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Preface

This book aims at introducing technical and financial aspects of the insurance busi-
ness, with a special emphasis on the actuarial valuation of insurance products.
While most of the presentation concerns life insurance, also non-life insurance is
addressed, as well as pension plans.

The book has been planned assuming as target readers:

• advanced undergraduate and graduate students in Economics, Business and Fi-
nance;

• advanced undergraduate students in Mathematics and Statistics, possibly aiming
at attending, after graduation, actuarial courses at a master level;

• professionals and technicians operating in insurance and pension areas, whose
job may regard investments, risk analysis, financial reporting, and so on, hence
implying communication with actuarial professionals and managers.

Given the assumed target, the use of complex mathematical tools has been
avoided. In this sense, the book can be placed at some “midpoint” of the existing lit-
erature, part of which adopts more formal approaches to insurance problems, which
implies the use of non-elementary mathematics and calculus, whereas another part
addresses practical questions totally avoiding even basic mathematics (which, in our
opinion, can conversely provide effective tools for presenting technical and financial
features of the insurance business).

We assume that the reader has attended courses providing basic notions of Finan-
cial Mathematics (interest rates, compound interest, present values, accumulations,
annuities, etc.) and Probability (probability distributions, conditional probabilities,
expected value, variance, etc). As mentioned, Mathematics has been kept at a rather
low level. Indeed, almost all topics are presented in a “discrete” framework, thus not
requiring analytical tools like differentials, integrals, etc. Some Sections in which
differential calculus has been used can be skipped, without significant losses in un-
derstanding the following material.

Some details concerning the chapters of the book can help in explaining the “ra-
tionale” underlying its structure and the choice of the materials therein included.

v



vi Preface

Chapter 1 first aims at presenting the concept of risk, focussing in particular on
the (negative) consequences of some events which can concern a person, a family, a
firm, and so on. Secondly, the Chapter describes the role of an insurance company,
which takes individual risks, builds up a pool of risks, and bears the risk of losses
caused by large numbers of events within the pool or unexpected severity of the
claims.

In Chapter 2 various aspects of the risk pooling process are addressed. The effects
of cross-subsidy (and, in particular, mutuality and solidarity) are illustrated. Then,
referring to a simple portfolio structure, reinsurance arrangements, solvency and
capital allocation are dealt with.

Hence, the first two Chapters provide the reader with an introduction to risk and
insurance. Indeed, a risk-management oriented approach should underpin, in our
opinion, the teaching of the insurance technique and finance. It is worth stressing
that these two Chapters can fulfill the syllabus of a very short course (say, 20-25
hours) aiming to present the basics of risk identification, risk assessment, and risk
management actions.

Chapters 3 to 7 focus on life insurance. Although many topics dealt with are
rather traditional (life tables, discounting cash-flows, premiums and reserves for var-
ious insurance products), several issues of great current interest have been included;
for example: mortality trends, best-estimate reserving, risk margins, profit assess-
ment, linking life insurance benefits to the investment performance, unit-linked
products, and so on.

Chapter 8 addresses problems related to the post-retirement income. In particular,
defined contribution pension plans are addressed. The protection that an individual
can obtain by underwriting appropriate benefits and financial guarantees, before and
after retirement, is examined. Special emphasis is placed on life annuities as an
element in post-retirement income arrangements. Risks emerging for the provider
are described, with particular regard to the financial and longevity risks.

Finally, Chapter 9 deals with non-life insurance. First, an overview of the con-
tents of non-life insurance products is provided. Then, premium calculation and
related statistical bases are focused. Issues presented in Chapter 1 are progressed, in
order to introduce the stochastic modeling of claim frequency, claim severity and ag-
gregate claim amounts. An introduction to technical reserves and profit assessment
concludes the Chapter.

Each chapter concludes with a section providing bibliographic references and
suggestions for further reading. The list of references only includes textbooks and
monographs, while disregarding papers in scientific journals, congress proceedings,
research and technical reports, and so on. Our choice aims at limiting the number of
citations, in line with the teaching orientation of this work.

We have successfully tested the logical structure and the contents of the book in
various recent courses. In particular: a course of Insurance technique and finance for
graduate students in Finance at the University of Parma; a course of Life insurance
mathematics for undergraduate students in Statistics and undergraduate students in
Mathematics at the University of Trieste; courses of Risk and Insurance, Life in-
surance technique, Non-life insurance technique and a distance-learning course of
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Insurance technique for employees of a European insurance company, at the MIB
School of Management in Trieste. Part of the material included in the book has
been used also in CPD (Continuing Professional Development) courses of Life in-
surance technique for non-actuaries organized by the Italian actuarial professional
body. Further, some specific topics have been delivered in short seminars and other
teaching initiatives (for example: risk-management approach to insurance problems,
stochastic mortality, linking life insurance benefits to the investment performance,
etc).

Risks must be carefully identified, assessed and managed by all the agents (indi-
viduals, households, firms, public institutions, and so on). Risk transfer constitutes
an effective tool for managing risks, and the importance of insurers in this transfer
process is self-evident. Actually, the insurance business constitutes a growing mar-
ket. Appropriate risk management solutions must be taken also by insurers, due to
the risks they assume through their products.

If this book helps to better understand the technical and financial features of the
insurance activity, the role of insurers as intermediaries in the risk pooling process
and as financial intermediaries, and the basics of the risk management of an insur-
ance business, then we have achieved our objective.

Annamaria Olivieri
Trieste, July 2010 Ermanno Pitacco
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Chapter 1
Risks and insurance

1.1 Introduction

The main purposes of this Chapter are:

• to present the concept of individual “risk”, focussing in particular on quantita-
tive aspects of the (negative) financial consequences of some events which can
concern a person, a family, a firm, and so on;

• to introduce the role of an insurance company (briefly, an insurer), which takes
individual risks, building up a “pool”, and then bears the risk of losses caused by
an unexpected number of events in the pool, or by an unexpected severity of the
financial consequences of such events.

While basic ideas concerning the risk transfer process and the related construc-
tion of a pool of risks are presented in this Chapter, more complex issues regarding
the management of a pool will be discussed in Chap. 2.

1.2 “Risk”: looking for definitions

1.2.1 Some preliminary ideas

A number of definitions have been proposed for the term “risk”, some of which
concern the common language, whereas others relate to the more specific business
language, and the language of insurance business in particular.

A rather general definition can be provided in mathematical terms. In fact, a risk
can be defined as a random number, X , whose actual outcome (or realisation) is
unknown. Yet, a set of possible outcomes has to be specified, and probabilities over
this set have to be assigned.

As regards the set of possible outcomes, consider the following examples.

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 1
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2 1 Risks and insurance

• Assume that X denotes the spot on the face which will appear by tossing a dice;
clearly, the possible outcomes are the numbers 1,2, . . . ,6.

• X can represent, in financial terms, the damage consequent a fire in an industrial
building. So, X = 0 denotes the absence of a damage, whilst X = xmax denotes
the total loss of the building, whose value is xmax; thus, the interval [0,xmax] is
the set of possible outcomes of the risk X .

• If X represents the annual economic result of a firm, as at the end of the year,
X > 0 denotes a profit whilst X < 0 denotes a loss. The maximum possible loss,
x′ (x′ < 0), and the maximum possible profit, x′′ (x′′ > 0), should be estimated,
so that the possible outcomes of X are given by the interval [x′,x′′].

Note that in the first example above, the random number X refers to a “physical”
result, whereas in the other examples X is a random amount describing economic
consequences of some events. In what follows we will be involved just in the fi-
nancial consequences of events, and hence the risk will be expressed in monetary
terms.

We now move to a set of examples, that we call “cases”, specifically concerning
the fields of finance and insurance. In this Section we just aim at describing various
types of risk, looking at the sources from which risks originate (namely, the financial
scenario, some demographical aspects, and so on). In the following sections, we will
turn again several times on these cases, in particular for assessing the impact of risks
on significant results (profits, cash-flows, and so on). Thus, we will follow a stepwise
process, starting from the discussion of various features of risks and aiming at the
description of important risk transfer opportunities.

1.2.2 Transactions with random results

We consider a set of transactions, denoted by A, B, . . . (for example: purchase of
zero-coupon bonds, investment in equities, and so on), each transaction leading to a
random result at a stated time. We denote with XA, XB, . . . , the results produced by
the various transactions. For instance, transaction A leads to the result XA, whose
possible outcomes are xA,1, xA,2, . . . .

The actual outcome of each random result depends on which state of the world
will occur, out of a given set of mutually exclusive states, S1,S2, . . . . Each state of
the world summarizes aspects of the economic-financial scenario, which can affect
the results. Table 1.2.1 illustrates the link between possible outcomes and a (finite)
set of states of the world.

In what follows, we will focus on two special cases, denoted as Case 1a and
Case 1b. Although these cases do not involve insurance issues, they constitute a good
starting point for discussion about risk assessment, as we will see in Sect. 1.4.7.

Case 1a - Zero-coupon bonds We refer to a zero-coupon bond, whose pay-off
at maturity (say, in one year) depends on the state of the world at that time. When the
bond is purchased, the state of the world at maturity is unknown, namely random.
We assume, for simplicity, two possible states only, denoted by S1,S2. Further, we
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Table 1.2.1 A set of transactions with random results

S1 S2 . . .

XA xA,1 xA,2 . . .
XB xB,1 xB,2 . . .
XC xC,1 xC,2 . . .
. . . . . . . . . . . .

assume that 50 and 150 are the corresponding pay-offs of the bond. In particular, we
can assume that the outcome 50 implies a loss in relation to the amount invested in
purchasing the bond, whereas 150 leads to a profit. We denote with XA the random
pay-off at maturity.

Another zero-coupon provides at maturity a pay-off, XB = 100, which is inde-
pendent of the state of the world.

The former zero-coupon bond is a risky bond, whereas the latter is a risk-free
bond. Table 1.2.2 illustrates the relation between pay-offs and states of the world.

Table 1.2.2 Payoffs of two zero-coupon bonds

S1 S2

XA 50 150
XB 100 100

Remark It is worth stressing the true meaning of the expression “risk-free” referred to the bond
with pay-off XB. It actually means that risk is regarded as negligible, in the sense that we are
(almost) sure that the pay-off will be 100, whatever the scenario. For example, the counter-party
risk, i.e. the risk of default of the bond issuer, is considered negligible and hence disregarded so
far in our model. Indeed, all models should provide simplified, yet unbiased, representations of a
highly complex reality.

�

Case 1b - Random yields The possible yields (per 100 monetary units) pro-
vided by four investments are represented in Table 1.2.3. For any given investment
choice, each outcome is linked to a state of the world. Low yields (e.g. 0%, in the
example) can be considered as “losses”, if compared to an appropriate benchmark.
�

In Case 1a (Zero-coupon bonds) and Case 1b (Random yields), the presence
of risk may lead either to a profit or a loss. Risks of this type are usually called
speculative risks.
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Table 1.2.3 Investments with random yields

S1 S2 S3

X1 5.0 6.0 7.0
X2 0.0 6.0 12.0
X3 5.2 6.1 6.1
X4 5.0 6.0 6.5

1.2.3 A very basic insurable risk

The case discussed in this Section can be considered the simplest example of a situ-
ation in which the presence of a risk can only cause a loss. Thanks to its simplicity,
this case will be often referred to in the following sections, as the starting point for
introducing assessment procedures, construction of “pools” of risks, and so on.

Case 2 - Possible loss with fixed amount An “agent” (a person, a company, an
institution) may suffer a loss, because of an event (an accident) occurring within a
stated period. For example, the event could consist in the total loss of a cargo moved
by an aircraft. We denote with E the event which causes the financial loss, and with
x the amount of the loss itself. Thus, we are assuming that, if the event occurs, the
amount of the loss is certain. In the example above, no partial damage of the cargo is
accounted for. We can formally represent the potential loss with the random number
X , defined as follows:

X =

{
x if E

0 if Ē
(1.2.1)

This basic model can be used to represent also other situations of risk. For exam-
ple, the death (say, within a one-year period) of a person, who sustains her family
with an income, may have dramatic consequences on the availability of financial re-
sources. Although the financial impact of the death could be assessed in terms of the
present value of future expected incomes, a huge degree of uncertainty in defining
the amount x obviously remains.

Another example is given by a permanent and total disablement, because of an
accident or a body injury, which causes the working incapacity of an individual. A
high degree of uncertainty in determining the amount x affects also this case.
�

1.2.4 Random number of events and random amounts

More realistic situations can be depicted by generalizing the risk described as Case 2
(Possible loss with fixed amount). The five following cases constitute generaliza-
tions of Case 2, as they include a larger set of random items, or a longer time hori-
zon. In particular:
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• the event causes a random loss, instead of a deterministic loss (Case 3a below);
• a random number of events, instead of one event at most, may occur within the

stated period, each event implying a deterministic loss (Case 3b and 3c below);
• a longer time horizon is addressed (Case 3c below), so that the time-value of

money cannot be disregarded;
• a random number of events may occur within the period, each event implying a

random loss (Cases 3d and 3e below).

Figure 1.2.1 provides an illustration of the various generalizations, which are
dealt with in this Section.

 
 

Case  2 
 

• 1 year 
• 0 or 1 occurrence 
• fixed amount 

Case  3a 
 

• 1 year 
• 0 or 1 occurrence 
• random amount 

Cases  3d,  3e 
 

• 1 year 
• random number 

of occurrences 
• random amounts 

Case  3c 
 

• m  years 
• annual random 

numbers of 
occurrences 

• fixed amounts 

Case  3b
 

• 1 year 
• random number 

of occurrences 
• fixed amounts 

Fig. 1.2.1 From the basic risk to more general situations

Case 3a - Damage / loss of a cargo Unlike in Case 2 (Possible loss with fixed
amount), we also allow for partial damage of a cargo during the transport. Thus, the
damage is a random amount X . As regards its possible outcomes, we can choose
either a discrete setting, namely

X : 0,x1, . . . ,xmax (1.2.2)

or a continuous setting, namely

0 ≤ X ≤ xmax (1.2.3)

Typically, the maximum amount xmax will be given by the value of the cargo. The
outcome X = 0 denotes the absence of damage thanks to the absence of accident.

A formal representation of the discrete setting, as described by the outcomes
listed in (1.2.2), can be as follows:
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X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 if E1

x2 if E2

. . . . . .

xm if Em

0 if Ē

(1.2.4)

where xm = xmax, and the events E1,E2, . . . ,Em are scaled according to increasing
severity of the consequences in terms of amount of the loss. The event E , namely
the occurrence of an accident whatever its severity may be, can be then represented
as the union

E = E1 ∪ E2 ∪·· ·∪Em (1.2.5)

whereas Ē still represents the absence of an accident (as in Case 2).
For various purposes (as we will see in Sect. 1.3), it is useful to summarize the

random loss by using some typical value, such as the expected value. Obviously,
the calculation of the expected value (and other typical values as well) requires, in
principle, that probabilities on the set of possible outcomes (given by (1.2.2), or
(1.2.3)) have been assigned. As an alternative, in practice we can just assume an
estimation of the expected value, derived from previous (and similar) experiences.
�

Case 3b - Disability benefits; one-year period An employer takes the risk of
paying to the employees a lump-sum benefit in the case of permanent disability due
to an accident. Assume the following hypotheses:

1. the time horizon is one year;
2. n employees are exposed to the risk of accident;
3. for each employee, the amount of the benefit is C.

Let K denote the random number of accidents within a given year. Hence, the
total benefit paid by the employer is given by

X = C K (1.2.6)

The possible outcomes of K are 0,1, . . . ,n, so that the corresponding outcomes of X
are 0,C, . . . ,nC.

Also in this case, the random payment can be summarized by using some typical
value, in particular the expected value. For the expected value, E[X ], of the total
benefit, we clearly have

E[X ] = CE[K] (1.2.7)

If we replace hypothesis 3 with the following one

4. for the j-th employee, j = 1,2, . . . ,n, the amount of the benefit is C( j) (e.g. related
to the employee’s salary)

then, the total benefit paid by the employer does not depend on the number of ac-
cidents only, as it also depends on which employees enter the disability state. In
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formal terms, with reference to employee j we define the random amount X ( j) as
follows:

X ( j) =

{
C( j) in the case of accident

0 otherwise
(1.2.8)

Then, the total random payment of the employer is given by

X =
n

∑
j=1

X ( j) (1.2.9)

Note that, if we assume hypothesis 4, the expression of the total payment X is more
complex than that given by (1.2.6), as various amounts of benefit are in general
involved.
�

It is worth noting that, in Case 3b (Disability benefits; one-year period), the risk
borne by the employer, which leads to the random payment X , is actually a set (or
a “pool”) of individual risks, each one represented by the possible disability of an
employee and the related payment C (or C( j)) by the employer. Interesting features
of the risk pooling will be analyzed, in general terms, in the following sections
starting from Sect. 1.6.1.

Case 3c - Disability benefits; multi-year period We generalize Case 3b (Dis-
ability benefits; one-year period) by assuming that the time horizon consists of m
years, and in particular we are interested in setting m > 1 (say, m = 5 or m = 10).
We still assume that n employees (at the beginning of the m-year period) are exposed
to the disability risk. Moreover, we suppose that each employee who suffered an ac-
cident implying permanent disability in any given year is replaced, at the beginning
of the following year, by another employee. Further new entrants are not allowed.
Hence, n employees are exposed to risk at the beginning of each year. The individ-
ual lump-sum benefit paid, at the end of the year in which the accident occurs, is C,
whatever the year may be (within the stated period).

We denote with K1,K2, . . . ,Km the random number of accidents occurring in the
various years, so that

Xt = C Kt (1.2.10)

is the random amount paid by the employer at time t, namely at the end of year t, for
t = 1,2, . . . ,m. Note that, if we defined the total random payment of the employer
simply as follows

X = X1 +X2 + · · ·+Xm (1.2.11)

we would disregard the time-value of the money (i.e. we would assume a zero inter-
est rate). We will return on this aspect in Sect. 1.4.5.
�

Case 3d - A fire in a factory Referring to a given period (say, one year), we
assume that a factory can be damaged, one or more times within the stated period,
by fire. In each occurrence, the amount of the related damage is random. Note that,
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in this case, features of Case 3a (Damage / loss of a cargo), i.e. randomness of
the loss, and Case 3b (Disability benefits; one-year period), i.e. random number of
occurrences, are merged together.

In formal terms, we first define the random number N as the number of occur-
rences of fire within the stated period. Then, we denote with Xk the damage caused
by the k-th fire. Hence, the total random damage X is defined as follows:

X =

{
0 if N = 0

X1 + · · ·+XN if N > 0
(1.2.12)

For each k, we have Xk > 0, as the case of a zero damage is expressed by N = 0.
Further, for each Xk, a minimum amount xmin and a maximum amount xmax should
be stated. In particular, the maximum amount could be the value of the factory.
However, it is unlikely that, in the case of multiple occurrence of fire, each event
completely destroys the factory (which, in the meanwhile, should have been com-
pletely rebuilt). This aspect can be dealt with by properly assigning the probabilistic
structure of the random numbers N,X1, . . . ,XN .

As regards the random number N, we can assume in principle that the possible
outcomes are all the integer numbers 0,1,2, . . . . Conversely, we can assume a maxi-
mum (reasonable) outcome nmax, so that the possible outcomes are 0,1,2, . . . ,nmax.
Note that, in Case 3b (Disability benefits; one-year period), the maximum number
of accidents is, of course, n.

In order to summarize the random quantities mentioned above by using, for ex-
ample, the expected value, the probabilities related to the possible outcomes of these
random quantities should be available. In practice, as said above, we can just assume
estimations of the expected values, derived from previous (and similar) experiences.
We denote with E[N] the expected value of the random number of occurrences (fire,
in this example) in the given period, E[Xk] the expected value of the damage result-
ing from the k-th occurrence, and E[X ] the expected value of the total damage.

If we assume appropriate hypotheses (which will be specified in Sect. 1.4.4),
in particular if we assume that all the random amounts Xk have the same expected
value, namely

E[X1] = E[X2] = · · · = E[Xnmax ] (1.2.13)

then, we find that
E[X ] = E[X1]E[N] (1.2.14)

Damages to the factory (and in particular to buildings, machineries, equipments,
and so on) constitute an example of direct losses caused by fire. Conversely, in-
direct losses arise as a consequence of direct losses. For example, damages to the
machineries may cause an indirect loss by reducing the normal production level,
and hence by reducing the profit usually generated by the factory. Clearly, for each
possible occurrence of fire, also indirect losses should be taken into account.
�
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Case 3e - Car driver’s liability A car driver may cause damage to the property
(for example, cars) of others, or injury to persons (pedestrians, or other car drivers).
Then, a third-party liability arises. Referring to a given period (say, one year), we
can define, as in Case 3d (A fire in a factory), the random number N as the number
of damages or injuries caused by the driver within the period. We still denote with
Xk the damage caused by the k-th occurrence. Hence, the total random damage, X ,
in the given period, is defined by formula (1.2.12).

Note however that, in this case, maximum amounts cannot be stated, as the dam-
aged property (or the type and severity of the injury) is not predefined, whereas it is
well defined in Case 3d (A fire in a factory).
�

It is worth stressing that in Cases 2 (Possible loss with fixed amount) and 3a
(Damage / loss of a cargo) to 3e (Car driver’s liability), the presence of a risk can
only cause losses (or damages, liabilities, and so on). Hence, in these situations we
refer to pure risks.

1.2.5 Risks inherent in the individual lifetime

Any individual, while managing her financial resources, should account for various
risk sources. We now focus on those risks which are directly related to the random-
ness of the individual lifetime.

The lifetime of an (adult) individual can be split into two economic periods,
namely the working period and the retirement period. During the working period,
while getting an income from her working activity, the individual should accumulate
resources in order to finance the post-retirement income. Thus, as regards the man-
agement of resources aiming to provide an income at old ages, the working period
corresponds to the accumulation phase, whereas the retirement period corresponds
to the decumulation phase (see Fig. 1.2.2).

In both the phases various risks affect the management of resources, among
which financial risks, arising from randomness in the investment yield, should not
be disregarded. Further, some needs (and then the impact of risks) are related to the
presence of dependants. In what follows we focus on risks inherent in the individual
lifetime, singling out the following aspects:

• accumulation of resources to be used during the retirement period;
• risk of early death, and specifically the risk of dying during the working period;
• income during the retirement period.

Case 4a - The need for resources at retirement An individual, during her
working period, is aware that at retirement she will need an amount, say S, to be
converted, at that time, into a sequence of periodic amounts, so that a regular income
will be available from retirement onwards.
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Fig. 1.2.2 Accumulation and decumulation periods

Assume the year as the time unit. Let r denote the retirement time. A saving
plan is designed, in order to find a suitable sequence of annual savings c1,c2 . . . ,cr,
which, during the working period, progressively constitute a fund. A financial in-
stitution manages the fund itself. Note that the amounts c1,c2 . . . ,cr, deposited at
times 1,2, . . . ,r respectively, are represented by the jumps (during the accumulation
period) in Fig. 1.2.2. The slope of each segment approximately represents the effect
of interest credited to the fund. The resulting piece-wise profile shows the behavior
of the fund throughout the accumulation period.

In formal terms, the value, S, of the fund at time r is given by:

S = φ(c1,c2, . . . ,cr) (1.2.15)

where the function φ depends on the interests credited to the fund. In particular,
denoting with i an estimate of the (constant) annual interest rate credited to the
accumulated fund, we have

S = c1 (1+ i)r−1 + c2 (1+ i)r−2 + · · ·+ cr (1.2.16)

Assume that the actual sequence of deposits exactly follows the saving plan. If
the interest rate i is guaranteed by the financial institution, the accumulated value S
is certain. Thus, the investment risk is borne by the financial institution, whilst the
accumulation process is risk-free for the individual.

Conversely, if the financial institution does not provide the individual with any
guarantee, the accumulation process could result in an amount lower than S (given
by formula (1.2.16)), because of changes in interest rates, in the value of equities
purchased, and so on. In particular note that, because of these possible changes,
all the increases in the accumulation profile between two consecutive jumps (see
Fig. 1.2.2) should be considered as random quantities. Then, also the final result of
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the accumulation process should be considered as a random amount. Hence, the risk
is linked to the conditions of the accumulation process, and, in particular, is driven
by the guarantees provided by the financial intermediary.
�

Case 4b - Early death of the individual Assume that the accumulation process
described in Case 4a (The need for resources at retirement) is in progress. However,
in the case of early death of the individual (namely, before the retirement time r), the
accumulation process is interrupted (and the accumulated amount is lower than the
target amount S). Of course, the death can cause a financial distress to the individ-
ual’s family, in particular in the presence of one or more dependants. In practice, it
is almost impossible to quantify in monetary terms the impact of the early death, in
particular because of the unknown value of future incomes lost. Thus, the financial
impact is represented by a random amount. Assume that no estate, other than the
accumulated fund, is available to face family’s future needs, and that the dashed line
in Fig. 1.2.2 represents a tentative estimation of the random impact. Then, at any
point in time, the amount resulting as the difference (if positive) between the esti-
mated impact of the early death and the accumulated fund is an amount “at risk”,
because of the lack of resources.

