Rectangular patterns for (1,0)-relaxed L(2, 1)-labelings of toroidal grids

1 Introduction

We use a rectangular pattern with m rows and n columns to represent a labeling of $T_{m,n}$ in a natural way. If P and Q are rectangular patterns which represent a labeling of $T_{m,n}$ and $T_{m,\ell}$, respectively, then PQ denotes the rectangular pattern with m rows and $n+\ell$ columns obtained by concatenating P and Q, such that PQ represents a labeling of $T_{m,n+\ell}$. Moreover, P^k represents a labeling of $T_{m,kn}$ made by the rectangular pattern with m rows and kn columns obtained by concatenating k copies of P.

2 Patterns for toroidal grids $T_{3,n}$

Let

$$P = \begin{bmatrix} 1 & 4 & 3 & 0 \\ 5 & 2 & 1 & 4 \\ 3 & 0 & 5 & 2 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 5 & 2 \\ 3 & 0 \\ 1 & 4 \end{bmatrix}.$$

 P^k represents a (1,0)-relaxed 5-L(2,1)-labeling of $T_{3,4k}$, while P^kQ represents a (1,0)-relaxed 5-L(2,1)-labeling of $T_{3,4k+2}$.

Let

$$R = \begin{bmatrix} 6 & 0 & 5 & 3 & 1 & 4 & 5 & 1 & 3 \\ 2 & 4 & 1 & 0 & 5 & 6 & 2 & 4 & 0 \\ 1 & 3 & 6 & 4 & 2 & 0 & 3 & 6 & 5 \end{bmatrix} \text{ and}$$
$$S = \begin{bmatrix} 6 & 0 & 4 & 3 & 6 & 5 & 1 & 0 & 4 & 2 & 3 \\ 2 & 3 & 1 & 5 & 4 & 0 & 6 & 3 & 1 & 6 & 5 \\ 4 & 5 & 2 & 0 & 1 & 3 & 4 & 2 & 5 & 0 & 1 \end{bmatrix}$$

By repeating the leftmost four columns of R and S, we obtain a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{3,4k+5}$ and $T_{3,4k+7}$, respectively, for any $k \ge 1$.

Let

$$P_3 = \begin{bmatrix} 5 & 8 & 4 \\ 3 & 6 & 2 \\ 7 & 1 & 0 \end{bmatrix}, P_5 = \begin{bmatrix} 2 & 0 & 6 & 5 & 3 \\ 4 & 5 & 1 & 7 & 6 \\ 7 & 3 & 4 & 0 & 1 \end{bmatrix}, \text{ and } P_7 = \begin{bmatrix} 2 & 0 & 6 & 1 & 4 & 3 & 5 \\ 3 & 1 & 4 & 5 & 2 & 6 & 0 \\ 6 & 5 & 2 & 3 & 0 & 1 & 4 \end{bmatrix}.$$

 P_3 , P_5 , and P_7 represent a (1,0)-relaxed 8-L(2,1)-labeling of $T_{3,3}$, a (1,0)-relaxed 7-L(2,1)-labeling of $T_{3,5}$, and a (1,0)-relaxed 6-L(2,1)-labeling of $T_{3,7}$, respectively.

3 Patterns for toroidal grids $T_{4,n}$

Let

$$P = \begin{bmatrix} 4 & 0 & 2 \\ 1 & 3 & 5 \\ 0 & 2 & 4 \\ 3 & 5 & 1 \end{bmatrix}, Q_5 = \begin{bmatrix} 4 & 0 & 3 & 6 & 2 \\ 1 & 6 & 4 & 0 & 5 \\ 0 & 3 & 1 & 2 & 6 \\ 6 & 2 & 5 & 4 & 1 \end{bmatrix}, Q_7 = \begin{bmatrix} 4 & 1 & 2 & 4 & 3 & 6 & 2 \\ 0 & 3 & 5 & 6 & 1 & 0 & 5 \\ 6 & 2 & 0 & 3 & 4 & 2 & 6 \\ 3 & 5 & 6 & 1 & 0 & 5 & 1 \end{bmatrix},$$
$$P_4 = \begin{bmatrix} 7 & 2 & 3 & 5 \\ 0 & 5 & 6 & 4 \\ 3 & 1 & 2 & 7 \\ 6 & 4 & 0 & 1 \end{bmatrix}, P_5 = \begin{bmatrix} 6 & 2 & 1 & 4 & 0 \\ 1 & 5 & 3 & 6 & 2 \\ 3 & 6 & 2 & 0 & 5 \\ 4 & 0 & 5 & 3 & 1 \end{bmatrix}, \text{ and}$$
$$P_7 = \begin{bmatrix} 1 & 4 & 6 & 2 & 0 & 4 & 3 \\ 2 & 0 & 5 & 3 & 1 & 6 & 5 \\ 4 & 6 & 2 & 0 & 5 & 3 & 1 \\ 5 & 3 & 1 & 4 & 6 & 2 & 0 \end{bmatrix}.$$

