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1 abstract

The most common measure for an algorithm’s efficiency is its running time, described as

a function of the input length. Traditionally, however, several inconsistencies have found

way even to the analysis of the most classical algorithms. In some cases these are ‘slight’

inconsistencies, in the sense that their effect may change the result by a factor of lg n. However,

some others have a polynomial effect, and on the extreme – an exponential one.

In [2] we discuss this matter, bringing pairs of examples for each of the categories of effect:

in the first member of the pair the algorithm’s running time is calculated accurately, whereas

in the other it is being traditionally analyzed incorrectly, demonstrating that the computing

community is being inconsistent when it comes to algorithm analysis. Since this seems to be

shared by all accepted textbooks (with the exception of the textbook of Brassard and Bratley

[1, ch. 7.7], as far as the author knows), it cannot be attributed to errors in analysis; rather,

it seems to be a matter of conventions that won their place among the people in the area.

The author’s work, discussing the three inconsistency types, has been published in ACM

INROADS, March 2013, as [2].

In this work we describe the inconsistency which results in exponential effect (type ii in the

paper). We do it by presenting the well-known algorithm for calculating the n’th Fibonacci

number, IterFib(N), denoted by Aiter (Algorithm 1). Let t(Aiter, n) be its running time on

input of n bits.

In the classroom we describe Aiter as an efficient, linear algorithm. Clearly Aiter is linear

in N ; however, the data size is n = ⌈lgN⌉, so t(Aiter, n) ∈ Θ(2n). Why do we consider it as

an inconsistency? Let us compare the analysis to that of UltraNaivePrime(N) (Algorithm 2),

an algorithm for checking whether an integer is prime or composite. Denote the algorithm by

Anve. Where does t(Anve, n) belong? As in the case of calculating Fibonacci numbers, the

size of the data is n = ⌈lgN⌉. The loop tests for division up until
√
N , which requires 1

2
n

bits, leading to O(
√
2
n
) iterations.

In both problems, that of calculating the n’th Fibonacci number and that of primality

testing, the input comprises lgN bits. However, for the former it is common in CS education
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Algorithm 1 IterFib(N)

/* The iterative algorithm. */
if N = 0 or N = 1 then

return N
else

a = 0; b = 1
for i← 2 to N do

res← a+ b; a← b; b← res
end for

end if
return res

Algorithm 2 UltraNaivePrime(N)

/* The algorithm decides whether N is prime by testing whether there is a number, up */
/* until

√
N , dividing N . For simplicity, we avoid more efficient algorithms. */

r ← ⌊
√
N⌋; i← 2

while (i ≤ r) and (N mod i ̸= 0) do
i← i+ 1

end while
if N mod i = 0 then

return true
else

return false
end if

to refer erroneously to the size of the number as if it was the size of the input, leading to a

wrong conclusion as to the running time, whereas in the latter the input length is correctly

considered as lgN bits, and thus the conclusion regarding the running time is correct.

When the input is a list of numbers rather than a single one, counting the bits required to

represent a number is usually insignificant, and better be avoided in favor of clarity of anal-

ysis. However, in case the numbers are large (in the range of O(2n), say), this may become

(depending on the algorithm) important. We will elaborate on this issue, as well as on the

inconsistency which results in polynomial effect (type i in the paper), in the presentation.
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