Note that this case generalizes the basic risk, namely Case 2 (Possible loss with
fixed amount), as a multi-year period of exposure to risk is allowed for.
�

Case 4c - Outliving the resources available at retirement Assume that a given
amount S is available to an individual at her retirement, i.e. at time r (see Fig. 1.2.2),
presumably as the result of an accumulation process (see Case 4a). Further, assume
that now S is the initial amount of a fund, managed by a financial institution which
guarantees a constant annual rate of interest i. In order to get her post-retirement
income, the retiree withdraws from the fund at time t the amount bt (t = r + 1,
r +2, . . . ).

Let Ft denote the fund at time t, immediately after the payment of the annual
amount bt . Clearly:

Ft = Ft−1(1+ i)−bt for t = r +1,r +2, . . . (1.2.17)

with Fr = S. Thus, the annual variation in the fund is given by

Ft −Ft−1 = Ft−1 i−bt for t = r +1,r +2, . . . (1.2.18)

Figure 1.2.3 illustrates the causes explaining the behavior of the fund throughout
time, formally expressed by Eq. (1.2.18); note that, the (usual) case bt > Ft−1 i is
referred to.

The behavior of the fund obviously depends on the sequence of withdrawals
br+1,br+2, . . . . In particular, if for all t the annual withdrawal is equal to the annual
interest credited by the fund manager, that is
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bt = Ft−1 i (1.2.19)

then, from (1.2.18) we immediately find

Ft = S (1.2.20)

for all t, and hence a constant withdrawal

b = S i (1.2.21)

follows.
Conversely, if we assume a constant withdrawal greater than the annual interest

(as probably needed to obtain a reasonable post-retirement income), namely

b > S i (1.2.22)

the drawdown process will exhaust, sooner or later, the fund (of course, provided
that the retiree is still alive). Indeed, from Eq. (1.2.18) we have

Ft < Ft−1 for t = r +1,r +2, . . . (1.2.23)

and we can find a time tmax such that

Ftmax ≥ 0 and Ftmax+1 < 0 (1.2.24)

Clearly, the exhaustion time tmax depends on the annual amount b (and the interest
rate i as well), as it can be easily understood from Eq. (1.2.18).
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The sequence of tmax − r constant annual withdrawals b (with tmax defined by
conditions (1.2.24), and possibly completed by the exhausting withdrawal at time
tmax +1) constitutes an annuity-certain.

Example 1.2.1. Assume S = 1000. Figure 1.2.4 illustrates the behavior of the fund
when i = 0.03 and for different annual amounts b. Conversely, Fig. 1.2.5 shows the
behavior of the fund for various interest rates i, assuming b = 100.
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It is interesting to compare the exhaustion time tmax with the lifetime of the re-
tiree. Her age at retirement is x + r (see Fig. 1.2.2), for example x + r = 65. Of
course the lifetime is a random number. Denote with Tx+r the remaining random
lifetime for a person age x + r. Let ω denote the maximum attainable age (or lim-
iting age), say ω = 110. Hence, Tx+r can take all values between 0 and ω − x− r.
If Tx+r < tmax − r, then the balance of the fund at the time of death is available as
a bequest. On the contrary, if Tx+r > tmax − r there are ω − x− tmax years with no
possibility of withdrawal (and hence no income).

In practice, the annual amount b (for a given interest rate i) could be chosen by
comparing the related number of withdrawals tmax − r with some quantity which
summarizes the remaining lifetime. For example, a typical value is provided by the
expected remaining lifetime E[Tx+r]. As an alternative, we can focus on the remain-
ing lifetime with the highest probability, i.e. the mode of the remaining lifetime,
Mode[Tx+r]. Note that, in order to find E[Tx+r] or Mode[Tx+r], assumptions about
the probability distribution of the lifetime Tx+r are needed.

For example, the value b may be chosen, such that

tmax − r ≈ Mode[Tx+r] (1.2.25)

Thus, with a high probability the exhaustion time will coincide with the residual
lifetime. Notwithstanding, events like Tx+r > tmax − r, or Tx+r < tmax − r, may occur
and hence the retiree bears the risk originating from the randomness of her lifetime,
and in particular the risk of outliving her resources. Conversely, the choice of b such
that

tmax = ω − x (1.2.26)

obviously removes the risk of remaining alive with no withdrawal possibility, but
this choice would result in a very low amount b.
�

1.3 Managing risks

1.3.1 General aspects

Although “insurance” is the main scope of this book, it is worth stressing that trans-
ferring risks via insurance contracts constitutes just one possibility within a very
wide range of actions which can be taken in order to manage risks.

Risk management is the name of the discipline which aims to analyze the risks
borne by a firm, a bank, a public institution, and so on, and to suggest actions in
order to face risks (the insurance transfer included).

The expression risk management is commonly referred to business entities;
Cases 3a (Damage / loss of a cargo) to 3d (A fire in a factory) provide examples of
risky situations involving such entities. Nevertheless, the ideas underlying the anal-
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ysis of risks and the choice of the appropriate actions can, and in principle should,
be applied also to individuals (or families), so that a personal risk management
framework can also be defined. Cases 3e (Car driver’s liability), 4a (The need for
resources at retirement), 4b (Early death of an individual), and 4c (Outliving the
resources available at retirement) constitute examples of situations to be dealt with
in this context.

In this Section, some basic ideas about risk management are introduced. Obvi-
ously, type of risks and actions to be taken to manage the risks themselves depend,
to a large extent, on the particular business involved (or family needs concerned).
So, a bank bears some types of risks connected to its specific activity, whereas other
risks affect an industry, or an aviation company, and so on. In our presentation, we
only address some general issues, without focussing on technical details concerning
the various fields of activity.

The implementation of risk management principles takes place via the risk man-
agement process, which basically consists of five phases, namely

• risk identification;
• risk assessment;
• analysis of possible actions;
• choice of (a combination of) actions;
• monitoring.

It should be noted that the risk management process is a “never-ending” process.
In fact, the monitoring phase aims at checking the results of the actions, and possibly
suggesting a revision of the four steps previously performed (see Fig. 1.3.1).

Risk 
identification 

Risk 
assessment 

Analysis 
of actions

Monitoring Choice  
of actions

Fig. 1.3.1 The Risk Management process

In the following sections, the five phases of the risk management process are
described.

1.3.2 Risk identification and risk assessment

The risk identification phase aims to single out the potential loss exposures of the
business (or the family, or the individual). As already mentioned, types of risks con-
cerned depend on the particular business under analysis. Nevertheless, some risks
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are borne by rather broad categories of activity. For example, any factory bears risks
as fire, liability towards workers arising from possible accidents, liability towards
the population arising from potential air and water pollution, and so on.

In the risk assessment phase, the potential number and severity of (direct and
indirect) losses should be evaluated. Frequently, just the average number (or the
frequency) and the average severity of losses are estimated. A more accurate (and
complex) approach to risk assessment should involve the use of probabilistic mod-
els, in particular related to the random number of cases of loss, and to the random
amount (namely, the severity) of each potential loss.

The risk assessment phase turns out to be itself a process, consisting of a se-
quence of steps. First the range of some variables should be stated. Then, appro-
priate probability distributions should be assumed. Finally, some typical values (ex-
pected value, variance, mode, and so on) should be focussed on, as these can help
in comparing various situations and then taking decisions. Some examples of risk
assessment will be presented in Sect. 1.4.

1.3.3 Risk management actions

Actions in risk management are not mutually exclusive; usually, a combination of
two or more actions is chosen to face risks.

These actions can be classified as follows.

1. Loss control:

a. loss prevention:
b. loss reduction;
c. risk avoidance.

2. Loss financing:

a. retention;
b. insurance;
c. hedging;
d. other contractual risk transfers.

3. Internal risk reduction:

a. diversification;
b. investment in information.

In order to illustrate various risk management actions, we can refer to Case 3d
(A fire in a factory) presented in Sect. 1.2.4. Loss control actions (also called risk
control actions) generally aim at reducing the expected total loss E[X ]. In particular,
actions which tend to lower the expected number of occurrences, E[N], are known
as loss prevention methods, whereas actions aiming to reduce the expected severity
of each damage, E[Xk], k = 1,2, . . . ,N, are called loss reduction methods.
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For example, appropriate electric equipments can contribute in reducing the ex-
pected number of fire occurrences (loss prevention), whereas fire protection mea-
sures (e.g. doors) can lower the risk of fire propagation and hence the expected
amount of damages (loss reduction).

Loss control can also be realized by reducing the level of risky activities, in
particular by shifting to less risky product lines. Clearly, the cost of this action is
given by a reduction in the profits produced by the risky activities. The limit case
is given by the total elimination of these activities: this action is usually called risk
avoiding.

The expression loss financing (sometimes risk financing) denotes a wide range of
methods which aim at obtaining financial resources to cover possible losses, anyhow
unavoidable.

First, the business can choose the retention of the obligation to pay losses. Re-
tention is often called self-insurance. Instead of retaining a risk, the business can
transfer it to another business. The usual transfer consists in the insurance of the
risk, and thus involves, as the counterpart, an insurance company. Nevertheless,
other risk transfer arrangements can be conceived. More details on this topic are
provided in Sect. 1.3.4.

Hedging is based on the use of financial derivatives, such as futures, forwards,
swaps, options, and so on. These derivatives can be used to offset potential losses
caused by changes in commodity prices, interest rates, currency exchange rates, and
so on. For example, a factory which uses oil in the production process is exposed
to losses due to unanticipated increases in the oil price. This risk can be hedged by
entering into a forward contract, according to which the oil producer must provide
the user with a specified quantity of oil on a specified date at a price stated in the
contract.

Finally, we turn to actions aiming at internal risk reduction. Diversification typi-
cally relates to investment strategies and related risks, and consists in investing rel-
atively small amounts of wealth in a number of different stocks, rather than putting
all of the wealth into one stock. Diversification makes the investment results not
totally depending on the economic results of just one company, and hence aims at
the reduction of investment risks.

Investment in information is the second major form of internal risk reduction.
Appropriate investments can improve the “quality” of estimates and forecasts. A
reduced variability around expected values follows, so that more accurate actions
of, for example, loss financing can be performed.

The analysis of alternative actions must be followed by the choice of a set of
specific actions to be implemented. As already mentioned, risk management actions
are not mutually exclusive, so that the strategy actually adopted is usually an appro-
priate mix of several actions. For example, loss prevention and loss reduction can
be accompanied by an appropriate insurance transfer, which, in its turn, will be less
expensive if an effective loss control can be proved.
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1.3.4 Self-insurance versus insurance

The results achieved throughout the risk assessment phase should provide the risk
manager with data supporting important decisions, and, in particular:

1. what (pure) risks can be retained and what risks should be transferred;
2. how to finance potential losses produced by the retained risks;
3. what kind of risk transfer should be chosen.

As regards point 1, basic guidelines for the decision can follow a frequency-
severity logic as sketched in Fig. 1.3.2. Risks generating potential losses with low
severity (i.e. losses which can be faced thanks to the financial capacity of the firm)
can be retained. In particular, as regards point 2, if the frequency of occurrence
is low, the losses do not constitute an important concern and thus can be financed
either via internal resources, or via external funds, i.e. borrowing money. Internal
resources consist of current cash-flows produced by ordinary activities, and share-
holders’ capital (namely, the assets exceeding the liabilities). High frequency of
losses, on the contrary, suggests funding in advance via specific capital allocation.

Risks generating potential losses with a low frequency but a high severity (and
then a high impact on the firm) should be transferred, in particular to an insur-
ance company. Activities implying potential losses with high frequency and high
severity should be avoided, because of the possible dramatic costs, likely leading to
bankruptcy.

Severity 

Frequency 

LOW 

LOW 

HIGH 

HIGH 

 Retention 
 (unfunded) 

 

   Transfer 

Risk 
avoidance 

  Retention 
  (funded) 

Fig. 1.3.2 How to manage risks according to their possible impact

As regards point 3, we note that the term “transfer” should be understood in a
rather broad sense: first, it simply denotes “not a full retention” of the risk; secondly,
various counterparts, i.e. agents taking (part of) the risk, can be involved to this
purpose.

As far as the first aspect is concerned, risks can be partially transferred and,
more precisely, only the heaviest part of a potential loss can be transferred whereas
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amounts which can be faced thanks to the financial capacity of the business can be
retained.

In particular, the rationale of a risk transfer involving an insurer is the splitting of
losses into two parts, one retained by the insured and the other paid by the insurer.
In formal terms, and still referring to Case 3d (A fire in a factory), the random loss
for the k-th occurrence is split as follows:

Xk = X [ret]
k +X [transf]

k (1.3.1)

The random amount paid by the insurer, X [transf]
k , is determined according to the

policy conditions stated in the insurance contract, and can be usually represented as
a function of the loss Xk, namely

X [transf]
k = ψ(Xk) (1.3.2)

An example of the function ψ is provided by a “proportional” retention, also
called fixed-percentage deductible. In this case, we have

X [ret]
k = θ Xk (1.3.3a)

X [transf]
k = (1−θ)Xk (1.3.3b)

where θ is a given percentage. See Fig. 1.3.3.
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Fig. 1.3.3 An example of risk transfer: the fixed-percentage deductible

Another example of the function ψ is provided by the fixed-amount deductible,
which is a condition included in a number of insurance contracts. When a fixed-
amount deductible d works, any loss under the amount d is fully retained, whilst
losses higher than d are transferred only for the amount exceeding d. Thus
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X [ret]
k = min{Xk,d} (1.3.4a)

X [transf]
k = max{Xk −d,0} (1.3.4b)

See Fig. 1.3.4.
The risk transfer based on a fixed-amount deductible can be more interesting, for

various reasons. In particular, we note what follows:

• small losses do not originate insurer’s payments, thus saving the related costs;
• for large losses, the insurer pays the whole amount net of the deductible (provided

that no upper limit is stated).

Note that, on the contrary, if a fixed-percentage deductible is stated, the insurer
intervenes also for small losses, whereas, in the case of large losses, an important
part of the loss is suffered by the insured.

Other transfer arrangements, of great practical interest, will be described in
Chap. 9.

0 Xk

X[ret]

d

d

k

(a)

d0

X[transf]

Xk

k

d

(b)

Fig. 1.3.4 An example of risk transfer: the fixed-amount deductible

As regards the second aspect, namely the counterparts in a risk transfer deal, we
note what follows. The usual risk transfer involves, as the counterpart, an insurance
company (or even more insurance companies). In the practice of risk management,
a deep analysis of all the available insurance opportunities should be performed.
Appropriate insurance covers should be chosen for each type of risk (fire, third-
party liability, and so on) borne by the firm. The ultimate result is the construction
of an insurance programme, possibly involving several insurance companies.

Despite the prominent importance of insurance arrangements, other transfer so-
lutions are feasible. In particular, large organizations can transfer risks to financial
markets by issuing specific bonds; also insurers can resort to this “alternative” solu-
tion for transferring risks taken from other agents.

A particular form of risk transfer relies on the so-called captive insurers. Some
large corporations have established their own insurance companies, namely the
“captives”, to fulfill insurance requirements of various companies inside the group.
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The captive insurer can be interpreted as a profit center within the group. It is worth
noting that an insurance company cannot be regarded as a captive simply because
completely owned by one or more companies within the group. Conversely, the dis-
criminating feature is whether the majority of its insurance business comes from
the companies of the group, rather than from the market or companies outside the
group.

Another solution to risk transfer problems is provided by pools which share the
same type of risks (without resorting to an insurance company). Examples can be
found in professional associations which build up pools to manage specific types of
risk, like those related to medical expenses. It should be noted that, as these pools
do not imply the existence of an insurance company, their establishment is subject
to constraints stated by the current legislation.

1.3.5 Monitoring and the Risk Management cycle

The choice of actions is the fourth phase of the risk management process, and, in
its turn, this phase originates from the previous three phases (see Fig. 1.3.1). The
results consequently obtained must be carefully monitored. The monitoring phase
has two main objectives:

• checking the effectiveness of the undertaken actions;
• determining whether changes in the scenario suggest novel solutions.

Thus, as clearly appears from Fig. 1.3.1, monitoring is not the “final” phase of the
risk management process: indeed, no final phase exists because, after monitoring,
the risk management process starts again, with the re-identification of risks in a pos-
sibly changed scenario, and so on. Hence, the risk management process is actually
a never-ending “cycle”.

1.4 Quantifying risks: some models

1.4.1 Some preliminary ideas

As already mentioned in Sect. 1.3.2, risk assessment (or risk quantification) mainly
aims at expressing in quantitative terms the impact of risks on significative target
results (monetary outgoes, profits, and so on). To this regard, the following points
should be stressed.

• The impact of each risk is, because of the nature of the risk itself, random.
• Although useful, the assessment of just the minimum and the maximum impact

is clearly insufficient for operational purposes.
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• Typical values, like measures of “location” and “dispersion”, are much more
useful in general, together with probabilities of events like “the result is worse
than a given benchmark”, or “the loss is higher than a stated (critical) threshold”.

• Typical values, for example the expected value or the mode (typical measures of
location) and the variance (a measure of dispersion), are particularly useful for
the following purposes:

– comparisons among various risky situations, and related decisions, for exam-
ple choices between risk retention and risk transfer, e.g. via insurance (see
Sect. 1.3.4);

– in the case of retention, decisions about loss financing, either via specific cap-
ital allocation or via current assets and cash-flows (see Sect. 1.3.4);

– from the insurer’s point of view, “pricing” of risky situations via an appropri-
ate tool-kit for premium calculation.

Typical values could be drawn from previous (and analogous) experiences. Sim-
ilarly, probabilities like those mentioned above, could also be estimated from fre-
quency data. Notwithstanding, the construction of a “complete” probabilistic model
(underpinned by statistical experience), also including convenient hypotheses (for
example, correlation versus independence among the various random inputs of the
model itself), is the most appropriate approach to a sound risk assessment.

Of course, the complexity of a probabilistic model strictly depends on the specific
risk and the result dealt with (as we will see in the following sections). It is worth
noting that, anyhow, a model should constitute a simplified representation of the
reality, and hence it should include all the elements which have an important role
in the assessment process, conversely disregarding those elements which (at least
according to the opinions of the modeler and the decision maker) do not sensibly
affect the results.

1.4.2 A very basic model

We refer to Case 2 (Possible loss with fixed amount), presented in Sect. 1.2.3. The
random loss is expressed, in financial terms, by (1.2.1). Then, the construction of
the probabilistic model simply requires to specify the probability of the event E .
Let

p = P[E ] (1.4.1)

denote this probability. The expected value of the potential loss X is then given by

E[X ] = x p (1.4.2)

and the variance by
Var[X ] = x2 p(1− p) (1.4.3)

The standard deviation, σ [X ], is defined as the square root of the variance; hence:
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σ [X ] =
√

Var[X ] = x
√

p(1− p) (1.4.4)

1.4.3 Random number of events and random amounts

We first refer to Case 3a (Damage / loss of a cargo), described in Sect. 1.2.4. A
probability distribution should be assigned to the random amount X , describing the
severity of the loss. The distribution may be of a discrete or a continuous type. The
latter case, rather common in the actuarial practice of non-life insurance, will be
dealt with in Chap. 9. In the former case, a set of possible outcomes must be con-
veniently chosen. We denote with x0 = 0,x1, . . . ,xmax the possible outcomes of the
random amount X . We recall that the outcome x0 = 0 means the absence of accident
and hence the absence of damage. Then, the probability distribution is specified by
assigning the following probabilities:

ph = P[X = xh]; h = 0,1, . . . ,m (1.4.5)

where xm = xmax. The obvious constraint is ∑m
h=0 ph = 1. The expected value is then

given by

E[X ] =
m

∑
h=0

xh ph (1.4.6)

and the variance by

Var[X ] =
m

∑
h=0

(xh −E[X ])2 ph (1.4.7)

Of course, σ [X ] =
√

Var[X ].

Example 1.4.1. A possible accident causes a loss, whose amount depends on the
severity of the accident itself. We assume that the outcomes of the random loss X
are:

0, 100, 200, 300, 400, 500

with the following probabilities

0.99, 0.002, 0.004, 0.002, 0.001, 0.001

The outcome X = 0 denotes that the accident does not occur. Then:

E[X ] = 2.5

Var[X ] = 763.76

σ [X ] = 27.64

Assume now that an accident (whatever its severity may be) does occur. The out-
comes of the random losses are now restricted to the positive values, namely
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100, 200, 300, 400, 500

Of course, the sum of the relevant probabilities must be equal to one. Hence, keeping
their “relative” values, we have:

0.2, 0.4, 0.2, 0.1, 0.1

From these probabilities we can calculate the expected value of the loss under the
hypothesis that an accident occurs:

x̄ = 250

The expected value of the loss (whether an accident occurs or not) can be expressed
as follows:

E[X ] = x̄×P[accident] = 250×0.01 = 2.5

�

What has emerged from Example 1.4.1 can be formalized as follows. The prob-
ability p of an accident (whatever its severity may be) can be expressed, according
to the notation adopted in Sect. 1.2.4, as

p = P[E ] = P[E1 ∪ E2 ∪·· ·∪Em] (1.4.8)

and is clearly given by

p =
m

∑
h=1

ph (1.4.9)

whereas
p0 = 1− p (1.4.10)

According to the theorem of conditional probabilities, we have, for h = 1,2, . . . ,m:

P[X = xh] = P[X = xh |E ]P[E ] (1.4.11)

Then, the probability distribution of the amount of the loss, conditional on the oc-
currence of an accident, is the following one:

P[X = xh |E ] =
P[X = xh]

P[E ]
=

ph

p
; h = 1,2, . . . ,m (1.4.12)

We can define the expected value of the loss, conditional on the occurrence of an
accident:

x̄ = E[X |E ] =
1
p

m

∑
h=1

xh ph (1.4.13)

Note that, as x0 = 0, we have:
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E[X |E ]P[E ] =
m

∑
h=1

xh ph =
m

∑
h=0

xh ph = E[X ] (1.4.14)

Thus, the unconditional expected value can be expressed as follows:

E[X ] = E[X |E ]P[E ] = x̄ p (1.4.15)

Remark The factorization of the expected value E[X ] of the loss, as shown by formula (1.4.15),
reflects the format in which statistical data are commonly available. Namely, the quantity x̄ can
be estimated relying on the observed mean damage per accident, whereas the probability p can be
estimated on the basis of the frequency of accident.

We now move to Case 3b (Disability benefits; one-year period). Assuming that
the same benefit C is paid, in the case of disability, to anyone of the n employees,
then the risky situation is completely described by the random number, K, of ac-
cidents implying disability. As the possible outcomes of K are 0,1, . . . ,n, a finite
probability distribution should be assigned. In particular, if we assume that

1. for each employee the probability of accident is p;
2. the accidents are independent events;

then, the probability distribution of K is a binomial distribution with parameters n,
p, shortly

K ∼ Bin(n, p) (1.4.16)

Thus

πk = P[K = k] =
(

n
k

)
pk (1− p)n−k; k = 0,1, . . . ,n (1.4.17)

Note, however, that assumption 2 may be controversial, as events like accidents
occurring, for example, inside a factory could be considered positively correlated.

According to the probability distribution (1.4.17), we have:

E[K] = n p (1.4.18)

Var[K] = n p(1− p) (1.4.19)

σ [K] =
√

n p(1− p) (1.4.20)

As regards the total benefit, X , paid by the employer, we obviously have:

P[X = kC] = P[K = k] = πk; k = 0,1, . . . ,n (1.4.21)

and then we find:

E[X ] = CE[K] = C n p (1.4.22)

Var[X ] = C2
Var[K] = C2 n p(1− p) (1.4.23)

σ [X ] = C
√

n p(1− p) (1.4.24)

From (1.4.17) and (1.4.21) we have, in particular:
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P[X = 0] = P[K = 0] = (1− p)n (1.4.25)

Thus, the probability of no accident, and hence of zero payment, decreases as n
increases.

It is worth stressing that formulae (1.4.18) and (1.4.22) for the expected values
do not require the independence hypothesis.

As noted in Sect. 1.2.4, in Case 3b the risk borne by the employer is actually a
pool of n individual risks. The size of the pool plays an important role in the riskiness
of the pool itself, as we will see in Example 1.4.2. For a better understanding of
the role of n, a relative measure of “risk” can be defined, namely the coefficient of
variation:

CV[X ] =
σ [X ]
E[X ]

(1.4.26)

An extensive discussion about the meaning of the coefficient of variation and the
relevant applications will follow in Sects. 1.5.2, 1.6.1, and 2.3.3.

Example 1.4.2. A benefit C = 1000 is paid in the case of permanent disability to
anyone of the employees of a firm. The probability of an accident causing perma-
nent disability is p = 0.005 for each employee. The accidents are assumed to be
independent events. Table 1.4.1 shows various results in the cases n = 10, n = 100
and n = 1000 respectively. Note that E[X |X > 0] is the expected value of the ran-
dom payment conditional on the occurrence of at least one accident; see the analogy
with the expected value in (1.4.13).