For any $k \geq 1$ and $i \in \{5,7\}$, the patterns P^k and P^kQ_i represent a (1,0)-relaxed 5-L(2, 1)labeling of $T_{4,3k}$ and a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{4,3k+i}$, respectively. The patterns P_4, P_5 and P_7 give a (1,0)-relaxed 7-L(2, 1)-labeling of $T_{4,4}$, a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{4,5}$ and a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{4,7}$, respectively.

4 Patterns for toroidal grids $T_{5,n}$

Let

$$P = \begin{bmatrix} 5 & 0 & 1 & 3 \\ 1 & 2 & 4 & 6 \\ 3 & 5 & 0 & 2 \\ 6 & 1 & 3 & 5 \\ 2 & 4 & 6 & 0 \end{bmatrix}, P_5 = \begin{bmatrix} 4 & 6 & 0 & 3 & 5 \\ 0 & 3 & 2 & 4 & 1 \\ 5 & 1 & 6 & 0 & 3 \\ 6 & 0 & 3 & 2 & 4 \\ 2 & 5 & 1 & 6 & 0 \end{bmatrix}, Q_5 = \begin{bmatrix} 4 & 6 & 2 & 4 & 3 \\ 0 & 5 & 3 & 0 & 6 \\ 3 & 1 & 6 & 5 & 2 \\ 6 & 4 & 0 & 3 & 4 \\ 1 & 3 & 5 & 1 & 0 \end{bmatrix}$$
$$Q_6 = \begin{bmatrix} 5 & 4 & 0 & 2 & 4 & 3 \\ 1 & 2 & 5 & 3 & 0 & 6 \\ 4 & 0 & 1 & 6 & 5 & 2 \\ 6 & 3 & 4 & 0 & 3 & 4 \\ 2 & 1 & 6 & 5 & 1 & 0 \end{bmatrix}, P_6 = \begin{bmatrix} 6 & 1 & 3 & 2 & 0 & 5 \\ 0 & 4 & 6 & 5 & 3 & 1 \\ 5 & 3 & 1 & 0 & 2 & 6 \\ 1 & 6 & 5 & 3 & 4 & 0 \\ 4 & 2 & 0 & 6 & 1 & 3 \end{bmatrix},$$
$$Q_7 = \begin{bmatrix} 5 & 1 & 3 & 6 & 2 & 0 & 4 \\ 0 & 2 & 4 & 1 & 5 & 3 & 6 \\ 3 & 5 & 0 & 3 & 6 & 4 & 0 \\ 1 & 6 & 2 & 4 & 1 & 2 & 5 \\ 2 & 4 & 5 & 0 & 3 & 6 & 1 \end{bmatrix}, \text{ and } P_7 = \begin{bmatrix} 1 & 6 & 5 & 3 & 2 & 5 & 3 \\ 0 & 4 & 2 & 0 & 6 & 4 & 2 \\ 3 & 1 & 6 & 4 & 1 & 0 & 5 \\ 2 & 5 & 0 & 2 & 5 & 3 & 6 \\ 4 & 3 & 1 & 6 & 4 & 1 & 0 \end{bmatrix}.$$

,

For any $k \ge 1$ and $i \in \{5, 6, 7\}$, the patterns P^k and P^kQ_i constitute a (1,0)-relaxed 6-L(2, 1)labeling of $T_{5,4k}$ and $T_{5,4k+i}$, respectively. The patterns P_5 , P_6 and P_7 give a (1,0)-relaxed 6-L(2, 1)labeling of $T_{5,5}$, a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{5,6}$ and a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{5,7}$, respectively.

