and } \\
& S=\left[\begin{array}{lllllllllll}
6 & 0 & 4 & 3 & 6 & 5 & 1 & 0 & 4 & 2 & 3 \\
2 & 3 & 1 & 5 & 4 & 0 & 6 & 3 & 1 & 6 & 5 \\
4 & 5 & 2 & 0 & 1 & 3 & 4 & 2 & 5 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

By repeating the leftmost four columns of R and S, we obtain a (1,0)-relaxed 6 - $L(2,1)$-labeling of $T_{3,4 k+5}$ and $T_{3,4 k+7}$, respectively, for any $k \geq 1$.

Let

$$
P_{3}=\left[\begin{array}{lll}
5 & 8 & 4 \\
3 & 6 & 2 \\
7 & 1 & 0
\end{array}\right], P_{5}=\left[\begin{array}{lllll}
2 & 0 & 6 & 5 & 3 \\
4 & 5 & 1 & 7 & 6 \\
7 & 3 & 4 & 0 & 1
\end{array}\right], \text { and } P_{7}=\left[\begin{array}{lllllll}
2 & 0 & 6 & 1 & 4 & 3 & 5 \\
3 & 1 & 4 & 5 & 2 & 6 & 0 \\
6 & 5 & 2 & 3 & 0 & 1 & 4
\end{array}\right]
$$

P_{3}, P_{5}, and P_{7} represent a (1,0)-relaxed 8-L(2,1)-labeling of $T_{3,3}$, a (1,0)-relaxed 7-L(2,1)labeling of $T_{3,5}$, and a (1,0)-relaxed $6-L(2,1)$-labeling of $T_{3,7}$, respectively.

3 Patterns for toroidal grids $T_{4, n}$

Let

$$
\begin{gathered}
{\left[\begin{array}{lll}
4 & 0 & 2 \\
1 & 3 & 5 \\
0 & 2 & 4 \\
3 & 5 & 1
\end{array}\right], Q_{5}=\left[\begin{array}{lllll}
4 & 0 & 3 & 6 & 2 \\
1 & 6 & 4 & 0 & 5 \\
0 & 3 & 1 & 2 & 6 \\
6 & 2 & 5 & 4 & 1
\end{array}\right], Q_{7}=\left[\begin{array}{lllllll}
4 & 1 & 2 & 4 & 3 & 6 & 2 \\
0 & 3 & 5 & 6 & 1 & 0 & 5 \\
6 & 2 & 0 & 3 & 4 & 2 & 6 \\
3 & 5 & 6 & 1 & 0 & 5 & 1
\end{array}\right]} \\
P_{4}=\left[\begin{array}{llll}
7 & 2 & 3 & 5 \\
0 & 5 & 6 & 4 \\
3 & 1 & 2 & 7 \\
6 & 4 & 0 & 1
\end{array}\right], P_{5}=\left[\begin{array}{lllll}
6 & 2 & 1 & 4 & 0 \\
1 & 5 & 3 & 6 & 2 \\
3 & 6 & 2 & 0 & 5 \\
4 & 0 & 5 & 3 & 1
\end{array}\right], \text { and } \\
P_{7}=\left[\begin{array}{lllllll}
1 & 4 & 6 & 2 & 0 & 4 & 3 \\
2 & 0 & 5 & 3 & 1 & 6 & 5 \\
4 & 6 & 2 & 0 & 5 & 3 & 1 \\
5 & 3 & 1 & 4 & 6 & 2 & 0
\end{array}\right] .
\end{gathered}
$$

For any $k \geq 1$ and $i \in\{5,7\}$, the patterns P^{k} and $P^{k} Q_{i}$ represent a (1,0)-relaxed $5-L(2,1)$ labeling of $T_{4,3 k}$ and a (1,0)-relaxed 6-L(2,1)-labeling of $T_{4,3 k+i}$, respectively. The patterns P_{4}, P_{5} and P_{7} give a (1,0)-relaxed 7-L(2,1)-labeling of $T_{4,4}$, a (1,0)-relaxed 6-L(2,1)-labeling of $T_{4,5}$ and a (1,0)-relaxed 6 - $L(2,1)$-labeling of $T_{4,7}$, respectively.