The role of the pool size can be perceived by looking at various quantities as
functions of n. In particular, we note what follows.

• When n is “small” (n = 10 or n = 100, in our example), the expected value E[K]
does not correspond to any possible outcome of the random number K. Then, an
interpretation can be as follows: on average, an accident every 1

E[K] years (that is,
every 20 years or every 2 years, respectively) will occur.

• The expected value and variance of both K and X increase linearly as n in-
creases (as it results from Eqs. (1.4.18), (1.4.19), (1.4.22), and (1.4.23)), whereas
the standard deviation increases proportionally to

√
n (see Eqs. (1.4.20) and

(1.4.24)). It follows that the relative riskiness, expressed by CV[X ] as regards
the total benefit, decreases as n increases.

• The probability of no accident is very high when n is small, while it is very low
for large values of n. Note also the consequent variation of E[X |X > 0].

�

We now refer to the problems described as Case 3d (A fire in a factory)
and Case 3e (Car driver’s liability) which, as already noted, combine features of
Cases 3a (Damage / loss of a cargo) and 3b (Disability benefits; one-year period). A
number of modeling alternatives are available for these problems. While a detailed
analysis of these issues will be presented in Chap. 9, here we just focus on a rather
simple choice.
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Table 1.4.1 Disability benefits (one-year period)

n = 10 n = 100 n = 1000

E[K] 0.05 0.5 5
Var[K] 0.04975 0.4975 4.975
σ [K] 0.22305 0.70534 2.23047
E[X ] 50 500 5000
Var[X ] 49750 497500 4975000
σ [X ] 223.047 705.34 2230.47
CV[X ] 4.4609 1.41068 0.44609
P[X = 0] = P[K = 0] 0.99510 = 0.9511 0.995100 = 0.6058 0.9951000 = 0.0067
P[X > 0] = P[K > 0] 1−0.9511 = 0.0489 1−0.6058 = 0.3492 1−0.6058 = 0.9933
E[X |X > 0] 50 1

0.0489 = 1022.71 500 1
0.3942 = 1268.30 5000 1

0.9933 = 5033.49

Assume the same probability distribution for all the random amounts,
X1,X2, . . . ,XN , describing the damages (or liabilities). As for Case 3a (Damage /
loss of a cargo), the distribution may be of a discrete or a continuous type. We as-
sume the discrete setting, and denote with x1,x2, . . . ,xm the possible outcomes for
every random amount Xk, k = 1,2, . . . ,N. Then, the common probability distribu-
tion (that is, the same distribution for k = 1,2, . . . ,N) is specified by assigning the
probabilities

fh = P[Xk = xh]; h = 1,2, . . . ,m (1.4.27)

The expected value x̄ = E[Xk], k = 1,2, . . . ,N, is then given by:

x̄ = E[Xk] =
m

∑
h=1

xh fh (1.4.28)

and the variance by:

Var[Xk] =
m

∑
h=1

(xh − x̄)2 fh (1.4.29)

Note that the probabilities (1.4.27) correspond to the conditional probabilities
(1.4.12) in Case 3a; similarly, the expected value (1.4.28) corresponds to the condi-
tional expected value (1.4.13). The case of no accident and hence damage equal to
0 is now accounted for by the outcome N = 0 of the random number of accidents.

As regards the random number N, a discrete distribution should be obviously
assigned. In particular, a finite distribution requires the choice of a reasonable max-
imum outcome nmax. As an alternative, the Poisson distribution is frequently used,
as we will see in Chap. 9. In the finite setting, the following probabilities must be
assigned

πh = P[N = h]; h = 0,1, . . . ,nmax (1.4.30)

and then the expected value, n̄, and the variance can be derived as follows:

n̄ = E[N] =
nmax

∑
h=0

hπh (1.4.31)
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Var[N] =
nmax

∑
h=0

(h− n̄)2 πh (1.4.32)

The probability distribution of the total loss X , defined by (1.2.12), and the re-
lated typical values are of great interest, as X represents the random cost referred to
the stated period (say, one year). In Sect. 1.4.4 we will describe some assumptions
commonly adopted in insurance technique, which in particular allow us to express
the expected value of the total loss, E[X ], by using formula (1.2.14).

Example 1.4.3. Assume that a factory can be damaged by fire, possibly more times
within a year. As regards the random damages, Xk, k = 1,2, . . . , assume m = 5 and
the following possible outcomes:

x1 = 100; x2 = 200; x3 = 300; x4 = 400; x5 = 500

with the related probabilities

f1 = 0.2; f2 = 0.4; f3 = 0.2; f4 = 0.1; f5 = 0.1

We find, for k = 1,2, . . . :
x̄ = E[Xk] = 250

For the random number N, assume nmax = 4, and the following probabilities:

π0 = 0.9934; π1 = 0.0040; π2 = 0.0020; π3 = 0.0004; π4 = 0.0002

We obtain:
n̄ = E[N] = 0.01

and (under the appropriate hypotheses):

E[X ] = n̄ x̄ = 2.5

We note that the expected value E[X ] coincides with that found in Example 1.4.1.
Notwithstanding, different interpretations should be given to the two results, be-
cause of different structures of the two problems.
�

1.4.4 Random sums: a critical assumption

The total random damage X , defined by (1.2.12), is a random sum, since the number
N of terms in the summation as well as the individual values of the terms are random
variables. The probability distribution, the expected value and the variance of X are
of great practical interest, both in risk assessment in general and in pricing insur-
ance products in particular. However, probabilistic assumptions about the random
variables N and Xk, k = 1,2, . . . are needed in order to get to workable calculation
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procedures. We now describe a set of assumptions, which are commonly adopted
for calculating, in particular, the expected value E[X ].

Assume that:

1. the random variables Xk are independent of the random number N;
2. whatever the outcome n of N, the random variables X1,X2, . . . ,Xn

a. are mutually independent;
b. are identically distributed (and hence with a common expected value, say

E[X1]).

We have, in general:

E[X ] =
nmax

∑
h=0

πh E[X |N = h] =
nmax

∑
h=1

πh E[X |N = h] =
nmax

∑
h=1

πh

[
h

∑
i=1

E[Xi |N = h]

]
(1.4.33)

Thanks to assumption 1, we have:

E[Xi |N = h] = E[Xi] for all i (1.4.34)

and thanks to assumption 2b we obtain

E[Xi] = E[X1] for all i (1.4.35)

and finally:
h

∑
i=1

E[Xi |N = h] = hE[X1] (1.4.36)

Then, we obtain:

E[X ] =
nmax

∑
h=1

πh hE[X1] = E[X1]E[N] (1.4.37)

Although frequently adopted in the insurance technique, the assumptions de-
scribed above may be rather unrealistic. For example, the assumption of indepen-
dence between the random variables Xk and the random number N may conflict with
those situations in which a very high total number of damages is likely associated
to a prevailing number of damages with small amounts.

1.4.5 Introducing time into valuations

While dealing with risks defined on a multi-year horizon, as in the Case 3c (Dis-
ability benefits; multi-year period) described in Sect. 1.2.4, the role of time, and
in particular the time-value of the money, can have a dramatic importance. This is
especially true when risks arising from randomness of the individual lifetime (i.e.
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in the framework of personal risk management) are focussed; see for example the
need for resources at retirement (Case 4a in Sect. 1.2.5), or the problem of outliving
the resources available at retirement (Case 4c). However, these and similar prob-
lems will be dealt with in depth while describing life insurance products designed
to cover the related risks, namely in Chap. 4. Now, to introduce the role of time in
risk assessment, we only focus on a specific example.

We refer to the problem described as Case 3c (Disability benefits; multi-year
period). As regards probabilities related to payment of disability benefits, we de-
note with p the probability of an employee suffering an accident during a one-year
interval; we assume that this probability is constant over the whole m-year period.

Under the hypotheses we have assumed for Case 3b (Disability benefits; one-
year period), the probability distribution of Kt , for t = 1,2, . . . ,m, is binomial (see
(1.4.16) and (1.4.17)); thus

πk = P[Kt = k] =
(

n
k

)
pk (1− p)n−k; k = 0,1, . . . ,n (1.4.38)

and hence
E[Kt ] = n p (1.4.39)

Var[Kt ] = n p(1− p) (1.4.40)

As Xt = C Kt , we obviously have

E[Xt ] = C n p (1.4.41)

We assume that the employer decides to fund her liability, related to the group
of employees, by allocating at the beginning of the m-year period (i.e. at time 0) an
amount of assets meeting the expected value of the disability benefits. Further, we
assume that the assets provide the employer with an interest, at the annual interest
rate i. We denote with At the share of assets, allocated at time 0, to fund the benefits
payable at time t. Then, the following relation must hold:

At (1+ i)t = E[Xt ] (1.4.42)

that is
At = C n p(1+ i)−t (1.4.43)

Hence, the total amount of assets to allocate at time 0 is given by

A =
m

∑
t=1

At = C n p
m

∑
t=1

(1+ i)−t (1.4.44)

The quantity A can also be read in an alternative manner. We define the random
amount, Y , as follows:

Y =
m

∑
t=1

Xt (1+ i)−t (1.4.45)
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Thus, Y is the random present value of the benefits. Then, we calculate the expected
present value (shortly, the actuarial value) of the benefits:

E[Y ] =
m

∑
t=1

E[Xt ] (1+ i)−t = C n p
m

∑
t=1

(1+ i)−t (1.4.46)

Finally, from (1.4.44) we find that A = E[Y ], that is, the amount of assets to allocate
at time 0 is equal to the actuarial value of the benefits.

Remark The allocation of assets to fund the payment of disability benefits to the employees
constitutes an example of risk retention, or self-insurance; see Sect. 1.3.4.

Example 1.4.4. Refer to the disability benefit arrangement described in Exam-
ple 1.4.2. Assume n = 100, and a time horizon of m = 5 years. Table 1.4.2 shows
the allocations At needed to fund (at the beginning of the period) the employer’s
liability, if the interest rate is i = 0.02, or i = 0.03 respectively.

Table 1.4.2 Disability benefits (m-year period)

year t E[Xt ]
Allocation At

i = 0.02 i = 0.03

1 500 490.20 480.77
2 500 480.58 462.28
3 500 471.16 444.50
4 500 461.92 427.40
5 500 452.87 410.96

Total A 2356.73 2225.91

�

1.4.6 Comparing random yields

We now refer to Case 1b (Random yields). First, we note that the investment with
yield X4 can be disregarded because dominated by the investment with yield X1 (see
Table 1.2.3): indeed, in all the states of the world the outcome of X1 is not worse than
the corresponding outcome of X4, and in at least one state (state S3, in the example),
the outcome of X1 is better than the corresponding outcome of X4. Thus, the choice
can be restricted to the first three investments.

We assume, for simplicity, that the three states of the world have the same prob-
ability, i.e.

P[S1] = P[S2] = P[S3] =
1
3
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Table 1.4.3 Expected value and variance of random yields

E[Xi] Var[Xi]

X1 6.0 0.667
X2 6.0 24.000
X3 5.8 0.180

Expected values and variance of the random yields X1, X2 and X3 are given in
Table 1.4.3, from which we can note what follows:

a. investments 1 and 2 can be considered to be equivalent in terms of expected
value;

b. investment 1 is less risky than investment 2, as the former has a lower variance;
c. from (a) and (b), investment 2 turns out to be dominated in mean-variance by in-

vestment 1 (albeit it is not dominated in terms of the items of the pay-off matrix);
d. investment 3 is less profitable than investment 1 in terms of expected value, but,

at the same time, it is less risky; hence, a risk averse investor could prefer invest-
ment 3 to investment 1, and then “pay” the lower riskiness by accepting a lower
expected yield.

The analysis of Table 1.4.3, according to a mean-variance approach, leads to the
following conclusion: while investment 2 can be excluded from further analysis,
both investments 1 and 3 are candidates, the preference being driven by the risk
aversion of the investor.

In more general terms, the set of “solutions”, each of which consists in the choice
of an investment, can be split into two subsets, namely the set of dominated solutions
and the set of mean-variance efficient solutions (see Fig. 1.4.1). According to the
mean-variance approach, the choice should be restricted to efficient solutions. Of
course, the choice of a specific solution depends on the investor’s risk aversion.

Expected value and variance can be summarized by choosing an appropriate
function, which associates a real number to each investment choice. The value of
the function should increase as the expected value increases, and decrease as the
variance increases. For example, the following function can be adopted:

Q[Xi] = E[Xi]−α Var[Xi] (1.4.47)

The (positive) parameter α quantifies the risk aversion. If α = 0, there is no risk
aversion, and the choice relies on the expected values only. The higher is α , the
more importance is attributed to the riskiness expressed by the variance.

Another function which balances expectation and riskiness is the following one:

Q[Xi] = E[Xi]−β σ [Xi] (1.4.48)

where β expresses the risk aversion.
Table 1.4.4 refers to the example discussed above (see Table 1.4.3). We see that,

for a (relatively) high value of the parameter, i.e. for α = 1, namely for a (relatively)
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Fig. 1.4.1 Dominated versus efficient solutions according to the mean-variance criterion

high risk aversion, investment 3 is preferred to investment 1, despite its lower ex-
pected yield.

Table 1.4.4 Summarizing expected value and variance of the efficient solutions

Q[Xi] = E[Xi]−α Var[Xi]

α 0 0.01 0.1 1

X1 6.000 5.993 5.933 5.333
X3 5.800 5.798 5.782 5.620

1.4.7 Risk-adjusted valuations

We now attack the following problem: how can we evaluate the future cash-flows of
a random financial transaction,

• allowing for risk,
• adopting a valuation criterion only based on

– discount factors,
– expected values.

This means that the presence of risks will be accounted for, in the evaluation model,
via an appropriate choice of the discount factor and/or the ingredients in the ex-
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pected value calculation. Hence, variance and other specific risk measures do not
enter the model (unlike the examples in Sect. 1.4.6, in which the variance or the
standard deviation are explicitly accounted for; see (1.4.47) and (1.4.48)).

For brevity, we only deal with a very simple financial transaction and, in partic-
ular, we refer to Case 1a (Zero-coupon bonds) presented in Sect. 1.2.2. We denote
the probabilities of the states of the world as follows:

p = P[S1] (1.4.49)

1− p = P[S2] (1.4.50)

These probabilities are usually called natural (or realistic, or physical) probabilities.
In particular, we assume

p = 1− p = 1
2 (1.4.51)

For the pay-off of the risk-free bond (described in the second row of Table 1.2.2),
we obviously have

Ep[XB] = 100 (1.4.52)

For the pay-off of the risky bond (see the first row of Table 1.2.2), we find the same
expected value, i.e.

Ep[XA] = 50 p+150(1− p) = 100 (1.4.53)

(note that the suffix p recalls that the expected value is calculated using the natural
probabilities). Clearly, the expected values do not account for the different risk de-
grees. Conversely, the prices of the two bonds should reflect the absence / presence
of risk.

We denote with PA the price (at time 0) of the risky bond, and PB the price of
the risk-free bond. Further, we denote with rf the risk-free rate, and set rf = 0.03.
As regards the price of the risk-free bond, we assume that it is given by the present
value of its pay-off. Thus, we have

PB = 100(1+ rf)−1 = 97.09 (1.4.54)

For the price of the risky bond, PA, it is reasonable to assume

PA < PB (1.4.55)

because of risk aversion. In particular, let PA = 95 be the price observed on the
financial market. How can this price be formally “explained”? The three following
approaches can be adopted.

1. Calculate (by using the natural probabilities) the expected value of the pay-off,
and discount this value by using the risk-adjusted discount rate (briefly, the risk
discount rate) ρ , ρ > rf. Thus, we find

PA = Ep[XA] (1+ρ)−1 (1.4.56)
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The quantity ρ − rf is known as the risk premium. In our numerical example, we
find that PA = 95 implies a risk rate ρ = 0.05263.

2. Calculate the expected value of the pay-off by using risk-adjusted probabilities
p′,1− p′ (instead of the natural probabilities):

Ep′ [XA] = 50 p′ +150(1− p′) (1.4.57)

The terms 50 p′,150(1− p′) are called risk-adjusted expected cash-flows. As the
presence of risk has been allowed for via adjusted probabilities, we adopt the
risk-free rate for discounting. Hence

PA = Ep′ [XA] (1+ rf)−1 (1.4.58)

In our numerical example, the price PA = 95 implies Ep′ [XA] = 97.85; from
Eq. (1.4.57), we then find the risk-adjusted probabilities p′ = 0.5215,
1− p′ = 0.4785. Note that adjusting for risk leads to a higher “weight” attributed
to the worst result.

3. Allow for riskiness by “transforming” the amounts of the cash-flows of the risky
bond. Denote with u(XA) the transformed random cash-flow, whose possible out-
comes are u(50) and u(150). In particular, as transform u we can take a utility
function, expressing our risk aversion. The expected value of u(XA) is then called
the expected utility of XA, and is denoted with U[XA]. Thus, we have

U[XA] = Ep[u(XA)] = u(50) p+u(150)(1− p) (1.4.59)

We define the certainty equivalent of the random result XA as the amount A
which, if received certainly, is regarded as equivalent to the random result. In
formal terms:

u(A) = u(50) p+u(150)(1− p) (1.4.60)

Note that, because of the risk aversion (which should be expressed by the func-
tion u), we will find:

A < E[XA] = 50 p+150(1− p) (1.4.61)

(see Fig. 1.4.2a; the graphs are just indicative). Finally, the price PA is given by
the present value of A, i.e.

PA = A(1+ rf)−1 (1.4.62)

For example, the quadratic function

u(x) = −0.000005507x2 +0.007493x (1.4.63)

leads (with p = 1
2 ) to A = 97.85, and then PA = 95. We note that, if we choose

the risky bond, we will get at maturity either 50 or 150, instead of 100 provided
by the risk-free bond. In terms of the utility function, we find:
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u(50) = 0.360867

u(100) = 0.6942

u(150) = 1

Hence, because of risk aversion we attribute to the negative difference 50−100
an absolute “value”, u(100)− u(50), greater than the value we attribute to the
positive difference 150−100 (again, see Fig. 1.4.2a). Under specific hypotheses,
the risk aversion reflects on a concave curve (the graph of the utility function),
which associates values to all monetary amounts (see Fig. 1.4.2b).

x

u(x)

100 15050

. 
. . . 

A

(a)

x

u(x)

(b)

Fig. 1.4.2 Risk aversion and utility function

Figure 1.4.3 summarizes the approaches we have now described. Note that the
term “values” denotes either the amounts of cash-flows, or some transform (for ex-
ample, the utility) of the amounts.

PRICE EXPECTED   VALUE DISCOUNT FACTOR X = 

VALUES PROBABILITIESX Σ 

1 2 3

Fig. 1.4.3 Risk-adjusted pricing. Interpretations

Another approach to the evaluation of future cash-flows, allowing for risk, relies
on the idea of balancing expectation and riskiness by using an appropriate function,
as discussed in Sect. 1.4.6 (see, in particular, formulae (1.4.47) and (1.4.48)). Hence,
this approach consists in adding to the expected value, calculated according to the
natural probabilities, a (negative) term based on an appropriate measure of risk.



1.5 Risk measures 37

However, it should be stressed that such an approach (explicitly involving a risk
measure) cannot be placed into the framework described at the beginning of this
Section. Referring to the example above, the approach is as follows.

4. Calculate (by using the natural probabilities):

• the expected value of the pay-off,
• the value of a function chosen to express the randomness of the pay-off.

Then, for the price of the risky bond we set:

PA = (Ep[XA]− γ Ψp[XA]) (1+ rf)−1 (1.4.64)

where Ψp[XA] quantifies the risk of the transaction. Examples (as seen in
Sect. 1.4.6) are given by the variance Var[XA] and the standard deviation σ [XA]
(both calculated with the natural probabilities). The parameter γ expresses the
risk aversion. Note that the risk-free rate has been used for discounting, as the
adjustment for risk is already expressed by the term −γ Ψp[XA].

The four approaches have been adopted in various application fields. Moreover,
combining two or more approaches is a rather common practice in financial and
actuarial calculations. Several examples will be provided in the following chapters.

1.5 Risk measures

1.5.1 Some preliminary ideas

While expressions such as “quantifying risks” and “risk assessment” have a broad
meaning, denoting, for example, a whole phase of the risk management process (see
Sects. 1.3.2 and 1.4), the expression risk measures has a rather specific meaning.
Actually, it denotes a set of typical values which can be used in order to express the
variability of a random quantity.

A number of risk measures belong to the field of probability theory and statistics
(see Sect. 1.5.2), although in that context the expression “risk measures” is not com-
monly used. Other measures have been proposed in more recent times, and specifi-
cally oriented to risk management problems, and to capital allocation strategies (see
Sect. 1.5.4).

In what follows, we refer to a random amount Z which represents some result
originating from a transaction. In particular, Z can refer to a speculative risk (see
Sect. 1.2.2); thus

Z < 0 ⇔ loss

Z > 0 ⇔ profit
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For the random amount Z, we assume a probability distribution (based on statistical
experience, or hypotheses about the underlying causes of risk, and so on).

Further, we assume that the probability distribution can be described in terms of
the probability density function (briefly, the pdf). Hence, denoting with f (z) the pdf,
we have in general terms

P[a ≤ Z ≤ b] =
∫ b

a
f (z)dz (1.5.1)

The expected value, μ , of Z is given by the following expression:

μ = E[Z] =
∫ +∞

−∞
z f (z)dz (1.5.2)

Clearly, if the possible outcomes of Z constitute a limited interval, say [zmin,zmax],
the integration interval should be consequently modified.

1.5.2 Traditional risk measures

The variance (that we have already used in a discrete context; see, for example,
formulae (1.4.7) and (1.4.32)) is defined as follows:

Var[Z] = E[(Z −μ)2] =
∫ +∞

−∞
(z−μ)2 f (z)dz (1.5.3)

As is well known, the square root of the variance, usually denoted with σ [Z], is
called the standard deviation:

σ [Z] =
√

Var[Z] (1.5.4)

Note that

• the variance and the standard deviation are “symmetric” risk measures, since
both positive and negative deviations from the expected value are captured;

• the standard deviation is expressed in the same “unit” of the random amount Z;
for example, if Z is expressed in Euro, the standard deviation is expressed in
Euro too; conversely, the variance is expressed in the squared unit, which can be
meaningless, as is the case for Euro squared.

The variance-to-mean ratio is defined as follows:

VMR[Z] =
Var[Z]
E[Z]

(1.5.5)

whereas the coefficient of variation is defined as follows:
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CV[Z] =
σ [Z]
E[Z]

(1.5.6)

(see also Sect. 1.4.3). The coefficient of variation, especially in the field of risk
management and insurance, is also known as the risk index. Relevant applications
will be described in Sect. 1.6.1 and 2.3.3. Note that the quantities VMR[Z] and
CV[Z] are “relative” measures of risk; in particular, CV[Z] is unit-free, as both the
numerator and the denominator are expressed in the same unit.

For a random amount Z with a limited interval of possible outcomes, the range
is defined as follows:

Range[Z] = zmax − zmin (1.5.7)

1.5.3 Downside risk measures

In order to capture only the “bad” part of a random result, risk measures other than
the symmetric ones are needed. Downside risk measures can fulfill this requirement.
Most of them have been proposed in the framework of portfolio management as
tools for the analysis of the return. Further risk measures have been more recently
proposed in the context of risk management.

First, we can focus on the possible outcomes of Z which fall below the expected
value μ . To this purpose, we can use as risk measure the semi-variance, which
captures only the negative deviations from the expected value, and is defined as
follows:

semiVar[Z] = E[(min{Z −μ ,0})2] =
∫ μ

−∞
(z−μ)2 f (z)dz (1.5.8)

Further, the semi-standard deviation is given by

semiσ [Z] =
√

semiVar[Z] (1.5.9)

The idea underlying the definition of the semi-variance and the semi-standard
deviation can be generalized, first by assuming as the benchmark a chosen “target”
τ , instead of the expected value μ . Thus, only the negative deviations from τ are ac-
counted for. Further, instead of considering just the second power of the deviations,
we can assume the generic power k. Then, we define the lower partial moment of
degree k as follows:

LPMk
τ [Z] = E[(min{Z − τ,0})k] =

∫ τ

−∞
(z− τ)k f (z)dz (1.5.10)

A (somewhat arbitrarily) chosen target, τ , also underpins the definition of the
shortfall risk measures. If Z denotes a monetary result, a negative value can be
chosen for the target τ; thus, the event Z < τ means a loss greater than the chosen
target, namely a tail loss. Conversely, if Z denotes a return, the target can be positive
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(and small), so that focus is on the return outcomes which do not reach the stated
benchmark.