5 Patterns for toroidal grids $T_{m,n}$

Let

$$A = \begin{bmatrix} 3 & 6 & 5 & 1 & 0 \\ 1 & 0 & 3 & 6 & 4 \\ 5 & 2 & 4 & 0 & 3 \\ 0 & 3 & 6 & 5 & 1 \\ 4 & 1 & 0 & 3 & 6 \end{bmatrix}, B = \begin{bmatrix} 3 & 5 & 2 & 6 & 0 & 3 & 5 & 1 & 2 & 4 & 6 & 0 \\ 1 & 0 & 3 & 1 & 4 & 2 & 6 & 4 & 5 & 1 & 2 & 4 \\ 6 & 2 & 5 & 0 & 3 & 5 & 1 & 0 & 3 & 6 & 0 & 3 \\ 0 & 3 & 6 & 4 & 1 & 0 & 4 & 5 & 1 & 2 & 5 & 6 \\ 4 & 1 & 0 & 3 & 5 & 6 & 2 & 3 & 6 & 0 & 3 & 2 \end{bmatrix},$$
$$C = \begin{bmatrix} 3 & 6 & 4 & 2 & 5 \\ 1 & 5 & 3 & 6 & 0 \\ 4 & 2 & 0 & 1 & 3 \\ 0 & 3 & 5 & 4 & 6 \\ 1 & 6 & 2 & 0 & 5 \\ 4 & 0 & 3 & 6 & 2 \\ 3 & 5 & 1 & 4 & 0 \\ 1 & 4 & 0 & 2 & 6 \\ 5 & 2 & 6 & 1 & 3 \\ 6 & 1 & 3 & 5 & 2 \\ 0 & 5 & 2 & 6 & 4 \\ 2 & 4 & 0 & 3 & 5 \end{bmatrix}, D = \begin{bmatrix} 3 & 6 & 5 & 1 & 2 & 4 & 5 & 0 & 2 & 4 & 6 & 5 \\ 1 & 4 & 3 & 6 & 0 & 1 & 3 & 6 & 1 & 5 & 2 & 0 \\ 5 & 2 & 0 & 4 & 3 & 5 & 0 & 2 & 4 & 0 & 3 & 6 \\ 0 & 3 & 5 & 1 & 6 & 4 & 1 & 5 & 6 & 2 & 1 & 5 \\ 1 & 6 & 2 & 0 & 5 & 2 & 6 & 3 & 1 & 4 & 6 & 3 \\ 4 & 0 & 3 & 6 & 1 & 3 & 5 & 0 & 2 & 5 & 0 & 2 \\ 3 & 5 & 1 & 2 & 4 & 6 & 1 & 4 & 6 & 3 & 4 & 6 \\ 1 & 2 & 4 & 0 & 3 & 5 & 0 & 2 & 5 & 1 & 2 & 0 \\ 5 & 0 & 6 & 5 & 1 & 2 & 4 & 6 & 0 & 4 & 6 & 3 \\ 6 & 4 & 2 & 3 & 6 & 0 & 3 & 5 & 1 & 3 & 0 & 2 \\ 0 & 3 & 5 & 1 & 2 & 4 & 6 & 0 & 4 & 6 & 3 \\ 6 & 4 & 2 & 3 & 6 & 0 & 3 & 5 & 1 & 3 & 0 & 2 \\ 0 & 3 & 5 & 1 & 2 & 4 & 6 & 2 & 4 & 5 & 1 & 4 \\ 2 & 6 & 0 & 4 & 5 & 1 & 0 & 3 & 6 & 0 & 3 & 5 \end{bmatrix}$$

Let also $P_1 = A^p B$ and $P_2 = C^p D$ for $p \ge 1$. We now construct

$$Q = \begin{bmatrix} P_1 \\ \vdots \\ P_1 \\ P_2 \end{bmatrix}, \text{ where } P_1 \text{ is repeated } q \text{ times and } q \ge 1.$$

Obviously, Q denotes the pattern with 5q+12 rows and 5p+12 columns.

Since the patterns A and P_1 constitute a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{5,5}$ and $T_{5,5p+12}$, respectively, while the leftmost five columns of Q constitute a (1,0)-relaxed 6-L(2, 1)-labeling of $T_{5q+12,5}$, it follows that $T_{5p+17\alpha,5q+17\beta}$ admits a (1,0)-relaxed 6-L(2, 1)-labeling for any $p, q, \alpha, \beta \geq 1$.