4 Patterns for toroidal grids $T_{5, n}$

Let

$$
\begin{gathered}
P=\left[\begin{array}{llll}
5 & 0 & 1 & 3 \\
1 & 2 & 4 & 6 \\
3 & 5 & 0 & 2 \\
6 & 1 & 3 & 5 \\
2 & 4 & 6 & 0
\end{array}\right], P_{5}=\left[\begin{array}{lllll}
4 & 6 & 0 & 3 & 5 \\
0 & 3 & 2 & 4 & 1 \\
5 & 1 & 6 & 0 & 3 \\
6 & 0 & 3 & 2 & 4 \\
2 & 5 & 1 & 6 & 0
\end{array}\right], Q_{5}=\left[\begin{array}{llllll}
4 & 6 & 2 & 4 & 3 \\
0 & 5 & 3 & 0 & 6 \\
3 & 1 & 6 & 5 & 2 \\
6 & 4 & 0 & 3 & 4 \\
1 & 3 & 5 & 1 & 0
\end{array}\right], \\
Q_{6}=\left[\begin{array}{llllll}
5 & 4 & 0 & 2 & 4 & 3 \\
1 & 2 & 5 & 3 & 0 & 6 \\
4 & 0 & 1 & 6 & 5 & 2 \\
6 & 3 & 4 & 0 & 3 & 4 \\
2 & 1 & 6 & 5 & 1 & 0
\end{array}\right], P_{6}=\left[\begin{array}{llllll}
6 & 1 & 3 & 2 & 0 & 5 \\
0 & 4 & 6 & 5 & 3 & 1 \\
5 & 3 & 1 & 0 & 2 & 6 \\
1 & 6 & 5 & 3 & 4 & 0 \\
4 & 2 & 0 & 6 & 1 & 3
\end{array}\right], \\
Q_{7}=\left[\begin{array}{lllllll}
5 & 1 & 3 & 6 & 2 & 0 & 4 \\
0 & 2 & 4 & 1 & 5 & 3 & 6 \\
3 & 5 & 0 & 3 & 6 & 4 & 0 \\
1 & 6 & 2 & 4 & 1 & 2 & 5 \\
2 & 4 & 5 & 0 & 3 & 6 & 1
\end{array}\right], \text { and } P_{7}=\left[\begin{array}{lllllll}
1 & 6 & 5 & 3 & 2 & 5 & 3 \\
0 & 4 & 2 & 0 & 6 & 4 & 2 \\
3 & 1 & 6 & 4 & 1 & 0 & 5 \\
2 & 5 & 0 & 2 & 5 & 3 & 6 \\
4 & 3 & 1 & 6 & 4 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

For any $k \geq 1$ and $i \in\{5,6,7\}$, the patterns P^{k} and $P^{k} Q_{i}$ constitute a (1,0)-relaxed $6-L(2,1)$ labeling of $T_{5,4 k}$ and $T_{5,4 k+i}$, respectively. The patterns P_{5}, P_{6} and P_{7} give a $(1,0)$-relaxed 6-L(2,1)labeling of $T_{5,5}$, a (1,0)-relaxed $6-L(2,1)$-labeling of $T_{5,6}$ and a (1,0)-relaxed 6 - $L(2,1)$-labeling of $T_{5,7}$, respectively.