The shortfall probability, is defined as follows

P[Z < τ] =
∫ τ

−∞
f (z)dz (1.5.11)

Referring to a monetary result, the (negative) expected value of the loss exceed-
ing the (negative) target, conditional on exceeding the target itself, is known as the
expected shortfall. It is given by the following expression

ESτ [Z] = E[Z|Z < τ] =

∫ τ

−∞
z f (z)dz

P[Z < τ]
(1.5.12)

The shortfall risk measures we have now defined are illustrated in Fig. 1.5.1.

μ0

profitloss

τ

P[Z < ]τ

Probability
density
function
of Z

ES [Z]τ

tail loss

Fig. 1.5.1 Shortfall risk measures

1.5.4 Risk measures and capital requirements

Downside risk measures have been proposed, which can be interpreted as capital
requirements aiming to “protect” a financial transaction with random result Z. In
other terms, as the financial transaction can result in a loss, the agent (for example,
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a financial intermediary) needs to allocate a capital which can be used to cover (at
least to some extent) the potential loss, so that the loss itself does not compromise
other lines of business.

The Value at Risk (briefly, the VaR) is the (negative) amount VaRα such that

P[Z ≤VaRα ] = α (1.5.13)

where α is a (low) probability, somewhat arbitrarily chosen, for example α = 0.01.
The probability 1−α is also known as the confidence level. See Fig. 1.5.2.

The following points should be stressed.

• The amount VaRα is the α-percentile of the probability distribution of Z. Note
that the VaR has no meaning if a probability has not been stated.

• The amount VaRα can be interpreted as the maximum loss if an extreme event
(or “tail event”) does not occur. Of course, the definition of “extreme” strictly
depends on the chosen probability.

• If the capital −VaRα is allocated, any non-tail loss is completely funded.
• The quantity VaRα does not provide, by itself, any information about the possible

loss if a tail event occurs.

μ 0

profit loss 

Probability 
density 
function  
of Zα

μ + σ μ − σVaRα TVaRα 

tail loss 

Fig. 1.5.2 Value at Risk and Tail Value at Risk

It can be useful to express VaRα in terms of the expected value μ and the standard
deviation σ of the probability distribution of Z. Let γα be the coefficient such that

P[Z ≤ μ − γα σ ] = α (1.5.14)

then, we have
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VaRα = μ − γα σ (1.5.15)

Given the probability α , the coefficient γα can be immediately determined if, for
example, we assume for Z the normal distribution, namely

Z ∼ N (μ ,σ) (1.5.16)

(see Table 1.5.1).

Table 1.5.1 Coefficient γα (Normal distribution)

α γα

0.100 1.282
0.050 1.645
0.025 1.960
0.001 3.090

The Tail Value at Risk (shortly, the TailVaR, or TVaR, also known as the Condi-
tional Tail Expectation) is the (negative) amount TVaRα defined as follows:

TVaRα = E[Z
∣∣Z < VaRα ] =

∫ VaRα

−∞
z f (z)dz

P[Z < VaRα ]
(1.5.17)

Comparing (1.5.17) to (1.5.12), we find that TVaRα is the expected shortfall related
to the target VaRα , namely

TVaRα = ESVaRα [Z] (1.5.18)

Note that, if we allocate the amount −TVaRα , even a loss caused by a tail event
can be covered, at least partially. Indeed, for any probability distribution, we have
of course

−TVaRα > −VaRα (1.5.19)

For a given probability distribution of Z, we can find α ′ such that

TVaRα = VaRα ′ (1.5.20)

Relation (1.5.20) can be useful when a procedure for the calculation of the VaR
is available. Of course, α ′ < α . However, the exact link between the probabili-
ties involved by VaR and TVaR depends on the probability distribution of Z (see
Fig. 1.5.3). Shifting to another probability distribution, we find

TVaRα ≈VaRα ′ (1.5.21)

with α ′ fulfilling condition (1.5.20).
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Fig. 1.5.3 Relation between VaR and TailVaR

1.6 Transferring risks

1.6.1 Building up a pool

As the pooling of risks is the rationale underlying the insurance activity, we first
focus on the effects of managing jointly a number of risks of the same type (e.g.
originating from fire, or third-party liability, and so on).

We refer to n individuals bearing the same type of risk. For the generic individual
j, the risk implies a loss x( j) (a damage, a liability, and so on) if the event E ( j)

occurs. Thus, we are dealing with the “basic” type of risk we have described as
Case 2 (Possible loss with fixed amount) in Sect. 1.2.3. In formal terms, the random
loss, X ( j), for j = 1,2, . . . ,n, is defined as follows:

X ( j) =

{
x( j) if E ( j)

0 if Ē ( j) (1.6.1)

We assume that the events E ( j) and hence the individual losses X ( j) are inde-
pendent, and denote with p( j), j = 1,2, . . . ,n, the probability of suffering the loss,
thus

p( j) = P[E ( j)] = P[X ( j) = x( j)] (1.6.2)

Each individual is risk averse, and then is looking for some kind of financial
protection against the potential loss. To this purpose, all the n individuals decide to
set up a “pool”, which will raise monies through individual contributions, and then
will pay benefits to the individuals (members of the pool) who will have suffered a
loss.

We assume that each individual benefit is equal to the loss suffered, so that
the member j will receive the amount x( j) if she suffers the loss, 0 otherwise. In
Sect. 1.6.2 we will deal with benefits in a more general context.

We now focus on some features of the risk aggregation, which originate from the
construction of the pool. The total random amount X [P], which will be paid by the
pool to members suffering a loss, is defined as follows
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X [P] =
n

∑
j=1

X ( j) (1.6.3)

Thus, X [P] is the random outgo of the pool. Its expected value is given by

E[X [P]] =
n

∑
j=1

E[X ( j)] =
n

∑
j=1

x( j) p( j) (1.6.4)

and its variance, thanks to the hypothesis of independence, is given by

Var[X [P]] =
n

∑
j=1

Var[X ( j)] =
n

∑
j=1

(x( j))2 p( j) (1− p( j)) (1.6.5)

The minimum possible outcome of the random amount X [P] is 0, while the max-
imum one is ∑n

j=1 x( j), and hence Range[X [P]] = ∑n
j=1 x( j). The possible outcomes

and the probability distribution of X [P] clearly depend on the values x( j).
To simplify the problem, we now assume that the pool is “homogeneous” in terms

of both the amounts and the probabilities of loss, namely, for j = 1,2, . . . ,n

x( j) = x (1.6.6)

p( j) = p (1.6.7)

It follows that, for j = 1,2, . . . ,n

E[X ( j)] = E[X (1)] = x p (1.6.8)

Var[X ( j)] = Var[X (1)] = x2 p(1− p) (1.6.9)

Hence, the possible outcomes of X [P] are

0,x,2x, . . . ,nx

so that Range[X [P]] = nx. The expected value and variance (see (1.6.4) and (1.6.5))
then reduce to:

E[X [P]] = nx p (1.6.10)

Var[X [P]] = nx2 p(1− p) (1.6.11)

The coefficient of variation (or risk index, see (1.5.6)) is given by:

CV[X [P]] =

√
Var[X [P]]
E[X [P]]

=
x
√

n p(1− p)
xn p

=

√
1− p
n p

(1.6.12)

If we denote with K the random number of events in the pool, we have

X [P] = K x (1.6.13)
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It follows that, in formula (1.6.10), the expected value can be read in two ways,
namely:

1. (n p)x = E[K]x, that is, the expected number of losses times the amount of the
individual loss;

2. n(x p) = nE[X (1)], that is, the pool size times the individual expected loss.

Example 1.6.1. We refer to a pool of n independent risks, fulfilling assumptions
(1.6.6) and (1.6.7), with x( j) = x = 1000 and p( j) = p = 0.005 for j = 1, . . . ,n; then,
we have:

E[X ( j)] = x p = 5

Var[X ( j)] = x2 p(1− p) = 4975

Table 1.6.1 shows various results concerning the random outgo X [P], if n = 100,
n = 1000, and n = 10000 respectively.

Table 1.6.1 Some typical values of the random outgo of a pool of risks

n = 100 n = 1000 n = 10000

Range[X [P]] 100000 1000000 10000000
E[X [P]] 500 5000 50000
Var[X [P]] 497500 4975000 49750000√

Var[X [P]] 705.34 2230.47 7053.37
CV[X [P]] 1.411 0.446 0.141

�

As regards the effects of building-up a pool of risks, the following feature should
be stressed. The variance of X [P] increase linearly as n increases (see Eq. (1.6.11)),
whereas the standard deviation increases proportionally to

√
n. Hence the “absolute”

riskiness increases. However, the “relative” riskiness in terms of the coefficient of
variation (see (1.6.12)) decreases as the pool size increases. Similar comments have
been proposed in Example 1.4.2.

In particular, we note that, for any given probability p, we have

lim
n→∞

CV[X [P]] = 0 (1.6.14)

Example 1.6.2. We consider a pool of risks, fulfilling assumptions (1.6.6) and
(1.6.7), with p = 0.005. Table 1.6.2 illustrates the coefficient of variation for var-
ious pool sizes.
�

The result expressed by (1.6.12) is of outstanding importance in risk theory and
constitutes a kernel feature of the risk transfer process (and the insurance process in
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Table 1.6.2 The coefficient of variation

n CV[X [P]]

10 4.461
100 1.411

1000 0.446
10000 0.141

100000 0.045
. . . . . .
∞ 0.000

particular). Moreover, the result can be extended to more general pools: for example,
pools which do not fulfill assumption (1.6.6), or (1.6.7). We will come back on these
and related issues in Sect. 2.3.3.

1.6.2 Financing the pool

We now describe some alternative models, which aim to define possible arrange-
ments for financing the outgo of the pool.

We still address Case 2 (Possible loss with fixed amount). The outgo, namely
the random total payment, is given by X [P] = ∑n

j=1 X ( j) (see (1.6.3)). Further, we
assume the homogeneity of the pool in terms of both the amount (see (1.6.6)) and
the probability (see (1.6.7)) of the individual loss.

Method 1 We assume that the total payment is to be shared equally among the
members of the pool, so that the pool income is, by definition, equal to the outgo.

According to information available at the beginning of the period, the amount

contributed by each member is of course random, and is given by
X [P]

n
. We note

that, thanks to the homogeneity hypotheses, it can also be expressed as follows (see
relation (1.6.13)):

X [P]

n
=

K x
n

(1.6.15)

Nonetheless, we keep the expression of the total payment as the sum of the individ-
ual losses, which is more appropriate to following developments.

The expected value of the individual contribution is

E

[
X [P]

n

]
=

1
n

n

∑
j=1

E[X ( j)] = x p (1.6.16)

and thus it turns out to be independent of the number of members of the pool. In
particular, the expected value of the amount contributed is equal to the expected



1.6 Transferring risks 47

value of the individual loss. Thus, in terms of expected value the members do not
gain any advantage by transferring the risks to the pool.

Conversely, an advantage is gained in terms of the individual riskiness, which
does depend on the size of the pool. Indeed, if we assume the variance as the risk
measure, we have that, for the generic j-th individual, the “original” riskiness (i.e.
the riskiness before transfer to the pool) is given by

Var[X ( j)] = x2 p(1− p) (1.6.17)

whereas, for the individual as a member of the pool, the “final” riskiness, which
only originates from the randomness of the contribution, is given by

Var

[
X [P]

n

]
=

1
n2

n

∑
j=1

Var[X ( j)] =
1
n

x2 p(1− p) (1.6.18)

Thus, as the size n of the pool increases, the individual riskiness (in terms of the
variance) decreases.

From a theoretical point of view, the Strong Law of Large Numbers states that

P

[
lim
n→∞

∑n
j=1 X ( j)

n
= E[X (1)]

]
= 1 (1.6.19)

where E[X (1)] denotes the expected value, common to all the random amounts X ( j).
According to the notation used above, we have

P

[
lim
n→∞

X [P]

n
= x p

]
= 1 (1.6.20)

which means that, in the case of an “infinitely” large pool, each member’s contribu-
tion is equal to her expected loss with a probability equal to one.

In conclusion, the individual contribution is random, with a riskiness decreasing
as the pool size increases, whereas the coverage of the total payment is certain (of
course, provided that, at the end of the period, all the members pay the contribu-
tions).
�

Method 2 We now assume that the total payment is funded in advance (that
is, at the beginning of the period, and hence disregarding its actual outcome), by
individual contributions to be determined according to some calculation principle.
In general terms, we have to determine an amount which will constitute the income
“facing” the outgo X [P]. As the outgo is random, we have to summarize it by using
some typical values.

In particular, we assume what follows:

• the total amount of contributions, that we denote with P[P], has to meet exactly
the expected value of the total payment;
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• the effect of accumulation over the year (i.e. the interest) is negligible, and hence
disregarded.

Then:
P[P] = E[X [P]] = nx p (1.6.21)

So, the individual contribution is certain, and is given by

P[P]

n
= x p (1.6.22)

Note that the individual contribution turns out to be the expected value of the in-
dividual loss. Thus, the individual riskiness is completely removed, as far as the
amount of the contribution is concerned.

However, the outcome of the total payment X [P] may be greater than its expected
value, and hence greater than the total amount of contributions. Therefore, it is im-
portant to focus on the event

X [P] > P[P] (1.6.23)

which constitutes a critical point in the management of a pool of risks.
A more general setting can help us in analyzing critical aspects of the pool man-

agement. We denote with Π [P] the total amount of contributions which, however, is
now assumed to be not necessarily equal to E[X [P]], so that the individual contribu-
tion is not necessarily equal to x p (but all the individual contributions are still in the

same amount, namely
Π [P]

n
). We consider the following situations.

• Π [P] < E[X [P]]: in this case, the probability of covering the outgo is trivially lower
than in the case Π [P] = P[P] = E[X [P]]. Anyway, since this case may be of some
practical interest, we will shortly address it in terms of the consequent benefit
arrangement (see Method 3).

• Π [P] > E[X [P]]: in this case, the probability of covering the outgo is obviously
higher than in the case Π [P] = P[P] = E[X [P]]. The difference Π [P] −P[P] consti-
tutes the total safety loading included in the amount of the contributions in order
to raise the probability of covering the total payment. The assessment of appro-
priate safety loadings will be discussed in Sect. 2.3.5, referring to a portfolio of
insured risks.

Note that, whatever the amount Π [P], when X [P] < Π [P] the pool gains a profit,
whilst if X [P] > Π [P] the pool suffers a loss. In the former case, the profit can be
(partially) redistributed to the members and (partially) accumulated, in order to in-
crease the probability of meeting the payment in future years. In the latter case, if
additional resources are not available as the result of previous accumulations, a prac-
ticable solution is given by an appropriate reduction of the payment to the members
who suffered a loss. Namely, those members should receive:

X ′ = min

{
x,

Π [P]

K

}
(1.6.24)
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Thus, the total amount available from contributions is divided equally among the K
members who suffered a loss. Hence, the benefit X ′ is a random amount.
�

Method 3 This method can be seen as a generalization of the approach adopted
in the framework of Method 2, in the case of insufficient amount of contributions
(see (1.6.24)). Assume that the total amount of contributions is determined accord-
ing to some rule which, for example, links the individual contribution to the annual
income of each member. Hence, individual contributions are not related, at least to
some extent, to the (estimated) total amount of individual losses.

Then, denoting also here with Π [P] the total amount of contributions, namely
the income by the pool, relation (1.6.24) still applies to determine the individual
benefit paid to members who suffered a loss. However, it is important to stress that, if
compared to Method 2, Method 3 basically implies a logical “inversion”, as benefits
are determined, in any case, as a function of the income (and the random number K
of individual losses in the pool).
�

Example 1.6.3. Refer to a pool of n = 500 independent risks, homogeneous in terms
of both the amount of individual loss x = 1000 and the probability of loss p = 0.01.
Note that:

E[K] = n p = 5

E[X [P]] = n px = 5000

Consider the following cases:

a. the number of individual losses in the pool is K = 2, and hence X [P] = 2000;
b. the number of individual losses in the pool is K = 6, and hence X [P] = 6000.

1. Assume that the pool is financed according to Method 1, hence the total random
payment X [P] is to be shared equally among the members of the pool. The
expected value and the variance of the amount contributed by each member are
respectively given by:

E

[
X [P]

500

]
= x p = 10

Var

[
X [P]

500

]
=

1
500

x2 p(1− p) = 19.80

Note that, conversely, the variance of the individual loss, before transfer to the
pool, is given by:

Var[X ( j)] = x2 p(1− p) = 9900

In the two cases we have:
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a. the outcome of the individual contribution is 4, and thus lower than its ex-
pected value;

b. the outcome of the individual contribution is 12, and thus higher than its ex-
pected value.

2. Assume that the pool is financed according to Method 2. The individual contri-
bution is then equal to x p = 10 (provided that no safety loading is applied). In
the two cases, we find that:

a. the pool gains a profit, equal to 5000−2000 = 3000;
b. the pool suffers a loss, equal to 5000−6000 = −1000.

3. Assume that the pool is financed according to Method 3, and that the individual
contribution is still equal to 10. In the two cases, we have:

a. the individual benefit is equal to 1 000, and the pool gains a profit, equal to
5000−2000 = 3000;

b. the individual benefit is equal to min

{
1000,

5000
6

}
= 833.33.

�

Figure 1.6.1 summarizes the relationships between contributions, losses and ben-
efits actually paid by the pool to its members. If we compare the three methods in
terms of the actual benefits maintainable by the various financing structures, we can
in particular note what follows.

Method  1  

ACTUAL LOSSES 
(= ACTUAL BENEFITS) CONTRIBUTIONS

ESTIMATED LOSSES 
(= ESTIMATED BENEFITS)

CONTRIBUTIONS

ACTUAL BENEFITS

Method  2  

Method  3  

CONTRIBUTIONS

ACTUAL LOSSES

ACTUAL BENEFITS

Fig. 1.6.1 Contributions and benefits in pool financing arrangements

• The construction and the management of a pool of risks are based on a mutual
agreement among the members of the pool itself. The “technical equilibrium” be-
tween contributions and total payment is only guaranteed if Method 1 is adopted,
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because contributions are determined ex-post, as a result of the observed total
amount of losses.

• Conversely, if the contributions are calculated ex-ante according to Method 2,
the technical equilibrium is not guaranteed. In particular, if X [P] > Π [P], and the
approach (1.6.24) is adopted in determining the actual payment, benefits are no
longer guaranteed. So, from a more practical point of view, Method 2 can be
adopted if an intermediary intervenes in the risk pooling process, and takes the
risk of paying the stated benefits even if the contributions collected do not cover
the actual losses. Clearly, this role of intermediation should be taken by an in-
surer.

• As already noted, Method 3 implies a logical inversion in the relationship be-
tween contributions and benefits, and, by its nature, it does not provide the mem-
bers of the pool with any guarantee as regards the amount of benefits. An in-
termediation in the pooling process is possible also in this case, but the related
effect does not imply taking the risk as in Method 2, but simply managing the
monetary transaction. The intermediary is, in this case, a “Mutual aid society”,
or “Mutual benefit society”. Thus, a real transfer of the risk does not take place
when Method 3 is adopted, and, for this reason, the method is outside the scope
of our analysis.

• In all the three methods, the payment of benefits relies on money transfers from
members who pay contributions without receiving benefits to members who pay
contributions, suffer losses and then receive benefits. Such transfers constitute
the so-called mutuality effect, which is a particular type of “cross-subsidy” in
the risk transfer process. As regards mutuality in the insurance business, some
examples will be presented in Sect. 1.7.4. Cross-subsidy in insurance will be
discussed also in Sects. 2.2.6 and 2.2.7.

1.6.3 The role of the insurer

Assume the point of view of the individual who transfers the risk to a pool. Un-
der her perspective, the following points are important features of a good transfer
arrangement:

• the contribution to be paid to the pool is known in advance, namely at the time
of transferring the risk;

• the amount paid as the benefit complies with what stated at the time of transfer-
ring the risk, whatever the number and the amounts of losses within the pool may
be; in other words, the benefit is guaranteed.

As noted at the end of Sect. 1.6.2, such an arrangement can be realized provided
that a further subject intervenes in the risk transfer process, and takes the risk of
paying the guaranteed benefits, even when the contributions do not meet the to-
tal amount of individual losses. This subject is, typically, an insurance company
(briefly: an insurer), which acts as an intermediary in the risk transfer process, pro-
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viding the members of the pool (i.e. the insureds) with the guarantee of paying the
benefits according to the conditions stated in the transfer arrangement (i.e. in the in-
surance contract), independently of the actual number and amounts of losses within
the pool.

It should be stressed that the term “intermediary” should not be meant in an “ad-
ministrative” sense only (namely, just consisting of collecting contributions, receiv-
ing the applications for benefits, paying the benefits). Besides these jobs, the insurer
intermediates in a “technical” sense, by managing the mutuality within the pool,
usually called the portfolio (of insured risks), providing the guarantee of paying the
stated benefits, and hence taking the related risk.

Further, a “financial” intermediation is carried-out, when multi-year contracts are
involved, which consists in managing over time the funds originated by collecting
the contributions.

It is interesting to single out the nature of the risk taken by the insurer. We still
denote with Π [P] the total amount of contributions, usually called premiums, col-
lected by the insurer (whatever the calculation method adopted), and with X [P] the
random amount of benefits paid. Further, we denote with Z[P] the net result arising
from the pool, namely

net result = income−outgo

that is, in formal terms:
Z[P] = Π [P] −X [P] (1.6.25)

Note that, in definition (1.6.25), the time-value of money has been disregarded (i.e.
an interest rate equal to 0 has been assumed). This can be reasonably accepted as
we are referring to a rather short period of time (say, one year).

Clearly, the insurer gains a profit if Z[P] > 0, whereas it suffers a loss if Z[P] < 0.
Thus, we argue that, whilst the individual risks transferred to the insurer are pure
risks (see Sect. 1.2.4), the risk then borne by the insurer is a speculative risk, as it
can result either in a profit or in a loss. This is the second feature of the risk trans-
formation via pooling, provided that the pool is managed by an insurer (whereas the
first feature is the decreasing relative riskiness, as expressed in particular by (1.6.12)
and (1.6.14)).

Figure 1.6.2 sketches a probability distribution of the net result Z[P], assuming,
for graphical simplicity, that the possible outcomes of Z[P] constitute an interval of
real numbers. Of course, the (exact) distribution of Z[P] depends on the assumptions
about the individual losses and the consequent distribution of the total payment X [P].
From the figure we can argue what follows:

• as E[Z[P]] > 0, a total amount of contributions Π [P] greater than the expected
payment E[X [P]] has been assumed; thus, a safety loading has been included in
the premiums (see Method 2 in Sect. 1.6.2);

• despite the safety loading, the probability of a loss seems to be rather high; to
lower this probability, some risk management tools (besides a raise in the safety
loading) are available to the insurer; this topic will be dealt with in Chap. 2.



1.7 Insurance products 53

Various risk measures can be used for capturing critical aspects of the probability
distribution of the net result Z[P]; for example, the VaR, the TailVaR, and so on. Some
of these aspects will also be addressed in Chap. 2.

0

profit loss 

Probability 
density 
function  
of Z[P]

E[Z[P]]

Fig. 1.6.2 Probability distribution of the net result from the pool

1.7 Insurance products

1.7.1 The insurance cover. Policy conditions

The transfer of a risk to an insurer is based, as already mentioned in Sect. 1.6.3, on
the insurance contract, whose documental evidence is given by the insurance policy.
The payment of the premium meets the benefits, which will be paid according to the
policy conditions.

Various types of benefits can be envisaged. In particular, the benefit can consist
in:

a. the reimbursement of expenses paid by the insured, for example because of third-
party liability; the amount actually paid as the benefit usually depends on various
policy conditions, aiming to restrict the range of amounts which can be paid by
the insurer; this topic will be dealt with in Chap. 9;

b. an indemnity covering the loss suffered because of an accident, e.g. a fire; the
coverage is usually partial, according to policy conditions;

c. a forfeiture amount, namely an amount stated in the insurance contract.
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Benefits of type a and b are usual in non-life insurance, whereas benefits of type
c are common in life insurance. Figures 1.7.1 to 1.7.3 summarize the terminology
currently used in life and non-life insurance.

We first refer to non-life insurance. When some peril is perceived, namely some
possible event causing a damage, the subject who suffers the potential damage can
resort to an insurance transfer. If the event occurs, the insured applies for the bene-
fits, namely a claim arises. The insurer has to assess the damage, and then define the
amount of the benefit, that is, settle the claim. Finally, the payment follows, accord-
ing to the policy conditions. A deeper analysis of some crucial steps of this sequence
will be presented in Chap. 9.

In life insurance, the sequence is much simpler. The event insured can be either
the death (within a stated period) or the survival of the insured (at some fixed time).
In some cases also the disablement can be allowed for. In the old life insurance
policies the benefit consisted in a fixed amount, stated in the policy. Conversely, in
more modern policies the (initial) amount is stated in the policy, but the amount
itself can vary throughout the policy duration because of linking to some index, for
example expressing the inflation, or the yield from investments, and so on.

PERIL 
 
POSSIBLE 
EVENT 
INSURED 

EVENT 
 
ACCIDENT 
 
Fire, Car accident, 
Theft, Sickness, ... 

DAMAGE
 
Loss, 
Liability, 
Expenses

CLAIMASSESSMENT
AND 
CLAIM 
SETTLEMENT 

PAYMENT 
AMOUNT 
DEPENDING 
ON SEVERAL 
PARAMETERS 
(deductible, 
upper limit, ...) 

Fig. 1.7.1 Terminology in non-life insurance

1.7.2 Some examples

We refer to examples presented in Sects. 1.2.3 to 1.2.5, and discussed also in
Sect. 1.4, in order to introduce various features of the insurance products covering
the related risks.
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EVENT 
 
Survival, 
Death, 
Disability, ... 

PAYMENT
fixed 
amount 
 

Fig. 1.7.2 Terminology in life insurance (1)

EVENT 
 
Survival, 
Death, 
Disability, ... 

PAYMENT
fixed 
amount 
 

INDEXING,
LINKING, ... 

Fig. 1.7.3 Terminology in life insurance (2)

A very simple example of insurance contract is provided by Case 2 (Possible
loss with fixed amount). The insurance cover may concern the following risks (as
already mentioned in Sect. 1.2.3):

1. a potential loss (e.g. a damage), which can occur just once in the period covered
by the insurance contract;

2. the possible death of the insured;
3. the possible disablement (in particular resulting in a permanent disability condi-

tion) of the insured, for example because of an accident.

The insurance product covering risk 1 can be placed in the context of non-life
insurance, whereas the product covering risk 2 belongs to life insurance. Risk 3
can be covered by products in the framework of life or non-life insurance, also
depending on the particular legislative environment.

Insurance products covering the risk of Case 4b (Early death of an individual),
namely the death of the insured within a stated period of r years, represent a gener-
alization of products covering the risk 2 within Case 2. The insurance cover, clearly
in the field of life insurance, is usually called term insurance. It should be noted
that, in Case 4b time has greater importance than in Case 2, as the policy term may
be rather long, say 10 years. Then, the time-value of money has to be accounted for
when calculating the premium for this insurance product.
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When addressing risks inherent in Cases 3a (Damage / loss of a cargo) to 3e
(Car driver’s liability), more interesting insurance products are involved. First, the
number of claims in the insured period (say, one year) may be greater than one,
unlike in Case 2 (Possible loss with fixed amount). Secondly, the amount of each
claim is random. Further, in many cases the benefit paid does not coincide with
the amount of the damage or the liability, being lower and determined according to
various policy conditions. These aspects will be dealt with in Chap. 9.

The employer can transfer to an insurer the risk inherent in Case 3b (Disability
benefits; one-year period) and Case 3c (Disability benefits; multi-year period), via
an insurance contract providing disability benefits. In particular, a group insurance
can be purchased in order to transfer the set of risks pertaining to all the employees
of the firm. Conversely, a disability insurance cover can be purchased also by a
single individual, for example a self-employed person.

An insurance product fulfilling the needs inherent in Case 4a (The need for re-
sources at retirement) is the pure endowment insurance. According to this contract
(clearly belonging to life insurance), the insured pays a premium at policy issue (or
a sequence of periodic premiums, from policy issue onwards), and will get the in-
sured amount at the stated maturity if alive at that time. Note that nothing is paid
by the insurer in the case of death before maturity. Time has a great importance (as
we will see in particular when discussing the premium calculation), as the policy
duration may be very long (say 10, or 20 years).

The risk of outliving the resources available at the time of retirement, which
defines Case 4c, can be covered by purchasing a specific insurance product, called
the life annuity. According to a life annuity contract, the insurer will pay a periodic
(say, monthly or yearly) amount while the insured, in this case called the annuitant,
is alive. So, the risk arising from the randomness of the annuitant’s lifetime is borne
by the insurer. Also in this case, time has a very important role in the structure of
the product, as the potential duration of the life annuity (which typically starts at
retirement age, say 65) can be of 25, 30 years or even more.

1.7.3 Pricing insurance products

The premiums paid by the insureds have to meet, according to a stated criterion,
the benefits paid by the insurer. We now assume that the premium is paid at policy
issue (thus, no splitting into a sequence of periodic premiums is allowed for), and
hence just one amount, namely a single premium, facing future benefits has to be
determined.

Although the insurance business is based on the management of pools of risks, we
start by approaching premium calculation on an individual basis, namely referring
to a single insured and the related insurance cover. Even though this approach might
seem incomplete, as it does not explicitly allow for pooling effects, it is simple,
and anyhow of great practical importance. Premium calculation in the framework of
pooling features will be focussed on in Chap. 2.
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The (individual) premium must rely on some “summary” of the random benefits
which will be paid by the insurer. Thus, in some sense, the premium represents a
value of the benefits. As the benefits can consist, in general, of a sequence of random
amounts paid throughout the policy duration, we have to summarize:

1. with respect to time, by determining the random present value of the benefits,
referred at the time of policy issue;

2. with respect to randomness, by using some typical values of the probability dis-
tribution of the random present value of the benefits, namely the expected value,
the standard deviation, and so on.

Step 1 requires the choice of the annual interest rate for discounting benefits (or,
more generally, the term structure of interest rates). It should be noted, however,
that when the policy duration is short (say, one year or less), we can skip this step
as time does not have a remarkable impact on the value of benefits.

Step 2 first requires appropriate statistical bases in order to construct the proba-
bility distribution of the random present value of the benefits, and then the choice of
typical values summarizing this distribution.

So far we have only allowed for insurer’s costs consisting in the payment of ben-
efits. However, the insurer has to pay also expenses which are not directly connected
with the payment of benefits, for example general expenses. It is common practice to
charge a share of these expenses to each insurance policy, via a convenient premium
increase, that is, the expense loading.

Finally, a further increase in the premium amount provides the insurer with a
profit margin.

The items listed above (i.e. interest rate, statistical basis, share of insurer’s ex-
penses, profit margin) constitute the ingredients of a “recipe”, called the premium
calculation principle, whose result is the actuarial premium. It is worth stressing
the meaning of “actuarial”. The output of the procedure described above is the pre-
mium calculated according to sound actuarial (i.e. financial and statistical) princi-
ples. Nonetheless, ingredients other than those so far considered can affect the actual
price of the insurance product. For example, competition on the insurance market
could suggest to lower the premium in order to launch a more appealing product. In
the following, we will not take into account these aspects.

Figure 1.7.4 summarizes the process leading to the price of an insurance product.

1.7.4 Premium calculation

We now address some of the cases already discussed, in order to illustrate premium
calculations. In all the cases we disregard insurer’s expenses and the related com-
ponent of the premium. Thus, we focus on the calculation of the so-called net (or
pure) premiums. As regards the profit margin, specific aspects will be discussed in
the various cases.
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Fig. 1.7.4 Pricing an insurance product

We assume Case 2 (Possible loss with fixed amount) as the starting point for
focussing on premium calculation in a “basic” insurance cover. Since, in this case,
we assume a short policy duration, time can be disregarded. The benefit is given,
by definition, by the amount of the loss caused by the accident. In formal terms, the
random benefit is given by:

X =

{
x if E

0 if Ē
(1.7.1)

that is, it coincides with the random loss defined by (1.2.1). We denote with p the
probability of the event E ; hence, the expected value of the benefit is given by

E[X ] = x p (1.7.2)

and thus it coincides with the expected loss as defined by (1.4.2).
We now assume (provisionally) the expected value as the premium, P, for the

insurance cover, that is
P = x p (1.7.3)

What can we expect from the application of this very simple (and simplistic)
premium calculation principle? First, we note that, from the generic contract, the
insurer gains a profit, equal to P, in the case of no accident, whilst suffers a loss,
P−x, in the case of accident. In formal terms, the random result, Z, from the generic
contract can be defined as follows:

Z = P−X (1.7.4)
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and, if the premium is given by (1.7.3), its expected value is equal to zero:

E[Z] = P−E[X ] = 0 (1.7.5)

For this reason, the premium calculation according to (1.7.3) is called the equiva-
lence principle; the resulting premium can be called the equivalence premium.

Moving to a pool of n insured risks, namely a portfolio, claim-free contracts sub-
sidize contracts with a claim, according to the mutuality principle (see Fig. 1.7.5),
and the consequent equilibrium reflects, at the pool level, the rationale of the equiv-
alence principle. However, in a pool of n risks, the equilibrium is achieved if and
only if the actual number of claims, k, coincides with the expected number of claims,
which is given by n p. Indeed, the income perfectly balances the outgo if and only if

nP = k x (1.7.6)

that is
nx p = k x (1.7.7)

and hence k = n p. In general, arguments presented in Sect. 1.6.2 also hold when the
pool is managed by an insurer. In particular, it is worth noting that, especially when
the pool size n and the probability p are small, the expected number of claims n p
could be non-integer, and thus the perfect balance could never be achieved.

(a)  no claim 

(b)  claim 

0

0

1

1

AMOUNT 
RELEASED 

PAYMENT 

claim-free policies  ⇒  MUTUALITY

MUTUALITY  ⇒  policies with claim 

PREMIUM 

PREMIUM 

time 

time 

Fig. 1.7.5 Mutuality inside a pool of risks. Case 2 (Possible loss with fixed amount)

If the actual number of claims is greater than its expected value, the insurer suf-
fers a loss. In order to keep the probability of a loss at a reasonable level, a higher
premium, Π , must be charged, namely
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Π = P+m (1.7.8)

where the term m (m > 0) denotes a “loading” of the premium, more precisely the
safety loading, as its purpose is to reach a higher degree of “safety” in the pool
management (see also Sect. 1.6.2).

It is interesting to assess the result from the generic contract when the premium
Π is charged to the contract itself. For the random result we have

Z = Π −X (1.7.9)

so that the expected result is given by

E[Z] = Π −E[X ] = m (1.7.10)

Thus, the safety loading m represents the expected profit from the generic contract.
Moving again to the pool level, if the actual number of claims coincides (at least

approximately) with its expected number, the total safety loading cashed by the
insurer, i.e. nm, constitutes the profit produced by managing the pool. Thus, in prin-
ciple the purpose of the safety loading is twofold, as it enhances the safety level and
can provide the insurer with a profit margin.

As regards the magnitude of m, various formulae can be used to link the safety
loading, for example, to the riskiness of the contract (or the portfolio, as we will see
in Chap. 2). Indeed, premium calculation principles directly refer to the premium
Π , namely the premium including the safety loading. Here we just address some
aspects.

As the safety loading must be linked, in some way and to some extent, to quan-
titative features of the contract, we can set, for example

Π = (1+α)E[X ] (1.7.11)

(clearly, with α > 0) so that we have

m = α E[X ] = α x p (1.7.12)

Although formula (1.7.11) does not explicitly allow for riskiness, this very simple
premium principle is quite common in insurance practice. Moreover, an interesting
interpretation can be given. From (1.7.11) we have

Π = (1+α)x p (1.7.13)

and, setting p′ = (1+α) p, we find

Π = x p′ (1.7.14)

It turns out that the premium Π can be interpreted as the expected value of the
random loss calculated according to a risk “adjusted” probability p′ (p′ > p). So,
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formula (1.7.14) constitutes a straightforward application of the valuation approach
based on risk-adjusted probabilities (see Sect. 1.4.7).

To conclude, we note the following points.

• If we choose a value for the loading parameter α , we are adopting an explicit
safety loading approach, as the loading component of the premium, i.e. α P,
can be recognized; see formulae (1.7.11) and (1.7.12). Of course, an explicit
safety loading can also be realized by adopting formulae other than (1.7.11) and
(1.7.12); examples can be derived introducing, for instance, the variance or the
standard deviation of X into the calculation of Π .

• Conversely, an implicit safety loading approach is adopted if we directly “rise”
the probability of loss. Clearly, the resulting magnitude of the safety loading, and
hence the expected profit E[Z], can be calculated as follows:

m = Π −P = (p′ − p)x (1.7.15)

Case 4b (Early death of an individual) allows us to discuss the pricing of a life
insurance product which is very common in all the insurance markets, namely the
term insurance. We denote with C the sum assured, and assume that the sum is paid
at the end of the year of death, if the insured dies within the coverage period, say r
years.

We assume that the premium has to meet the expected present value of the ran-
dom benefit. We can refer to the approach sketched in Sect. 1.4.5 for Case 3c (Dis-
ability benefits; multi-year period), and define the random present value, Y , of the
benefit:

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C (1+ i)−1 if the insured dies in the first year

C (1+ i)−2 if the insured dies in the second year

. . . . . .

C (1+ i)−r if the insured dies in the r-th year

0 if the insured is alive at time r

(1.7.16)

Then, we have to calculate the expected value E[Y ]. To this purpose, we need
the probabilities of the events listed in (1.7.16). We assume that these probabilities
can be derived from an appropriate statistical basis, and denote (according to the
usual actuarial notation) with h−1|1qx the probability that the insured, age x at policy
issue, dies between time h− 1 and h, i.e. during the h-th year. Hence, according to
the equivalence principle, the premium P is given by:

P = E[Y ] = C
(
(1+ i)−1

0|1qx +(1+ i)−2
1|1qx + · · ·+(1+ i)−r

r−1|1qx
)

(1.7.17)

From the generic contract, the insurer gains a profit if the insured is alive at ma-
turity (and hence no benefit is paid), whilst suffers a loss in the case of death before
maturity. Inside a pool of risks, claim-free contracts subsidize contracts with claim,
according to the mutuality principle. The mutuality mechanism works in a manner
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rather similar to that of Case 2 (Possible loss with fixed amount), with an appropriate
generalization because of the duration of the contract, as shown in Fig. 1.7.6.
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Fig. 1.7.6 Mutuality inside a pool of risks. Case 4b (Early death of an individual)

Clearly, no (explicit) safety loading appears in formula (1.7.17). However, a
safety loading can be implicitly included in the premium, adopting the following
procedure.

• Assume that i is a realistic estimate of the interest rate (assumed to be constant
throughout the policy duration) obtained by the insurer investing the money, ini-
tially provided by the premium. Then, adopt an interest rate i′ (i′ < i) for dis-
counting the random benefit. Equivalently, this means that an interest rate lower
than that estimated on a realistic basis is credited to the policyholder.

• Assume that the h−1|1qx, h = 1,2, . . . ,r constitute a likely representation of the
age-pattern of mortality of an insured person. Then, adopt as probabilities for the
calculation of the expected value the quantities h−1|1q′x, with h−1|1q′x > h−1|1qx,
for h = 1,2, . . . ,r. Probabilities fulfilling this condition can be easily found, for
example, referring to the mortality of a population, rather than to the mortality of
a selected group of insureds.

Finally, calculate the premium as follows:

Π = C
(
(1+ i′)−1

0|1q′x +(1+ i′)−2
1|1q′x + · · ·+(1+ i′)−r

r−1|1q′x
)

(1.7.18)

Of course, we obtain Π > P.
The random present value, Z, of the result from the generic contract is given by
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Z = Π −Y (1.7.19)

and its expected value is

E[Z] = Π −E[Y ] = Π −P (1.7.20)

which also quantifies the (implicit) safety loading.
The needs inherent in Case 4a (The need for resources at retirement), described

in Sect. 1.2.5, can be faced by a pure endowment insurance. We suppose that just
one premium is paid (at time 0). Also in this case, we assume that the premium has
to meet the expected value of the random benefit.

We denote with S the sum insured, with r the policy term, and with r px the prob-
ability of a person age x at policy issue being alive at time r.

The random present value, Y , of the benefit is given by

Y =

{
S (1+ i)−r if the insured is alive at time r

0 otherwise
(1.7.21)

The premium, P, according to the equivalence principle, is then given by

P = E[Y ] = S (1+ i)−r
r px (1.7.22)

Since obviously r px < 1, from (1.7.22) it follows that

S > P(1+ i)r (1.7.23)

Hence, the accumulation process which leads from P to the benefit S relies on the
following elements:

a. the financial component, namely the (guaranteed) interest credited to the insured
(with annual interest rate i);

b. the demographic component, namely the contributions from the policies which
terminate because of the death of the insured before maturity, and whose amount
cumulated up to the death is released and credited to policies still in-force.

Thus, the mutuality works in this insurance product according to the mechanism de-
scribed under point b. Figure 1.7.7 illustrates the process leading to the sum payable
at maturity, in a pool of pure endowment insurances.

Of course, no (explicit) safety loading appears in formula (1.7.22). A safety
loading can be implicitly included in the premium, via a procedure similar to that
adopted for the term insurance. Thus, the premium can be calculated as follows:

Π = S (1+ i′)−r
r p′x (1.7.24)

where i′ < i and r p′x > r px. Note that, as mortality of people purchasing pure endow-
ment insurance is usually lower than that of the general population, the probability
r p′x cannot be drawn from a population mortality table, and then should be ad-hoc
evaluated.
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Fig. 1.7.7 Mutuality inside a pool of risks. Case 4a (The need for resources at retirement)

The random present value of the result from the generic contract is given, as in
Case 4b, by formula (1.7.19), namely Z = Π −Y . Hence, when formula (1.7.24) is
adopted for premium calculation, the expected present value of the result is given
by

E[Z] = Π −E[Y ] = Π −P = S
(
(1+ i′)−r

r p′x − (1+ i)−r
r px

)
(1.7.25)

1.7.5 Technical bases

In the insurance language, the expression technical basis denotes the set of data and
assumptions which constitute the ingredients for premium calculation (as well as
for other valuations, like those connected to the calculation of reserves, expected
profits, and so on). As we have disregarded so far insurer’s expenses and the related
premium components, we only focus on the elements needed for the calculation of
net premiums.

Referring to the insurance products discussed in Sect. 1.7.4, we note what fol-
lows. In the “basic” insurance product, namely the cover for Case 2 (Possible loss
with fixed amount), the technical basis is simply given by the probability p. For the
life insurance products, i.e. the term insurance and the pure endowment insurance,
the technical basis consists of the interest rate i and the probabilities of dying or
being alive, namely the table from which these probabilities can be derived.

However, the adoption of an implicit safety loading for the life insurance products
implies that two different technical bases are involved, namely:
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• the pricing basis, consisting of the interest rate i′, and the probabilities q′ or
p′, also called the first-order basis (or safe-side basis, or prudential basis, or
conservative basis);

• the scenario basis, or realistic basis, which consists of the interest rate i (or
a time-structure of interest rates), and the probabilities q or p, and provides a
reliable description of the financial and demographical scenario; this basis is also
called the second-order basis.

Conversely, the (usual) adoption of an explicit safety loading in non-life insur-
ance leads to the coincidence of the pricing basis and the scenario basis.

We note that, in life insurance, premium calculation according to (1.7.18) and
(1.7.24) actually relies on the equivalence principle, though implemented according
to the first-order basis. Hence, the resulting premium is (formally) an equivalence
premium, although calculated by adopting a technical basis other than the realistic
one.

Remark It turns out that the expression “equivalence premium” is rather ambiguous. In what
follows, if not specified otherwise, the expression will be referred to premiums calculated with the
scenario (or realistic) basis.

Scenarios change over time, and then scenario bases should be updated. Also
pricing bases should be consequently updated. However, important differences be-
tween life and non-life insurance products should be stressed, as regards the feasi-
bility of an update in the pricing bases.

In non-life insurance, rating is usually stated on a one-year (or even shorter)
basis; see, for example, insurance covers related to Cases 3a (Damage / loss of a
cargo), 3d (A fire in a factory), and 3e (Car driver’s liability). Hence, premiums can
be based, for each insured, on the portfolio (and the market) experience. It follows
that the same insured can be charged, year by year, premiums updated according to
the “collective” experience.

Remark It is worth noting that, in non-life insurance, also “individual” claim experience can
be taken into account in determining the annual premium for any given insured risk. See also the
Remark in Sect. 2.2.6. Thus, various experience rating systems can be applied in pricing non-life
insurance products.

As regards life insurance, contracts usually imply multi-year guarantees. Of
course, new contracts can be priced according to an updated basis. Conversely, con-
tracts already issued do not allow premium adjustments. This is obviously true in
the case of single premium contracts. Further, arrangements based on periodic pre-
miums do not allow premium updating (in particular, an increase in premiums) if,
as is usual, all policy conditions are stated and guaranteed at policy issue. Hence, a
risk arises from the implied use of technical bases no longer appropriate.
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1.7.6 Reserving

Let us refer to the insurance products covering the risks inherent in Case 4a (The
need for resources at retirement) and Case 4b (Early death of an individual). As
stated in Sect. 1.7.4, we assume that, in both the insurance products, the benefits are
financed by a single premium paid at the policy issue.

We note that, immediately after cashing the premium,

• the related amount (net of possible initial expenses) is available to the insurer, and
has to be invested in assets providing the insurer with a yield, hopefully higher
than the interest rate credited to the insured;

• a liability arises, because of the insurer’s obligations to the insured (Case 4a),
and to the pool of insureds (Case 4b).

Assets and liabilities generated by insurance contracts are the two aspects of the
“reserving process”. Thus, reserves (or provisions) must be set up because bene-
fits are deferred with respect to premiums. These “technical” reserves should not
be confused with the reserves which result from the accumulation of profits, not
distributed to shareholders, and constitute a part of the shareholder’s capital.

For each insurance contract, the behavior of the reserve over time strictly depends
on the type of benefits (and, in general, on the premium arrangement). Referring to
Case 4a and Case 4b, we can intuitively draw the time-profile of the reserve from
the mechanism depicted in Fig. 1.7.7 and 1.7.6 respectively.

The interest/mutuality mechanism illustrated in Fig. 1.7.6 implies that, for each
insured alive, the reserve of the term insurance, which initially (time 0) is set equal to
the single premium Π , will be yearly increased by the interest credited to the reserve
itself, and decreased by the amounts drawn to pay death benefits according to the
mutuality principle. The annual net variation in the reserve is (usually) negative. At
maturity (time r) the reserve is equal to 0, as there is no longer any obligations.
Hence the behavior of the reserve (restricted to the policy anniversaries) can be
represented as sketched in Fig. 1.7.8.

time r0

Π

Fig. 1.7.8 Technical reserve of a
term insurance

time r

S

Π

Fig. 1.7.9 Technical reserve of a
pure endowment
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The reserve of a pure endowment, given the interest/mutuality mechanism de-
picted in Fig. 1.7.7, will be yearly increased by the interest credited and the contri-
butions from the policies terminating because of the death of the insured. At matu-
rity, before the payment of the sum insured S, the reserve will be equal to the sum
itself. Thus, the behavior of the reserve can be represented as sketched in Fig. 1.7.9.

More complex reserving processes relate to premium arrangements based on pe-
riodic premiums, instead of a single premium. Further, different problems lead to
reserving in non-life insurance.

Technical reserves witness the role of an insurance company (and a life insur-
ance company in particular) as a financial intermediary. The insurer brings together
providers of funds (the insureds) and users of funds (private companies, public in-
stitutions, and so on): funds received while issuing insurance policies and cashing
premiums are invested in financial markets in bonds and stocks issued by the users.

We recall that, together with the financial intermediation, the insurer acts as an
intermediary in the risk transfer process, taking the risk of paying the guaranteed
benefits even when the premiums turn out to be insufficient because of adverse de-
viations of the actual claim frequency from the expected one (see Sect. 1.6.3).

1.8 References and suggestions for further reading

In this Section, we only cite textbooks dealing with general aspects of risks, risk
management, and insurance. Studies particularly devoted to general insurance, life
insurance and post-retirement solutions will be cited in the relevant sections of the
following chapters.

An effective introduction to risk and insurance is provided by [43]. The textbook
[55] places emphasis on insurance products and the use of insurance within the risk
management framework; life insurance, pensions, and general insurance are dealt
with.

The books [30] and [57] offer complete presentations of the Risk Management
process, the insurance transfers included. Practical guidelines to Risk Management
in business and industry are provided by [35]. The process of analyzing and planning
for both personal risks and business risks is examined by [48].

The books [38] and [14] focus on Risk Management in financial institutions.
Chapter 6 in [4] deals with managing risks, also in insurance companies.

The book [34] is the classical reference on Value at Risk (VaR). The book [22]
deals with risk management and the VaR approach to risk management problems,
whereas [45] mainly focusses on the use of VaR in portfolio management. The book
[21] is specifically devoted to the risk management process in the insurance activity,
including life and non-life insurance.

The economic theory of risk and insurance and the industrial organization of
insurance markets is the main focus of [51].

Readers looking for a presentation of the principles of Financial Mathematics
can refer to [54], [11], and the first five chapters of [37].





Chapter 2
Managing a portfolio of risks

2.1 Introduction

Basic ideas concerning risk pooling and risk transfer, presented in Chap. 1, are pro-
gressed further in the present Chapter, mainly with the following purposes:

1. to discuss key features of premium calculation when non-homogeneous port-
folios are concerned, namely portfolios consisting of risks with various claim
probabilities;

2. to analyze, more deeply, the riskiness of a portfolio and the tools which can be
used to face potential losses, in particular introducing the role of the sharehold-
ers’ capital;

3. to illustrate the possibility, for an insurance company, to transfer, in its turn, risk
of losses to another insurer, namely the possibility to resort to reinsurance;

4. to address dynamic aspects of the management of insurance portfolios.