5 Patterns for toroidal grids $T_{m, n}$

Let

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
3 & 6 & 5 & 1 & 0 \\
1 & 0 & 3 & 6 & 4 \\
5 & 2 & 4 & 0 & 3 \\
0 & 3 & 6 & 5 & 1 \\
4 & 1 & 0 & 3 & 6
\end{array}\right], B=\left[\begin{array}{llllllllllll}
3 & 5 & 2 & 6 & 0 & 3 & 5 & 1 & 2 & 4 & 6 & 0 \\
1 & 0 & 3 & 1 & 4 & 2 & 6 & 4 & 5 & 1 & 2 & 4 \\
6 & 2 & 5 & 0 & 3 & 5 & 1 & 0 & 3 & 6 & 0 & 3 \\
0 & 3 & 6 & 4 & 1 & 0 & 4 & 5 & 1 & 2 & 5 & 6 \\
4 & 1 & 0 & 3 & 5 & 6 & 2 & 3 & 6 & 0 & 3 & 2
\end{array}\right], \\
& C=\left[\begin{array}{lllll}
3 & 6 & 4 & 2 & 5 \\
1 & 5 & 3 & 6 & 0 \\
4 & 2 & 0 & 1 & 3 \\
0 & 3 & 5 & 4 & 6 \\
1 & 6 & 2 & 0 & 5 \\
4 & 0 & 3 & 6 & 2 \\
3 & 5 & 1 & 4 & 0 \\
1 & 4 & 0 & 2 & 6 \\
5 & 2 & 6 & 1 & 3 \\
6 & 1 & 3 & 5 & 2 \\
0 & 5 & 2 & 6 & 4 \\
2 & 4 & 0 & 3 & 5
\end{array}\right], D=\left[\begin{array}{llllllllllll}
3 & 6 & 5 & 1 & 2 & 4 & 5 & 0 & 2 & 4 & 6 & 5 \\
1 & 4 & 3 & 6 & 0 & 1 & 3 & 6 & 1 & 5 & 2 & 0 \\
5 & 2 & 0 & 4 & 3 & 5 & 0 & 2 & 4 & 0 & 3 & 6 \\
0 & 3 & 5 & 1 & 6 & 4 & 1 & 5 & 6 & 2 & 1 & 5 \\
1 & 6 & 2 & 0 & 5 & 2 & 6 & 3 & 1 & 4 & 6 & 3 \\
4 & 0 & 3 & 6 & 1 & 3 & 5 & 0 & 2 & 5 & 0 & 2 \\
3 & 5 & 1 & 2 & 4 & 6 & 1 & 4 & 6 & 3 & 4 & 6 \\
1 & 2 & 4 & 0 & 3 & 5 & 0 & 2 & 5 & 1 & 2 & 0 \\
5 & 0 & 6 & 5 & 1 & 2 & 4 & 6 & 0 & 4 & 6 & 3 \\
6 & 4 & 2 & 3 & 6 & 0 & 3 & 5 & 1 & 3 & 0 & 2 \\
0 & 3 & 5 & 1 & 2 & 4 & 6 & 2 & 4 & 5 & 1 & 4 \\
2 & 6 & 0 & 4 & 5 & 1 & 0 & 3 & 6 & 0 & 3 & 5
\end{array}\right] .
\end{aligned}
$$

Let also $P_{1}=A^{p} B$ and $P_{2}=C^{p} D$ for $p \geq 1$. We now construct

$$
Q=\left[\begin{array}{r}
P_{1} \\
\vdots \\
P_{1} \\
P_{2}
\end{array}\right] \text {, where } P_{1} \text { is repeated } q \text { times and } q \geq 1
$$

Obviously, Q denotes the pattern with $5 q+12$ rows and $5 p+12$ columns.
Since the patterns A and P_{1} constitute a (1,0)-relaxed 6-L(2,1)-labeling of $T_{5,5}$ and $T_{5,5 p+12}$, respectively, while the leftmost five columns of Q constitute a (1,0)-relaxed $6-L(2,1)$-labeling of $T_{5 q+12,5}$, it follows that $T_{5 p+17 \alpha, 5 q+17 \beta}$ admits a (1,0)-relaxed 6-L(2,1)-labeling for any $p, q, \alpha, \beta \geq 1$.