As we will see, the actions undertaken by an insurer in order to deal with potential
losses (see points 1 and 3 above) constitute important examples of risk management
actions, in the specific framework of insurance risk management.

The “basic” insurance cover, namely the cover related to Case 2 (Possible loss
with fixed amount) widely used in Chap. 1, will still be addressed while dealing
with the issues mentioned above, in order to keep the presentation at an acceptable
level of complexity.

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 69
DOI 10.1007/978-3-642-16029-5 2, c© Springer-Verlag Berlin Heidelberg 2011
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2.2 Rating: the basics

2.2.1 Some preliminary ideas

We refer to a portfolio of “basic” insurance covers, as defined in Chap. 1 (see, in
particular Case 2 in Sects. 1.2.3, 1.4.2, 1.6.1, and 1.7.2), and we focus on the calcu-
lation of net premiums (i.e. not including loadings for expenses).

We assume that, for each risk, the premium is proportional to the benefit (that we
also call the “sum insured”) paid in the case of a claim. Denoting (as in Chap. 1)
with x the benefit for the generic risk, the premium is then given by x p̄, where the
quantity p̄ represents the premium for one monetary unit of benefit. In the insurance
language, p̄ is commonly called the premium rate.

The following are natural choices:

a. set p̄ equal to the probability of a claim, p, as implied by the equivalence principle
(see, for example, Sect. 1.7.4 and formula (1.7.3) in particular);

b. set p̄ equal to the adjusted probability of a claim, p′, so that riskiness is accounted
for via an implicit safety loading (see formula (1.7.14) in particular).

Although we now do not deal with implicit safety loadings, the first choice is not
the only feasible one, as we will see in the next sections. Anyhow, the premium rate
should reflect, at least to some extent, the probability of a claim. As a consequence,
a number of premium rates, p̄1, p̄2, . . . , should be used for calculating the premiums
for risks with various claim probabilities. The set of rules which link the premium
rates to the claim probabilities constitutes a rating system. The rating system is the
basis underlying the construction of an insurance tariff (which also includes loading
for expenses, possible discounts, and so on).

2.2.2 Homogeneous risks

First, we assume that the n risks, which constitute the portfolio, are homogeneous
in probability. As usual, we denote with x( j) the potential loss and hence the benefit
for the j-th risk, and with p the probability of loss for each of the insured risks.

According to the equivalence principle, the net premium for the j-th risk, P( j), is
then given by

P( j) = x( j) p (2.2.1)

Thus, the premium rate is given by the probability p.
At the portfolio level, the premiums expressed by (2.2.1) lead to the so-called

technical equilibrium (clearly, in terms of expected value). Indeed, we have

n

∑
j=1

P( j) =
n

∑
j=1

x( j) p = E[X [P]] (2.2.2)
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where X [P] denotes the portfolio random outgo. Thus

TOTAL INCOME = TOTAL EXPECTED OUTGO (2.2.3)

and hence the expected portfolio result, defined as follows

TOTAL EXPECTED RESULT = TOTAL INCOME−TOTAL EXPECTED OUTGO
(2.2.4)

is equal to 0. Equation (2.2.3) expresses the equivalence principle at the portfolio
level.

2.2.3 Non-homogeneous risks

We now shift to non-homogeneous portfolios, namely portfolios consisting of risks
with various claim probabilities. For simplicity, we refer to a portfolio which con-
sists of n1 risks with claim probability p1, and n2 risks with claim probability p2. Let
n = n1 + n2. Thus, the portfolio can be split into two homogeneous sub-portfolios.
Without loss of generality, we assume p1 < p2.

The obvious choice for premium calculation consists in charging each risk with
a premium calculated according to the related claim probability. This means that we
set:

• in the first sub-portfolio, i.e. for j = 1,2, . . . ,n1:

P( j) = x( j) p1 (2.2.5)

• in the second sub-portfolio, i.e. for j = n1 +1,n1 +2, . . . ,n1 +n2:

P( j) = x( j) p2 (2.2.6)

The premiums defined by (2.2.5) and (2.2.6) ensure the technical equilibrium, as
expressed by (2.2.3), in both the first and the second sub-portfolio, and hence, of
course, in the whole portfolio.

The technical equilibrium within each sub-portfolio is the natural consequence
of adopting the equivalence principle (and implementing this principle with the ap-
propriate claim probabilities). Conversely, the target of achieving the technical equi-
librium within each sub-portfolio can be interpreted as a constraint in the premium
calculation, and, as such, can be “relaxed”, or replaced by weaker constraints.

In particular, we can assume that our aim is charging all the risks with the same
premium rate, p̄. This premium rate cannot ensure the equilibrium in each sub-
portfolio; hence, the target is now the equilibrium within the whole portfolio, as
expressed by (2.2.3). Clearly, we will have p1 < p̄ < p2.

Possible aims of such a rating system are the following ones:

• simplify the insurance tariff;
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• charge “reasonable” premiums to risks with a high claim probability, transferring
part of the cost to risks with a low claim probability.

The premium for the j-th risk, j = 1,2, . . . ,n, is then given by

P( j) = x( j) p̄ (2.2.7)

and the premium rate p̄ must fulfil the equivalence principle at the portfolio level
(see (2.2.3)), namely

n

∑
j=1

x( j) p̄ =
n1

∑
j=1

x( j) p1 +
n1+n2

∑
j=n1+1

x( j) p2 (2.2.8)

from which we find

p̄ =
∑n1

j=1 x( j) p1 +∑n1+n2
j=n1+1 x( j) p2

∑n
j=1 x( j) (2.2.9)

Hence, the premium rate p̄ is the arithmetic weighted average of the probabilities
p1 and p2, and the weights are given by the totals of sums insured in the first and
second sub-portfolio respectively.

It is interesting to note that, if all the sums insured are equal to x, formula (2.2.9)
reduces to

p̄ =
n1 p1 +n2 p2

n
(2.2.10)

Thus, the premium rate p̄ is the arithmetic weighted average of the probabilities p1

and p2, weighted by the sub-portfolio sizes.

2.2.4 A more general rating system

Rating systems defined by formulae (2.2.5), (2.2.6) and, respectively, (2.2.7) consti-
tute particular cases of a more general structure.

In order to define a rather general rating system, let p̄1, p̄2 denote two premium
rates, charged to risks with claim probability p1, p2 respectively. Premiums are then
given by the following formulae:

• in the first sub-portfolio, i.e. for j = 1,2, . . . ,n1:

P( j) = x( j) p̄1 (2.2.11)

• in the second sub-portfolio, i.e. for j = n1 +1,n1 +2, . . . ,n1 +n2:

P( j) = x( j) p̄2 (2.2.12)

Let the following inequalities hold:
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p1 ≤ p̄1 ≤ p̄2 ≤ p2 (2.2.13)

Assume that the premium rates p̄1 and p̄2 ensure the technical equilibrium at the
portfolio level, and consider the following cases:

• setting p̄1 = p1 and p̄2 = p2, we find the “natural” rating system, with premiums
differentiated according to the claim probabilities (see (2.2.5) and (2.2.6));

• setting p̄1 = p̄2, we find the system with just one premium rate (see (2.2.7));
• to find new rating systems, we restrict to the cases such that

p1 < p̄1 < p̄2 < p2 (2.2.14)

Let us define a rating system satisfying inequalities (2.2.14), and such that the
equilibrium at the portfolio level (as expressed by (2.2.3)) is achieved. Thus

n1

∑
j=1

x( j) p̄1 +
n1+n2

∑
j=n1+1

x( j) p̄2 =
n1

∑
j=1

x( j) p1 +
n1+n2

∑
j=n1+1

x( j) p2 (2.2.15)

In particular, if all the sums insured are equal to x, Eq. (2.2.15) reduces to

n1 p̄1 +n2 p̄2 = n1 p1 +n2 p2 (2.2.16)

We note, from Eqs. (2.2.15) and (2.2.16), that the unknowns p̄1 and p̄2 cannot
be univocally determined. Then, an additional condition is required, for example
p̄1 = α p̄2, or p̄1 = p̄2 −β , with α and β such that inequalities (2.2.14) are anyway
fulfilled.

Clearly, the aim of such a rating system is to keep premium rates differentiated,
while charging a “reasonable” premium to risks with a higher claim probability, and
then transferring part of the cost to risks with a lower probability.

Remark Although inequalities (2.2.14) are quite reasonable, in principle we could also assume

p̄1 < p1 < p2 < p̄2 (2.2.17)

that is, aiming to “reward” risks with a low probability, while “penalizing” risks with a high prob-
ability.

2.2.5 Rating systems and technical equilibrium

When rating systems other than those constructed by setting the premium rates equal
to the claim probabilities are adopted, problems concerning the technical equilib-
rium may arise. To discuss such problems, we refer, for simplicity, to a portfolio in
which all the sums insured are equal to x, and just one premium rate is adopted.

Let us turn back to formula (2.2.10), which expresses the premium rate p̄ as-
suming the equilibrium only at the portfolio level as the target. We note that p̄ is a
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function of the sizes, n1 and n2, of the two sub-portfolios. Clearly, when the premi-
ums, based on the premium rate p̄, are charged to a group of new applicants for the
insurance cover, the actual sizes of the sub-groups of risks with claim probability
p1 and p2 respectively are unknown. Thus, n1 and n2 should be understood only as
estimates of the actual numbers of applicants.

We denote with n∗1, n∗2 the actual sizes of the sub-groups. If

n∗1
n∗1 +n∗2

=
n1

n1 +n2
(2.2.18)

the technical equilibrium is ensured, as the relative sizes of the actual groups coin-
cide with the estimated relative sizes. Conversely, assume that

n∗1
n∗1 +n∗2

<
n1

n1 +n2
(2.2.19)

In this case, the technical equilibrium is not achieved. Indeed, in the actual situation
the premium p̄∗, given by

p̄∗ =
n∗1 p1 +n∗2 p2

n∗1 +n∗2
(2.2.20)

should be applied; that is, a lower weight should be attributed to the lower prob-
ability, i.e. to p1 because of (2.2.19). Clearly, p̄∗ > p̄, and thus an expected loss
follows.

Similar problems arise when the rating system is based on two premium rates, as
defined by formulae (2.2.15) and (2.2.16).

Example 2.2.1. Two different rating systems, A and B, are defined. Both the systems
are constructed by assuming that the number of risks with the lower probability, p1,
is twice the number of risks with the higher probability, p2, that is, n1 = 2n2; see
Table 2.2.1.

Table 2.2.2 shows the expected payment, the premium income, and the expected
portfolio result, referred to two actual portfolios, the first one leading to an equilib-
rium situation, whilst the second one (for which inequality (2.2.19) holds) implies
an expected payment greater than the premium income, whatever the rating system
adopted, and hence a negative expected result. As regards the portfolio leading to a
non-equilibrium situation, the system A obviously implies a higher loss.

Table 2.2.1 Claim probabilities and premium rates

n1 n2 p1 p2
Rating A Rating B

p̄ p̄1 p̄2

4000 2000 0.005 0.008 0.006 0.0055 0.007

�
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Table 2.2.2 Expected outgo, premium income, and expected portfolio result

n∗1 n∗2 Expected outgo
Premium income Expected result

Rating A Rating B Rating A Rating B

8000 4000 72000 72000 72000 0 0
3000 3000 39000 36000 37500 −3000 −1500

A practical problem is as follows: is the situation described by inequality (2.2.19)
a likely one? The following points provide an answer to this critical question.

• The (expected) equilibrium at the portfolio level is based on a transfer of money
(shares of premiums) from insureds charged with a premium higher than their
“true” premium, i.e. the premium resulting from the probability of a claim, to in-
sureds charged with a premium lower than their “true” premium. In the technical
language, such a transfer of money is called solidarity (among the insureds). In
particular, the generic insured with claim probability p1 transfers to the pool the
amount

S( j)
1 = x( j) p̄− x( j) p1 > 0 (2.2.21)

whereas the pool transfers to the generic insured with claim probability p2 the
amount

S( j)
2 = x( j) p̄− x( j) p2 < 0 (2.2.22)

The amounts S( j)
1 and S( j)

2 are usually called solidarity premiums (positive and
negative, respectively).

• Rating systems based on solidarity may cause self-selection, as individuals forced
to provide solidarity to other individuals can reject the policy, moving to other
insurance solutions (or, more generally, risk management actions). The resulting
effect is a portfolio with a (relative) prevalence of risks with the higher claim
probability. Thus, from the insurer’s point of view, self-selection is adverse se-
lection.

• The severity of this self-selection phenomenon depends on how people perceive
the solidarity mechanism, as well as on the premium systems adopted by com-
petitors in the insurance market.

• So, in practice, solidarity mechanisms can work provided that they are compul-
sory (for example, imposed by insurance regulation) or they constitute a common
market practice.

2.2.6 From risk factors to rating classes

The rating system defined by formulae (2.2.7) to (2.2.10) adopts one premium rate
p̄ versus two claim probabilities p1, p2. The underlying rationale can be extended
to more general situations.
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When we define a “population”, we have to adopt a rigorous criterion to decide
whether a given “individual” belongs to the population (i.e. is a “member” of the
population) or not. For example, the population can be defined as consisting of all
males currently alive, born in Italy in the period 1950-1970. Although the definition
is rigorous, we are aware that the population consequently defined is rather hetero-
geneous, in particular with regard to the risk of death. Indeed, individuals can have
various ages, can be more or less healthy, can have a more or less risky occupation,
etc. Thus, we can recognize various risk factors (age, current health conditions, oc-
cupation, and so on), which should be taken into account when stating, for example,
the probability of dying within one year.

Problems concerning heterogeneity and the use of risk factors in life and non-life
insurance calculations will be specifically addressed in Chaps. 3, 4, and 9. Now, we
just provide a first insight into the role of risk factors in the pricing procedures.

We assume that each risk factor can take one out of a given (integer) number of
“values”, either scalar (e.g. the age), or nominal (e.g. the gender). Figure 2.2.1 refers
to a population for which three risk factors have been initially recognized, with 4,
3 and 2 values respectively (each factor is represented by a coordinate). Thus, the
population has been split into 4×3×2 = 24 risk classes (see panel (a)).

In principle, a specific claim probability, and hence a specific premium rate,
should be determined for each risk class. However, the resulting tariff structure
could be considered too complex, or some premium rates too high. Then, a first
simplification could be obtained disregarding one of the risk factors; see Fig. 2.2.1,
panel (b), which shows that risk factor 3 has been disregarded. A further grouping of
risk classes is illustrated by panel (c), in which we see the grouping of some values
of risk factors 1 and 2. As the final result, the population is split into 3×2 = 6 rating
classes.

When two or more risk classes are aggregated into one rating class, some in-
sureds pay a premium higher than their “true” premium, i.e. the premium resulting
from the risk classification, while other insureds pay a premium lower than their
“true” premium. Thus, the equilibrium inside a rating class relies on a money trans-
fer among individuals belonging to different risk classes. As mentioned above, this
transfer is usually called solidarity (among the insureds).

When the rating classes coincide with the risk classes, the rating system is “tai-
lored” on the features of each insured risk (at least to the extent these features can
be detected), and no solidarity transfer works. Conversely, the solidarity effect is
stronger when the number of rating classes is smaller, compared with the number of
risk classes.

Remark Even if the rating classes coincide with the risk classes, a “residual” heterogeneity still
affects the insured risks inside each rating class, because of the presence of unobservable risk fac-
tors; for example: genetic characteristics as regards mortality, personal attitude to cause accidents
in car insurance, and so on. Thus, an unavoidable degree of solidarity among insured risks is im-
plied by unobservable risk factors, whatever the number of rating classes.
The residual heterogeneity (and hence the solidarity) can be reduced if the individual claim expe-
rience allows the insurer to “learn” about the features of each insured risk. In particular, in non-life
insurance rating classes can be defined accounting, for example, for the numbers of claims ex-
perienced in previous years. So, an individual experience rating (also called merit rating in car



2.2 Rating: the basics 77

risk 
classes

rating 
classes

Risk factor 1

Risk factor 3R
is

k 
fa

ct
or

 2

(a) 

(b) 

(c) 

Fig. 2.2.1 From risk factors to rating classes

insurance) determines an a-posteriori risk classification, whereas an a-priori risk classification,
based on rating factors known in advance, works at policy issue. This topic will be specifically
dealt with in Chap. 9.

In the field of private insurance, an extreme case is achieved when one rating
class only relates to a large number of underlying risk classes. Outside the area of
private insurance, the solidarity principle is commonly applied in social security. In
this field, the extreme case arises when the whole national population contribute to
fund the benefits, even if only a part of the population itself is eligible to receive
benefits; so, the burden of insurance is shared among the community.

2.2.7 Cross-subsidy: mutuality and solidarity

Mutuality and solidarity constitute two forms of cross-subsidy among the insureds
(or, in general, among the members of a pool). However, some important points
should be stressed in order to single out the different features of these forms of
cross-subsidy.
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First, mutuality is an implication of the pooling process (and in particular of the
risk transfer to an insurance company), as clearly emerges in Sect. 1.7.4. Conversely,
solidarity among the insureds is the straight consequence of the adoption of a rat-
ing system with a number of rating classes smaller than the number of risk classes.
So, the presence and the magnitude of solidarity effects strictly depend on the tar-
iff structure (see, in particular, the amounts of solidarity premiums, expressed by
formulae (2.2.21) and (2.2.22)).

Secondly, it is worth noting that the mutuality affects the benefit payment phase,
so that the “direction” and “measure” of the mutuality effect in a portfolio (or, in
general, in a pool of risks) are only known ex-post. Conversely, the solidarity (pos-
sibly) affects the premium income phase, and hence its direction and measure are
known ex-ante.

Figure 2.2.2 illustrates cross-subsidy in a pool of insured risks.

Individual risks Pool of risks 

Underwriting 

Pool split into rating classes 

Claim settlement 
CLAIMS 

CLAIM FREE 

MUTUALITY SOLIDARITY 

Applying the tariff  

Fig. 2.2.2 Mutuality and solidarity in a pool of insured risks

2.3 Facing portfolio riskiness

Risks inherent in the results obtained by managing a pool of risks have been already
discussed in Chap. 1 (see Sects. 1.6.2 and 1.6.3). We now turn back on these issues,
referring to a portfolio of insured risks. In particular, we focus on the following
aspects:

• what are the “components” of the risk inherent in portfolio outgoes (and hence
in portfolio results);
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• what are the elements of an appropriate tool-kit for managing this risk.

2.3.1 Expected outgo versus actual outgo

We consider a portfolio of n basic insurance covers (see Case 2 in Sects. 1.7.2 and
1.7.4), in which all the sums insured are equal to x, and we assume that the port-
folio is homogeneous with respect to the claim probability; we denote with p this
probability.

Let f denote the observed relative claim frequency, i.e. f =
k
n

, where k is the

observed number of claims. If f = p, the equilibrium is actually achieved (of course,
provided that the premium rate is set equal to p), as the actual outgo, given by nx f ,
is equal to the expected outgo, nx p, and hence to the premium income. Indeed, we
have

n

∑
j=1

P( j) = nx p = nx f (2.3.1)

Conversely, we may find that f �= p, and clearly our concern is for the case f > p.
Figure 2.3.1 sketches three portfolio stories in which we find that, in various years,
f �= p. Reasons underlying this inequality may be quite different in the three stories.
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Fig. 2.3.1 Observed frequency versus probability

• In Fig. 2.3.1a, we see that the observed claim frequency randomly fluctuates
around the probability, namely around the expected frequency. This possibility is
usually denoted as the risk of random fluctuations, or the process risk.

• On the contrary, Fig. 2.3.1b depicts a situation in which, besides random fluctu-
ations, we see “systematic” deviations from the expected frequency; likely, this
occurs because the assessment of the probability p does not capture the true na-
ture of the insured risks. This possibility is usually called the risk of systematic
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deviations, or the uncertainty risk, referring to the uncertainty in the assessment
of the expected frequency.

• In Fig. 2.3.1c, the effect of a “catastrophe”, which causes a huge number of
claims in a given year, clearly appears. This possibility is commonly known as
the catastrophe risk.

Thus, three risk components have been singled out. All the components impact
on the monetary results of the portfolio. However, the severity of the impact strongly
depends on the portfolio structure, and the portfolio size in particular.

• The severity of the risk of random fluctuations decreases, in relative terms, as the
portfolio size increases. This feature is the direct consequence of the risk pooling
(see Sect. 1.6.1), and thus is commonly known as the pooling effect.

• The severity of the risk of systematic deviations is independent, in relative terms,
of the portfolio size (as we will see in Sect. 2.3.10). Indeed, the systematic devi-
ations affect the pool as an aggregate. Conversely, the total impact on portfolio
results increases as the portfolio size increases.

• The severity of the catastrophe risk can be higher due, for example, to a high
concentration of insured risks within a geographic area.

In the following sections we focus on the risk of random fluctuations.

2.3.2 Risk assessment

We still refer to a portfolio of n basic insurance covers; for the generic cover, the
insurer’s random payment is given by

X ( j) =

{
x( j) in the case of claim

0 otherwise
(2.3.2)

where x( j) is the sum insured.
We assume that:

• the portfolio is homogeneous with respect to the claim probability, denoted with
p;

• claims and hence random numbers X ( j) are independent each other.

Let P( j) denote the expected value of X ( j) (namely, the equivalence premium
according to the realistic basis), thus

P( j) = E[X ( j)] = x( j) p (2.3.3)

Moving to the portfolio level, we denote with X [P] the total payment

X [P] =
n

∑
j=1

X ( j) (2.3.4)
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whose expected value, denoted by P[P], is given by

P[P] = E[X [P]] = p
n

∑
j=1

x( j) =
n

∑
j=1

P( j) (2.3.5)

Our first aim is to quantify the portfolio riskiness, in order to determine an ap-
propriate safety loading. In general, a basic information about riskiness is obviously
provided by the variance of the total payment.

For the generic insured risk, the variance of the random payment is given by

Var[X ( j)] = (x( j))2 p(1− p) (2.3.6)

Then, for the total payment, thanks to the independence assumption, we find

Var[X [P]] =
n

∑
j=1

Var[X ( j)] = p(1− p)
n

∑
j=1

(x( j))2 (2.3.7)

It is interesting to analyze the link between the variance of the total payment and
the structure of the portfolio itself, in terms of the sums insured. We denote with x̄
the average sum insured, namely

x̄ =
1
n

n

∑
j=1

x( j) (2.3.8)

and with x̄(2) the second moment of the distribution of the sums insured, that is

x̄(2) =
1
n

n

∑
j=1

(x( j))2 (2.3.9)

Finally, we denote with v the variance of the distribution of the sums insured

v =
1
n

n

∑
j=1

(x( j) − x̄)2 (2.3.10)

which can also be expressed as follows:

v = x̄(2) − (x̄)2 (2.3.11)

From relations (2.3.7) to (2.3.11), it follows that

Var[X [P]] = n p(1− p) x̄(2) = n p(1− p)
(
v+(x̄)2) (2.3.12)

Thus, for a given portfolio size n and a given average sum insured x̄ (and hence a
given value of (x̄)2), the variance of the total payment is lower when the variance of
the sums insured, v, is lower. In particular, we find the minimum variance Var[X [P]]
when v = 0, that is, when all the policies have the same sum insured. Note that,
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in this case, the actual total payment (and hence the actual portfolio result) only
depends on the number of claims in the portfolio, whilst it does not depend on
which policies are affected by claims.

2.3.3 The risk index

As shown in Sect. 1.6.1, an interesting insight into the riskiness of a pool of risks
(and thus a portfolio of insured risks, in particular) is given by the coefficient of
variation of the total payment, X [P]. The coefficient of variation provides a measure
of relative riskiness, i.e. riskiness related to the expected value of the total payment.
The coefficient of variation of X [P] is also called, in the actuarial literature, the risk
index of the portfolio. We will denote it with ρ (reference to the portfolio payment
X [P] is understood). Hence,

ρ = CV[X [P]] =

√
Var[X [P]]
E[X [P]]

=
σ [P]

P[P] (2.3.13)

where σ [P] denotes the standard deviation of the total payment.
We now analyze some aspects of the link between the risk index and the portfolio

structure. We still refer to the portfolio defined in Sect. 2.3.2.
From Eqs. (2.3.5) and (2.3.7), we find

ρ =

√
1− p

p

√
∑n

j=1(x( j))2

∑n
j=1 x( j) =

√
1− p
n p

√
x̄(2)

x̄
(2.3.14)

From (2.3.14) we note that, for a given portfolio size n and a given average sum
insured x̄, the risk index ρ is higher when x̄(2) is higher, and thus the variance v
of the distribution of the sums insured is higher (see the conclusions after formula
(2.3.12)).

Example 2.3.1. Tables 2.3.1 to 2.3.3 refer to three portfolios, all with the same aver-
age sum insured, x̄ = 1000; in all the portfolios, the claim probability is p = 0.005.
However, the three portfolios have different sizes, or structures in terms of sums
insured. Various typical values (among which the risk index) summarize the total
payment and the inherent risk.

By comparing the results in Table 2.3.1 to those in Table 2.3.2, we clearly per-
ceive the magnitude of the pooling effect. Conversely, by comparing results in Ta-
ble 2.3.1 to those in Table 2.3.3, we can see the effect of heterogeneity in the sums
insured.

�

What can we say, in general terms, about the range of values of the risk index ρ ,
for a given portfolio size n and a given claim probability p ? First, it can be proved



2.3 Facing portfolio riskiness 83

Table 2.3.1 Portfolio A

Number of policies Sum insured

100000 1000

Typical values: x̄ = 1000
v = 0
P[P] = E[X [P]] = 500000
σ [P] =

√
Var[X [P]] = 22304

ρ =
σ [P]

P[P] = 0.0446

Table 2.3.2 Portfolio B

Number of policies Sum insured

10000 1000

Typical values: x̄ = 1000
v = 0
P[P] = E[X [P]] = 50000
σ [P] =

√
Var[X [P]] = 7053

ρ =
σ [P]

P[P] = 0.1411

Table 2.3.3 Portfolio C

Number of policies Sum insured

70000 500
25000 1000
5000 8000

Typical values: x̄ = 1000
v = 2625000
P[P] = E[X [P]] = 500000
σ [P] =

√
Var[X [P]] = 42467

ρ =
σ [P]

P[P] = 0.0849

that
√

n
n

≤
√

∑n
j=1(x( j))2

∑n
j=1 x( j) ≤ 1 (2.3.15)

Then, from these inequalities, it follows that√
1− p
n p

≤ ρ ≤
√

1− p
p

(2.3.16)
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As regards the lower bound, we have already shown that it is actually reached
if (and only if) all sums insured are equal (see Sect. 1.6.1). As regards the upper
bound, note that, if one sum insured “diverges” (ceteris paribus), we have:√

∑n
j=1(x( j))2

∑n
j=1 x( j) → 1 (2.3.17)

and hence

ρ →
√

1− p
p

(2.3.18)

In more practical terms, when just one sum insured is extremely high if compared
to the other sums, the advantage provided by the portfolio size vanishes, so that the
riskiness of the portfolio is roughly equal to the riskiness of a portfolio consisting
of just one policy.

Hence, we can conclude stating that the relative riskiness reduces as the portfolio
size increases, provided that each individual position (and the related contribution
to the riskiness) becomes negligible in respect of the overall portfolio.

2.3.4 The probability distribution of the total payment

More information about the riskiness of a portfolio can be achieved via the proba-
bility distribution of the total payment X [P]. Deriving this probability distribution is,
in general, a rather complex problem. Then, we restrict our attention to a particular
case, and to the use of approximations.

We assume that our portfolio, which consists of n independent risks, is homo-
geneous with respect to both the probability, p, and the sum insured, x. Hence, the
random total payment can be expressed as follows:

X [P] = K x (2.3.19)

where K denotes the random number of claims in the portfolio.
Thanks to the hypothesis of independence, K has a binomial distribution, thus

K ∼ Bin(n, p) (2.3.20)

and hence

P[X [P] = k x] = P[K = k] =
(

n
k

)
pk (1− p)n−k; k = 0,1, . . . ,n (2.3.21)

In order to get more tractable calculation procedures, various approximations to
the binomial distribution can be used. In particular, for a large size n and small
probability p, the Poisson distribution can be adopted. Thus, we can assume
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K ∼ Pois(λ ) (2.3.22)

and hence

P[X [P] = k x] = e−λ λ k

k!
; k = 0,1, . . . (2.3.23)

with

λ = n p (= expected number of claims in the portfolio) (2.3.24)

Further, the normal distribution provides an approximation, which relies on the
Central Limit Theorem. Then,

X [P] ∼ N (P[P],σ [P]) (2.3.25)

where

P[P] = E[X [P]] = nx p (2.3.26)

σ [P] =
√

Var[X [P]] = x
√

n p(1− p) (2.3.27)

Hence
X [P] −P[P]

σ [P] ∼ N (0,1) (2.3.28)

So, we have for example

P

[
z1 <

X [P] −P[P]

σ [P] ≤ z2

]
= ΦN (0,1)(z2)−ΦN (0,1)(z1) (2.3.29)

where ΦN (0,1)(z) denotes the cumulative distribution function, namely

ΦN (0,1)(z) =
1√
2π

∫ z

−∞
e−

u2
2 du (2.3.30)

The normal approximation can also be adopted in more general cases, e.g. for
portfolios of insured risks with various sums insured and/or various probabilities of
claim.

The goodness of some approximations is briefly discussed, via numerical exam-
ples, in Appendix 2.A.

Some interesting results can be achieved looking at how the risk index enters
probabilities concerning the total payment X [P]. For example, consider the following
probability:

ψδ = P

[
(1−δ )P[P] < X [P] ≤ (1+δ )P[P]

]
(2.3.31)

(see Fig. 2.3.2). The probability on the right-hand side of (2.3.31) can be expressed
in terms of the risk index ρ . Indeed, we find
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ψδ = P

[
−δ

1
ρ

<
X [P] −P[P]

σ [P] ≤ δ
1
ρ

]
(2.3.32)

and then:

ψδ = Φ
(

δ
1
ρ

)
−Φ

(
−δ

1
ρ

)
(2.3.33)

where Φ denotes the cumulative distribution function of the standardized random
variable X [P]−P[P]

σ [P] . From (2.3.33) we argue that, for any given value of δ , the lower
is ρ the higher is ψδ . Thus, the “concentration” increases as the risk index de-
creases, e.g. because the size of the portfolio increases (see also Table 2.3.4 in Ex-
ample 2.3.2).

Focussing on “downside” payments is clearly of great interest when assessing
the riskiness of a portfolio. To this purpose, probabilities like

π(t) = P

[
X [P] > P[P] + t

]
(2.3.34)

should be addressed; t represents a critical “threshold”, which expresses the in-
surer’s capability to meet the total payment. For example, consider the probability
νδ defined as follows:

νδ = π
(

δ P[P]
)

= P

[
X [P] > (1+δ )P[P]

]
(2.3.35)

in which the threshold t is expressed in terms of the expected value P[P] (see
Fig. 2.3.2). We find:

νδ = P

[
X [P] −P[P]

σ [P] > δ
1
ρ

]
= 1−Φ

(
δ

1
ρ

)
(2.3.36)

It is easy to understand that, for any given δ , the probability νδ decreases as ρ
decreases, e.g. because the size of the pool increases.

If we assume, in particular, the normal approximation to the distribution of X [P],
we find

νδ =
1−ψδ

2
(2.3.37)

(See Table 2.3.5 in Example 2.3.2 for a numerical illustration).

Example 2.3.2. We refer to a portfolio, which consists of n independent risks, ho-
mogeneous with respect to both the sum insured and the claim probability p. We
assume p = 0.005. The normal approximation has been used for the numerical eval-
uations. Table 2.3.4 illustrates the concentration, in terms of the probability (2.3.31),
for some values of δ and various pool sizes. On the other hand, Table 2.3.5 shows
the probability of “downside” payments.
�
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ψδ

0 P[P]

νδ

(1-δ ) P[P] (1+δ ) P[P]

Fig. 2.3.2 Probability distribution of the random payment X [P]

Table 2.3.4 The concentration around the expected value

ψδ

n δ = 0.10 δ = 0.05 δ = 0.01

100 0.06983 0.03495 0.00699
1000 0.17737 0.08924 0.01788

10000 0.61920 0.33877 0.06984

Table 2.3.5 The probability of “downside” payments

νδ

n δ = 0.10 δ = 0.05 δ = 0.01

100 0.46509 0.48253 0.49651
1000 0.41132 0.45538 0.49106

10000 0.19040 0.33062 0.46508

2.3.5 The safety loading

In this Section we show how to calculate the safety loading consistently with the
portfolio riskiness. So, a practical feature of the risk index will clearly emerge.

Refer to the portfolio of n basic insurance covers, described in Sect. 2.3.2. Let
m( j) denote the (explicit) safety loading for risk j, and Π ( j) the premium including
the safety loading, that is

Π ( j) = P( j) +m( j) (2.3.38)

where P( j) = x( j) p (see Eq. (2.3.3)).
Moving to the portfolio level, let Π [P] denote the total premium income
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Π [P] =
n

∑
j=1

Π ( j) (2.3.39)

which can also be expressed as

Π [P] = P[P] +m[P] (2.3.40)

with obvious meaning of the symbol m[P].
The portfolio result, Z[P], is then defined as follows:

Z[P] = Π [P] −X [P] (2.3.41)

We obviously have:

E[Z[P]] = m[P] (2.3.42)

Var[Z[P]] = Var[X [P]] (2.3.43)

We consider the event Z[P] < 0, that is the event X [P] > P[P] +m[P]. According to
the notation defined by (2.3.34), the probability of this event, namely the probability
of loss, is denoted as follows:

π(m[P]) = P

[
X [P] > P[P] +m[P]

]
(2.3.44)

Clearly, the probability of loss should be kept reasonably low, via an appropriate
choice of the (total) safety loading m[P].

Figures 2.3.3 and 2.3.4 show the probability distributions of the random payment
X [P] and the portfolio result Z[P], respectively (the probability distributions are as-
sumed to be continuous, so that the behavior of the density functions is displayed).

Note that, in the present setting of the problem, the safety loading m[P] is the only
parameter whose value can be chosen to lower the probability of a loss (i.e. a neg-
ative value of Z[P]). Clearly, the effect of a change in this parameter (see Fig. 2.3.5)
is a shift in the probability distribution of Z[P] (see Fig. 2.3.6).

From (2.3.44), we have

π(m[P]) = P

[X [P] −P[P]

σ [P] >
m[P]

σ [P]

]
= 1−Φ

(m[P]

σ [P]

)
(2.3.45)

where Φ denotes the cumulative distribution function of the random number X [P]−P[P]

σ [P] ,
with expected value equal to 0 and standard deviation equal to 1.

Let ε denote the accepted probability of loss. We want to find m[P] such that

π(m[P]) = ε (2.3.46)

that is

1−Φ
(m[P]

σ [P]

)
= ε (2.3.47)
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Fig. 2.3.3 The probability distribution of
the random payment X [P]
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Fig. 2.3.4 The probability distribution of
the random result Z[P]
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Fig. 2.3.5 The probability distribution of
X [P]: probability of exceeding two different
levels of safety loading

m1
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0

Fig. 2.3.6 The probability distribution of
Z[P]: safety loading as a shift parameter of
the random result

and then
m[P] = σ [P] Φ−1(1− ε) (2.3.48)

Finally, we find that the required safety loading per unit of expected value, namely
the safety loading rate, is given by

m[P]

P[P] =
σ [P]

P[P] Φ−1(1− ε) (2.3.49)

that is
m[P]

P[P] = ρ Φ−1(1− ε) (2.3.50)

Thus, for a given accepted probability ε , the lower is the risk index ρ , the lower
is the safety loading rate.
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Example 2.3.3. Tables 2.3.6 to 2.3.8 refer to the portfolio structures described by
Tables 2.3.1 to 2.3.3, respectively. The normal approximation has been used to eval-
uate the probabilities, namely it has been assumed:

X [P] −P[P]

σ [P] ∼ N (0,1) (2.3.51)

The analysis of the results in the three tables leads, of course, to conclusions
strictly related to those presented in Example 2.3.1. Now, the effect of risk pooling
(compare Table 2.3.6 to Table 2.3.7) and the effect of heterogeneity in the sums
insured (compare Table 2.3.6 to Table 2.3.8) clearly appears in terms of the safety

loading rate
m[P]

P[P] . Note, in particular, the huge values of this rate in Portfolio B when

a very low probability of loss is assumed as the target. So, the need for tools other
than the safety loading clearly emerges.

Table 2.3.6 Safety loading - Portfolio A

m[P] m[P]

P[P]
m[P]

σ [P] π(m[P])

64200 0.1284 2.880 0.002
57550 0.1151 2.580 0.005

Table 2.3.7 Safety loading - Portfolio B

m[P] m[P]

P[P]
m[P]

σ [P] π(m[P])

20312 0.4063 2.880 0.002
18195 0.3639 2.580 0.005
6420 0.1284 0.910 0.181

Table 2.3.8 Safety loading - Portfolio C

m[P] m[P]

P[P]
m[P]

σ [P] π(m[P])

122300 0.2446 2.880 0.002
109550 0.2191 2.580 0.005
64200 0.1284 1.512 0.065

�
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2.3.6 Capital allocation and beyond

The outcome of the total payment X [P] can be higher than the amount of premiums,
even when these include an appropriate safety loading. In order to manage this risk,
the insurer can assign to the portfolio a fund which consists of shareholders’ cap-
ital (and, as such, may derive from previous profits, or from the issue of shares).
This action is usually referred to as the capital allocation. Hence, the purpose of
the allocation is to protect the insurance company against possible negative results
produced by the portfolio.

Let M denote the amount of capital allocated to the portfolio. Figure 2.3.7 illus-
trates the use of resources available to the insurer, in order to face the portfolio total
payment, and the results corresponding to the possible outcomes of the payment
itself.

∑
n

j

(j)x
=1

(Part of)  Premiums  P[P] 

Profit Ruin Loss 

Total payment   
X[P] 0

Resources 
used

Result  Z[P]

(Part of)  Premiums  Π [P] 

Premiums  Π [P]

+ (Part of)  Capital  M 

P[P]

P[P] + m[P]

P[P] + m[P] + M

Fig. 2.3.7 Facing the total payment

In particular, the event X [P] > P[P] +m[P] +M means the portfolio default, or ruin.
We note that both the safety loading m[P] and the capital M are variables whose
values can be chosen to lower the probability of default, namely the probability:

π(m[P] +M) = P[X [P] > P[P] +m[P] +M] = P[Z[P] < −M] (2.3.52)

If the total safety loading m[P] has been already stated, the following problem
should be considered: find the amount M such that

π(m[P] +M) = α (2.3.53)

where α is an assigned, low probability (see Fig. 2.3.9). Of course, we have:
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M = −VaRα (2.3.54)

P[P]
0

P[X[P] > P[P]+ m[P] + M]

P[P]+ m[P]+M

P[P]+ m[P]

Fig. 2.3.8 The probability distribution of
the random payment X [P]

P[Z[P] < -M]

0 m[P]-M

Fig. 2.3.9 The probability distribution of
the random result Z[P]

From (2.3.52) we have:

π(m[P] +M) = P

[X [P] −P[P]

σ [P] >
m[P] +M

σ [P]

]
= 1−Φ

(m[P] +M

σ [P]

)
(2.3.55)

where Φ denotes the cumulative distribution function of the random number X [P]−P[P]

σ [P] ,
with expected value equal to 0 and standard deviation equal to 1. Thus, the target
expressed by (2.3.53) can also be written as follows:

1−Φ
(m[P] +M

σ [P]

)
= α (2.3.56)

and hence
m[P] +M

σ [P] = Φ−1(1−α) (2.3.57)

(see Fig. 2.3.10).
For a given probability α and a given standard deviation σ [P] (which is univocally

determined by the portfolio structure), Eq. (2.3.57) can be solved with respect to the
total amount m[P] +M. In other terms, if the safety loading is not yet stated, both the
amounts m[P] and M can be chosen in order to achieve the target probability.

The unit-free index

s =
m[P] +M

σ [P] (2.3.58)

is sometimes called the relative stability index. From (2.3.55), we see that the higher
is s, the lower is the ruin probability. To raise s, the following actions can be taken:

1. raise the safety loading m[P];
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Fig. 2.3.10 The standardized probability distribution of the random payment

2. raise the allocated capital M;
3. reduce σ [P], via appropriate reinsurance arrangements (thus affecting the port-

folio structure, in terms of sums insured), and, in particular, by choosing the
“retention” level (we will deal with these concepts in Sects. 2.4 and 2.5).

As the insurer can choose (at least in principle) the safety loading, the amount of
allocated capital, and the retention level, these quantities are called decision vari-
ables. However the following aspects should be stressed. Action 1 affects the pre-
miums, and hence is bounded by market constraints. Conversely, action 2 has con-
straints at the company level, because capital is a limited resource.

As regards action 3, whatever reinsurance arrangements may be chosen, the re-
lated cost obviously affects the resources available to the portfolio, in particular
reducing the expected profit m[P]. As both numerator and denominator of the sta-
bility index are affected (see (2.3.58)), the effect is not univocally determined in
general.

Example 2.3.4. Tables 2.3.9 to 2.3.11 refer to the portfolio structures described by
Tables 2.3.1 to 2.3.3, respectively.

In particular, from Tables 2.3.10 and 2.3.11 the important role of the capital al-
location clearly appears, especially when very high safety loading rates should oth-
erwise be applied, because of either the size of the portfolio or its structure, in order
to keep low the probability of default.

Table 2.3.9 Capital allocation and safety loading - Portfolio A

M m[P] m[P]

P[P] s π(m[P] +M)

10000 50000 0.100 2.6901 0.0036
15000 50000 0.100 2.9143 0.0018
20000 50000 0.100 3.1385 0.0009
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Table 2.3.10 Capital allocation and safety loading - Portfolio B

M m[P] m[P]

P[P] s π(m[P] +M)

10000 5000 0.100 2.1268 0.0167
13200 5000 0.100 2.5805 0.0050
10000 8200 0.164 2.5805 0.0050

Table 2.3.11 Capital allocation and safety loading - Portfolio C

M m[P] m[P]

P[P] s π(m[P] +M)

10000 50000 0.100 1.4129 0.0788
60000 50000 0.100 2.5902 0.0048
35000 75000 0.150 2.5902 0.0048

�

2.3.7 Solvency

As seen above, the event Z[P] < −M represents the portfolio default. Conversely,
when M + Z[P] ≥ 0 the insurer is able to meet the total payment by using the pre-
miums and, possibly, (part of) the allocated capital, that is, the insurer is solvent.
Hence, a solvency requirement can be expressed as follows:

P[M +Z[P] ≥ 0] = 1−α (2.3.59)

where α is the accepted default probability (see Eq. (2.3.53)).
Equation (2.3.59) can be solved with respect to M. The solution (see (2.3.57),

for given values of m[P] and σ [P]) provides the capital requirement for solvency
purposes.

It is worth noting that, in the ordinary language, the term “solvency” is often
used in a not well defined sense. Commonly, it is used to denote the capability of
an agent to pay the amounts when these fall due. It is apparent that this definition
does not fit obvious actuarial requirements. Indeed, in the insurance activity, the
capability cannot be meant in a deterministic sense (which leads to the concept of
“absolute solvency”): actually, the total amount due could be equal to the sum of all
sums insured with the policies in-force at a given time, if all the insureds claim at
that time. Hence, insurance business needs a definition of solvency in a probabilistic
sense, as witnessed in particular by Eq. (2.3.59).
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2.3.8 Creating value

We now return to the choice between action 1 (raise m[P]) and 2 (raise M), aiming
to lower the probability of default (or to achieve an assigned target probability α).
First, we note that allocating capital implies a cost to the shareholders, whereas
raising the safety loading leads to a higher cost to the policyholders.

Let r denote the (annual) rate which quantifies the opportunity cost of the share-
holders’ capital. Thus, the cost of allocating the amount M is given by r M. How-
ever, the common definition of a profit (or a loss) is only based on the comparison
between actual incomes and costs. Thus, for the portfolio we are addressing, we
have

Π [P] < X [P] ⇒ loss

Π [P] > X [P] ⇒ profit

(note that the only cost accounted for is given by the payment for claims, X [P], as, in
our setting, expenses are disregarded). Conversely, if we want to assess the portfolio
result also allowing for the cost of capital allocation, Π [P] has to be compared to
X [P] + r M. A new concept then arises, namely the creation of value. Thus, for our
portfolio we have:

Π [P] < X [P] ⇒ loss and value destruction

X [P] < Π [P] < X [P] + r M ⇒ profit and value destruction

Π [P] = X [P] + r M ⇒ profit and no value

Π [P] > X [P] + r M ⇒ profit and value creation

In order to compare strategies which consist in mixing action 1 and action 2, we
have to move to expected values. Thus, we have to replace X [P] with its expected
value E[X [P]] = P[P]. Noting that Π [P] = P[P] + m[P], we find, in terms of expected
values:

m[P] < r M ⇒ value destruction (2.3.60)

m[P] > r M ⇒ value creation (2.3.61)

Example 2.3.5. We refer to portfolio B, and assume α = 0.005 as the target prob-
ability; hence, an amount M + m[P] = 18200 is required (see Table 2.3.10). Fur-
ther, we assume r = 0.08. Table 2.3.12 illustrates some situations of value creation
(Value > 0), value destruction (Value < 0), and “equilibrium” (Value = 0), respec-
tively.

�

Whatever the target probability, the equation

m[P] = r M (2.3.62)
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Table 2.3.12 Value creation versus value destruction - Portfolio B

M m[P] r M
Value

m[P] − r M

10000 8200 800 7400
15000 3200 1200 2000
16852 1348 1348 0
18000 200 1440 −1240

defines the border line between value creation and value destruction. Conversely,
for a given target probability, we have

m[P] +M = const. (2.3.63)

(represented by a “level line”) as it results from Eq. (2.3.57). See Fig. 2.3.11.

M

m[P]

Value 
creation

Value 
destruction 

m[P] = r M

m[P] +M = const.

Decreasing  
default 
probability  

Fig. 2.3.11 Capital allocation; value creation versus value destruction

It is worth stressing that both value creation and solvency are two important goals
for any insurance business. Clearly, for any given portfolio (and a given amount of
safety loading), the two goals require opposite actions: a higher amount of capital
improves the solvency level, while reducing the value creation.

Example 2.3.6. We still refer to portfolio B, and assume 5% as the safety loading
rate, so that m[P] = 2500. The opportunity cost of capital is r = 0.08. Table 2.3.13
illustrates value creation and default probability as functions of the capital alloca-
tion.

�
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Table 2.3.13 Value creation and default probability - Portfolio B

M r M
Value Default prob.

m[P] − r M π(m[P] +M)

10000 800 1700 0.063
15700 1256 1244 0.005
20000 1600 900 0.001
35000 2800 −300 ≈ 0

2.3.9 Risk management and risk analysis: some remarks

Various issues dealt with in the previous sections of this Chapter can be properly
placed in the framework of insurance risk management, and in particular can be
interpreted as risk management actions.

Pricing the insurance product, which in our setting simply reduces to calcu-
late an appropriate safety loading, aims at loss prevention and loss reduction (see
Sect. 1.3.3). In a more general setting, also product design (and, in particular, the
design of various policy conditions, see Sect. 1.7.1) contributes to loss prevention
and loss reduction.

Capital allocation is the action aiming at loss financing via retention (see
Sect. 1.3.3). More precisely, the shareholders’ capital allocated to a portfolio con-
stitutes the tool for funding possible future losses.

Like other business entities, insurers can finance potential losses via risk transfer.
In the following sections, we will first focus on traditional risk transfer, namely
via reinsurance arrangements (Sects. 2.4 and 2.5). Then, alternative risk transfers
(Sect. 2.6), and in particular the transfer to capital markets, will be analyzed in the
framework of loss financing actions.

Risk Management, as a methodological framework, has provided important con-
tributions to risk analysis and risk assessment. Nevertheless, it should be stressed
that the earliest contribution to risk quantification can be traced back to the 18th
century. In 1786 Johannes Tetens first addressed the analysis of the process risk
inherent in a life insurance portfolio. Tetens showed that the risk in absolute terms
increases as the portfolio size n increases, whereas the risk in respect of each insured
decreases in proportion to

√
n. This feature of the risk pooling process has been de-

scribed in Sect. 1.6.1 (in particular, see Examples 1.6.1 and 1.6.2), and Sect. 2.3.3
(see Example 2.3.1).

In a modern theoretical perspective, Tetens’ ideas constitute a pioneering con-
tribution to the individual risk theory. Note that the term “individual” recalls the
nature of the approach, which starts from the description of the individual risks X ( j)

(in Case 2, the amount x( j) of the potential loss, and the relevant probability p( j)),
and leads to the construction of the probability distribution (or, at least, some typical
values) of the total payment X [P]. According to the terminology commonly used in
the Risk Management context, the adoption of this method is called the bottom-up
approach.
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The collective risk theory, whose origin can be traced back to the seminal con-
tribution by Filip Lundberg, dated 1909, directly focusses on the characteristics of
the total payment X [P]. In the Risk Management context, this approach is usually
called the top-down approach. Well-known implementations lead, for instance, to
the calculation of the VaR and the TailVaR (see Sect. 1.5.4), and to various solvency
requirements according to a dynamic perspective (as we will see in Sect. 2.7).

2.3.10 The “uncertainty risk”

We refer, as in Sects. 2.3.2 and 2.3.3, to a portfolio of n basic insurance covers, all
with the same probability of claim. Further, we assume that all the policies have the
same sum insured x. We denote simply with X the random payment for the generic
policy.

Unlike the previous sections, we now suppose that p does not necessarily repre-
sent the “correct” estimate of the claim probability. If p is not a correct estimate of
this probability, situations like the one displayed in Fig. 2.3.1b, and thus involving
systematic deviations, can occur.

To make explicit our awareness, we can express uncertainty about the estimate of
the claim probability through a random quantity p̃, to which a probability distribu-
tion should be assigned. We now denote with p the generic outcome of the random
quantity p̃.

As regards the probability distribution of p̃, we can, for example, choose a Beta
distribution (see Fig. 2.3.12), the parameters of which are usually denoted with α ,
β . Thus,

p̃ ∼ Beta(α,β ) (2.3.64)

Hence, for the random quantity p̃, we have:

E[p̃] =
α

α +β
(2.3.65)

Var[p̃] =
α β

(α +β )2 (α +β +1)
(2.3.66)

When uncertainty about the claim probability is accounted for, the expected value
of X , conditional on any value p of p̃ is given by

E[X |p] = x p (2.3.67)

Conversely, the quantity
E[X |p̃] = x p̃ (2.3.68)

is a random amount, as it is a function of p̃. Its expectation, according to the Beta
distribution assigned to p̃, is given by
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0 1 p

Fig. 2.3.12 The pdf of a Beta distribution

EBeta[E[X |p̃]] = EBeta[x p̃] = x
α

α +β
(2.3.69)

Note that, in the uncertainty framework, formula (2.3.69) expresses the uncondi-
tional expected value, namely E[X ]. For the variance of the random amount E[X |p̃]
we find

VarBeta[E[X |p̃]] = VarBeta[x p̃] = x2 α β
(α +β )2 (α +β +1)

(2.3.70)

In the presence of uncertainty, the variance of X , conditional on any value p of
p̃, is given by

Var[X |p] = x2 p(1− p) (2.3.71)

while
Var[X |p̃] = x2 p̃(1− p̃) (2.3.72)

is a random quantity. Its expectation, according to the Beta distribution assigned to
p̃, is given by

EBeta[Var[X |p̃]] = x2
EBeta[p̃(1− p̃)] (2.3.73)

It can be proved that EBeta[p̃(1− p̃)] = α β
(α+β )(α+β+1) , so that

EBeta[Var[X |p̃]] = x2 α β
(α +β )(α +β +1)

(2.3.74)

Moving to the portfolio level, we now address the total payment X [P]. When
uncertainty in the claim probability is allowed for, we have that the expected value
E[X [P]|p] and the variance Var[X [P]|p] must be meant as conditional on the generic
value p of the random quantity p̃, as for the corresponding typical values of X .
Further, we have:

E[X [P]|p̃] = nE[X |p̃] (2.3.75)

and for the variance



100 2 Managing a portfolio of risks

Var[X [P]|p̃] = nVar[X |p̃] (2.3.76)

Expected value and variance, as given by (2.3.75) and (2.3.76) respectively, are
random quantities. We have:

E[X [P]] = EBeta[nE[X |p̃]] = nx
α

α +β
(2.3.77)

Note that (2.3.77) expresses the unconditional expected value of X [P].
As regards the variance of X [P], first it should be stressed that the independence

among the individual random claims must be meant only conditional on any given
value of the probability p. Then, in the presence of uncertainty about this probabil-
ity, namely when the random quantity p̃ is addressed, the unconditional variance of
X [P] cannot be expressed as the sum of the individual unconditional variances. Con-
versely, it can be proved that the unconditional variance of X [P] can be expressed as
follows:

Var[X [P]] = VarBeta[E[X [P]|p̃]]+EBeta[Var[X [P]|p̃]]
= VarBeta[nE[X |p̃]]+EBeta[nVar[X |p̃]] (2.3.78)

Hence, from (2.3.70) and (2.3.74) we have:

Var[X [P]] = n2 x2 α β
(α +β )2 (α +β +1)

+nx2 α β
(α +β )(α +β +1)

(2.3.79)

Finally, for the (unconditional) coefficient of variation, namely the risk index,
after some manipulations we find

CV[X [P]] =

√
Var[X [P]]
E[X [P]]

=

√
β

α (α +β +1)
+

1
n

β (α +β )
α (α +β +1)

(2.3.80)

Hence, we have

lim
n→∞

CV[X [P]] =

√
β

α (α +β +1)
> 0 (2.3.81)

Note that, on the contrary, when no uncertainty is allowed for, the risk index tends
to 0 when the pool size n diverges (see (1.6.14)). In more practical terms, this means
that:

• the process risk (namely, the risk of random fluctuations) is a diversifiable risk,
and the diversification is achieved by increasing the portfolio size;

• the uncertainty risk (namely, the risk of systematic deviations) is an undiversifi-
able risk, as its (relative) magnitude is independent of the portfolio size.

(see also Sect. 2.3.1).

Example 2.3.7. We assume, for the random quantity p̃, the Beta distribution with
the following parameters:
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α = 4; β = 796 (2.3.82)

Hence, from (2.3.65) and (2.3.66), we find:

E[p̃] = 0.005

Var[p̃] = 7.754×10−9

Let us now assume the following parameters

α = 2; β = 398 (2.3.83)

In this case, we have:

E[p̃] = 0.005

Var[p̃] = 3.094×10−8

Note that, while keeping the same expected value, we now have a higher variance,
which clearly expresses a higher degree of uncertainty about the claim probability.

Table 2.3.14 shows the behavior of the risk index, namely CV[X [P]], for various
portfolio sizes n; the cases of no uncertainty (i.e. a fixed value of p) and uncertainty
expressed by the parameters specified by (2.3.82) and (2.3.83) respectively, are con-
sidered. The results are self-evident: the undiversifiable part of the risk clearly ap-
pears when uncertainty is explicitly introduced into the valuations.

Table 2.3.14 The coefficient of variation CV[X [P]]

n p = 0.005 α = 4, β = 796 α = 2, β = 398

10 4.461 4.486 4.511
100 1.411 1.495 1.575

1000 0.446 0.669 0.834
10000 0.141 0.518 0.718

. . . . . . . . . . . .
∞ 0.000 0.498 0.704

�

2.4 Reinsurance: the basics

2.4.1 General aspects

The reinsurance is the traditional risk transfer from an insurer (the cedant) to an-
other insurer (the reinsurer). From a technical point of view, the main aim of the
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reinsurance transfer is to find protection against the portfolio ruin (and the insurer’s
ruin, as well). Further aims of reinsurance will be addressed in Sect. 2.5.4.

The basic idea underlying any reinsurance form (or arrangement) is to split the
portfolio random payment, X [P], as follows:

X [P] = X [ret] +X [ced] (2.4.1)

where:

• the random amount X [ced] is the ceded part of the total payment; this amount will
be paid by the reinsurer to the cedant;

• the random amount X [ret] is the retained part of the total payment, hence it is the
net payment of the cedant.

A reinsurance premium is paid by the cedant to the reinsurer, as the price of the
possible reinsurer’s intervention.

How to define the two terms on the right-hand side of (2.4.1)? The two following
approaches can be adopted.

1. In principle, the simplest way to define the splitting consists in assigning a reten-
tion function Γ, which works at the portfolio level, so that

X [ret] = Γ(X [P]) (2.4.2)

In some cases, the retained payment can also depend on other quantities, e.g. the
total number of claims, K, in the portfolio, thus

X [ret] = Γ(X [P],K) (2.4.3)

Anyway, this approach relies on the definition of the splitting on a portfolio basis,
and then leads to a global reinsurance arrangement.

2. As the random payment is the sum of the payments related to the various risks,
namely X [P] = ∑n

j=1 X ( j), we can split each X ( j) by defining a retention function
γ, so that

X ( j)[ret] = γ(X ( j)) (2.4.4)

Then, the retained total payment is given by

X [ret] =
n

∑
j=1

X ( j)[ret] (2.4.5)

In some cases, a set of retention functions γ( j), j = 1,2, . . . ,n, must be defined,
instead of a single function γ. Anyhow, this approach requires the splitting on an
policy basis, hence leading to an individual reinsurance arrangement.

We now describe an implementation of approach 1. Another implementation of
this approach will be presented in Sect. 2.5.3.
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2.4.2 Stop-loss reinsurance

Stop-loss reinsurance provides a “direct” protection against the portfolio ruin, as
it directly refers to the portfolio total payment. The reinsurer gets the reinsurance
premium Π [reins] and pays the part of X [P] which exceeds a stated amount, Λ , the
stop-loss retention, or priority. The priority is commonly expressed in terms of the
total premium income Π [P] (and usually Λ > Π [P]).

The cedant’s retention and the reinsurer’s payment are then given by:

X [ret] =

{
X [P] if X [P] ≤ Λ
Λ if X [P] > Λ

(2.4.6a)

X [ced] =

{
0 if X [P] ≤ Λ
X [P] −Λ if X [P] > Λ

(2.4.6b)

Figure 2.4.1(a) shows the reinsurer’s intervention.
An upper limit, Θ , to reinsurer’s intervention can be stated. In this case, the

cedant’s retention and the reinsurer’s payment are respectively given by:

X [ret] =

⎧⎪⎨
⎪⎩

X [P] if X [P] ≤ Λ
Λ if Λ < X [P] < Λ +Θ
X [P] −Θ if X [P] ≥ Λ +Θ

(2.4.7a)

X [ced] =

⎧⎪⎨
⎪⎩

0 if X [P] ≤ Λ
X [P] −Λ if Λ < X [P] < Λ +Θ
Θ if X [P] ≥ Λ +Θ

(2.4.7b)

Figure 2.4.1(b) shows the reinsurer’s intervention.

Λ x0 X[P]

X[ced]

x-Λ

(a)

0

X[ced]

X[P]Λ Λ+Θ

Θ

(b)

Fig. 2.4.1 The reinsurer’s payment
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Note that Eqs. (2.4.6) and (2.4.7) constitute two implementations of the general
scheme expressed by Eqs. (2.4.1) and (2.4.2).

When dealing with reinsurance arrangements, the portfolio loss, L, rather than
the portfolio result Z[P], is often referred to. The loss of the cedant is given, in the
absence of reinsurance, by:

L = X [P] −Π [P] (2.4.8)

Clearly, L = −Z[P].
If a stop-loss reinsurance works (without an upper limit, and hence with X [ced]

defined by Eqs. (2.4.6)), the loss, L[SL], is given by:

L[SL] = X [P] −Π [P] +Π [reins] −X [ced] =

{
L+Π [reins] if X [P] ≤ Λ
Λ −Π [P] +Π [reins] if X [P] > Λ

(2.4.9)

(see Fig. 2.4.2). Note that, in the presence of reinsurance, the portfolio outgo also
includes the reinsurance premium, and thus is given by X [P] + Π [reins], whereas the
income is given by Π [P] +X [ced].

L

X[P]

L[SL]

Lo
ss

Λ - Π [P] + Π [reins]

- Π [P] + Π [reins]

- Π [P]

Π [P]0
Λ

Fig. 2.4.2 The cedant’s loss

As the stop-loss reinsurance directly refers to the portfolio loss, it represents in
theory the best solution to portfolio protection. However, in practice, it should be
noted that this reinsurance form implies a potentially dangerous exposure of the
reinsurer, related to the tail of the probability distribution of X [P] (especially if no
upper limit is stated). This means that a very high safety loading should be included
into the premium Π [reins], possibly making this reinsurance cover extremely expen-
sive. Hence, it is mainly used as an ingredient in a reinsurance programme (see
Sect. 2.5.6), after other reinsurance covers have been implemented to protect the
portfolio.
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2.4.3 From portfolios to contracts

We now move to individual reinsurance arrangements, whose parameters are thus
defined at a contract level (rather than a portfolio level), still referring to the “basic”
insurance cover.

A reinsurance policy at a contract level is defined as

a = (a(1),a(2), . . . ,a(n)) (2.4.10)

where a( j) (0 < a( j) ≤ 1) is the share retained of the j-th contract, i.e. the retained
proportion.

For any given reinsurance policy a, relation (2.4.4) becomes:

X ( j)[ret] = a( j) X ( j) =

{
a( j) x( j) in the case of claim

0 otherwise
(2.4.11)

and hence we have:

E[X ( j)[ret]] = a( j)
E[X ( j)] = a( j) P( j) (2.4.12)

Var[X ( j)[ret]] = (a( j))2
Var[X ( j)] ≤ Var[X ( j)] (2.4.13)

where P( j) denotes the equivalence premium (relying on a realistic basis).
Shares of premiums and, hence, safety loadings (namely, expected profits) are

ceded to the reinsurer. For j = 1,2, . . . ,n, let Π ( j)[ret] and m( j)[ret] denote the retained
share of premium (including the safety loading) and safety loading respectively.
Clearly,

m( j)[ret] = Π ( j)[ret] −a( j) P( j) (2.4.14)

In particular, if
Π ( j)[ret] = a( j) Π ( j) (2.4.15)

it follows that
m( j)[ret] = a( j) Π ( j) −a( j) P( j) = a( j) m( j) (2.4.16)

However, the ceded share can be different from (1−a( j))m( j), and, in particular:

• it can be lower, if

– the reinsurer grants a reward to the cedant for the underwriting work (namely,
a reinsurance commission);

– the reinsurer accepts a lower safety loading thanks to a larger portfolio size;

• it can be either lower or higher because the reinsurer adopts a technical basis
different from the one adopted by the ceding company, and hence a different
premium.

Example 2.4.1. Assume that, for the policy 1 in the portfolio, the sum insured is
x(1) = 1000, and the probability of claim (assessed by the cedant) is p(1) = 0.01;
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the safety loading is 10% of the equivalence premium P(1) = 10, and thus m(1) = 1.
Hence, Π (1) = 11. Let a(1) = 0.70 be the retained share of the risk.

First, assume that the reinsurer agrees on the technical basis, i.e. on p(1) = 0.01,
and 10% as the safety loading, and is willing to obtain a proportional share of
the safety loading. Thus, for the ceding company we have m(1)[ret] = 0.7, so that
Π (1)[ret] = 7.7, thus resulting proportional to Π (1) according to the retention share.

Secondly, suppose that the reinsurer still agrees on the technical basis, but is
willing to leave to the cedant a share of the safety loading higher than 70%, say
80%. Hence, we find

Π (1)[ret] = 0.70P(1) +0.80m(1) = 7.8

Finally, assume that the reinsurer does not agree on the technical basis. In partic-
ular, he accepts a safety loading equal to 10% of the equivalence premium, whilst
evaluates the claim probability as p̃(1) = 0.012. Thus, according to the reinsurer’s
judgement, the equivalence premium should be P̃(1) = 12, and the premium includ-
ing the safety loading should be Π̃ (1) = 13.2. If the reinsurer is willing to obtain a
proportional share of Π̃ (1), namely 0.30×13.2 = 3.96, the cedant retains

Π (1)[ret] = Π (1) −0.30Π̃ (1) = 11−3.96 = 7.04

and thus
m(1)[ret] = Π (1)[ret] −0.70P(1) = 7.04−7 = 0.04

�

To assess the effect of reinsurance on the portfolio riskiness, we have to look at
the retained total payment, X [ret], and some related typical values, in particular the
index defined by (2.3.58).

The retained total payment is defined by (2.4.5). Then, we have

E[X [ret]] = E

[
n

∑
j=1

X ( j)[ret]

]
=

n

∑
j=1

a( j) P( j) (2.4.17)

and (assuming the independence among the insured risks)

Var[X [ret]] =
n

∑
j=1

Var[X ( j)[ret]] =
n

∑
j=1

(a( j))2
Var[X ( j)] (2.4.18)

Let σ [ret] denote the standard deviation of the total payment, that is

σ [ret] =
√

Var[X [ret]] (2.4.19)

Further, let m[ret] denote the retained safety loading (and hence the retained expected
profit):
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m[ret] =
n

∑
j=1

m( j)[ret] (2.4.20)

Then, we have:

s[ret] =
m[ret] +M

σ [ret] (2.4.21)

From (2.4.21) we can argue that, in the presence of a reinsurance arrangement,
the probability of default depends on:

• the effect of reinsurance on the variability of the total payout, expressed by σ [ret];
• the retained share of the total expected profit, expressed by m[ret].

Note that, in particular, we have:

m[ret] < m and σ [ret] < σ (2.4.22)

The probability of default, π(m[ret] +M), is then given by:

π(m[ret] +M) = P[X [ret] > P[ret] +m[ret] +M] = 1−Φ

(
m[ret] +M

σ [ret]

)
= 1−Φ(s[ret])

(2.4.23)
(see Eq. (2.3.55))

To quantify the probability of default, and then to determine an appropriate capi-
tal allocation, we need to refer to specific reinsurance policies a = (a(1),a(2), . . . ,a(n)),
and to the rules adopted for splitting the safety loading (see Example 2.4.1 in par-
ticular).

2.4.4 Two reinsurance arrangements

The quota-share reinsurance is defined by the following policy:

a = (a,a, . . . ,a); 0 < a < 1 (2.4.24)

namely, the same retention share is applied to all the individual risks. The effect on
the sums insured is illustrated by Fig. 2.4.3 which shows that, in relative terms, all
the sums insured are reduced in the same proportion.

For the standard deviation of the portfolio payment, we immediately find:

σ [ret] = aσ (2.4.25)

whereas the retained profit is given by

m[ret] = am (2.4.26)

if the reinsurer and the cedant agree on a proportional sharing.
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Fig. 2.4.3 Quota-share reinsurance
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Fig. 2.4.4 Surplus reinsurance

A surplus reinsurance arrangement is defined by the retention, x[ret], in terms of
the sum insured. The amount x[ret] is commonly called the retention line. For the
generic risk, whose sum insured is x( j), the splitting (see (2.4.4)) is determined as
follows:

• the amount min{x( j),x[ret]} is retained;
• the amount max{0,x( j) − x[ret]}, i.e. the surplus, is ceded.

Hence, the reinsurance policy a is defined as follows:

a( j) =
min{x( j),x[ret]}

x( j) = min

{
1,

x[ret]

x( j)

}
; j = 1,2, . . . ,n (2.4.27)

Figure 2.4.4 illustrates the effect of the surplus reinsurance, namely the “leveling”
of sums insured.

Intuitively, a higher efficiency is expected from surplus reinsurance, thanks to the
leveling effect. It is worth recalling (see Sect. 2.3.3, and formula (2.3.17) in partic-
ular) that, as a consequence of a huge sum insured, the diversification via pooling
tends to disappear. Clearly, the surplus reinsurance can mitigate this dangerous ef-
fect, by leveling (at least to some extent) the sums insured. On the contrary, accord-
ing to the quota-share arrangement there is no leveling, as all the sums insured are
reduced in the same proportion.

Remark We note that, comparing the effects of quota-share and surplus reinsurance is, to
some extent, similar to comparing the effects of fixed-percentage deductible and fixed-amount
deductible, discussed in Sect. 1.3.4.
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2.4.5 Examples

We address the following aspects of reinsurance policies, by using numerical exam-
ples:

• first, we discuss the effects of quota-share and surplus reinsurance, in terms of
the retained expected profit, the standard deviation of the portfolio payment, and
the resulting probability of default π(m[ret] + M) (as given by formula (2.4.23));
see Example 2.4.2;

• then, we compare various combinations of surplus reinsurance and capital allo-
cation, in terms of the retained expected profit and the standard deviation of the
portfolio payment, for a fixed level of probability of default; see Example 2.4.3.

Example 2.4.2. We refer to portfolio C, described in Example 2.3.1 (see Table 2.3.3).
We assume what follows:

• safety loading rate m[P]

P[P] = 0.10;
• allocated capital M = 10000;
• retained share of premiums (and hence expected profit) equal to retained share

of sums insured.

Some comments can help in understanding the higher effectiveness of the surplus
reinsurance compared to the quota-share arrangement.

The same amount of retained expected profit, namely m[ret] = 45000, is achieved
with a = 0.90 and x[ret] = 6000; however, in the quota-share reinsurance the standard
deviation is higher (σ [ret] = 38220 versus σ [ret] = 33271), and hence the probability
of default is higher (π(m[ret] +M) = 0.075 versus π(m[ret] +M) = 0.049). A similar
situation holds for a = 0.75 and x[ret] = 3000.

Finally, we note that the same probability of default, π(m[ret] + M) = 0.004, is
achieved in the quota-share with a = 0.157, and the surplus reinsurance with x[ret] =
1500; however, the latter arrangement leaves a much higher expected profit (m[ret] =
33750 versus m[ret] = 7865).

Table 2.4.1 Quota-share reinsurance - Portfolio C

a m[ret] σ [ret] s[ret] π(m[ret] +M)

1.000 50000 42467 1.413 0.079
0.900 45000 38220 1.439 0.075
0.750 37500 31850 1.491 0.068
0.157 7865 6680 2.674 0.004

�

Example 2.4.3. We refer to portfolio B, described in Example 2.3.1 (see Table 2.3.2),
which consists of 10 000 risks, all with x = 1000 as the sum insured and p = 0.005
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Table 2.4.2 Surplus reinsurance - Portfolio C

x[ret] m[ret] σ [ret] s[ret] π(m[ret] +M)

≥ 8000 50000 42467 1.413 0.079
6000 45000 33271 1.653 0.049
5000 42500 28867 1.819 0.034
3000 37500 20864 2.277 0.011
1500 33750 16353 2.675 0.004

as the claim probability. We focus on some combinations of retention line x[ret] and
allocated capital M, leading to the the same probability of default π(m[ret] + M) =
0.005, and hence to the same value s[ret] = 2.5805. Thus,

m[ret] +M

σ [ret] = 2.5805

We assume that the safety loading rate m[P]

P[P] = 0.10 is adopted, which leads to

m[P] = 5000 (see Table 2.3.10). Then, we find:

m[ret] =

⎧⎨
⎩m[P] x[ret]

x
= 5x[ret] for x[ret] < 1000

m[P] = 5000 for x[ret] ≥ 1000

Further, we have:

σ [ret] =
√

10000(x[ret])2 p(1− p) = 100 x[ret]
√

p(1− p) = 7.053 x[ret]

so that we find:
M = 13.2 x[ret]

This formula can be generalized (although referring still to the particular portfolio
structure) as follows

M = κ x[ret] (2.4.28)

where the coefficient κ depends, in particular, on the target probability of default.
Figure 2.4.5 illustrates the linear relation (2.4.28), for various target probabilities.

Table 2.4.3 illustrates the effects of some choices of retention line and capital
allocation (all the combinations leading to the same result in terms of the probability
of default, that is 0.005).
�
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Fig. 2.4.5 Capital allocation versus surplus reinsurance

Table 2.4.3 Capital allocation versus surplus reinsurance - Portfolio B

M x[ret] m[ret] σ [ret]

13200 ≥ 1000 5000 7053
6600 500 2500 3527
2640 200 1000 1411
1320 100 500 705

2.4.6 Optimal reinsurance policy

We consider the following problem: find the reinsurance policy

a = (a(1),a(2), . . . ,a(n))

which implies the lowest probability of default, out of the set of reinsurance policies
leading to the same amount of retained expected profit m[ret]. It is worth noting that
the results reported below hold in general situations, namely are not restricted to the
“basic” insurance cover we have so far addressed.

The problem we are attacking is a problem of constrained optimization. In for-
mal terms, let m̂( j) denote the safety loading of the j-th risk ceded in the case of
zero retention (that is, if a( j) = 0). As seen in Sect. 2.4.3, we can have m̂( j) � m( j).

Assume that, for any value of a( j) (0 ≤ a( j) ≤ 1), the ceded safety loading is
(1−a( j)) m̂( j). Then, we have

m( j)[ret] = m( j) − (1−a( j)) m̂( j) (2.4.29)

and, for the total retained safety loading:

m[ret] = m[P] −
n

∑
j=1

(1−a( j)) m̂( j) (2.4.30)
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Consider the index s[ret], defined by (2.4.21), and the probability of default, given
by (2.4.23). Note that, under the constraint

m[ret] +M = constant (2.4.31)

we have
min

a
{σ [ret]}⇒ max

a
{s[ret]}⇒ min

a
{π(m[ret] +M)} (2.4.32)

where

σ [ret] =

√
n

∑
j=1

(a( j))2 (σ ( j))2 (2.4.33)

with (σ ( j))2 = Var[X ( j)]
Hence, the optimization problem is as follows:

min
a

n

∑
j=1

(a( j))2 (σ ( j))2 (2.4.34)

subject to:⎧⎪⎨
⎪⎩

n

∑
j=1

(1−a( j)) m̂( j) = A

0 ≤ a( j) ≤ 1; j = 1,2, . . . ,n

We note that the optimization problem is parametric, as its solution depends on the
parameter A.

It is possible to prove that the optimal solution is given by:

a( j) = min

{
1, B

m̂( j)

(σ ( j))2

}
(2.4.35)

where the parameter B depends, in particular, on the value assigned to A, and hence
on the amount of ceded expected profit: the lower is the ceded expected profit, the
higher is B and then the retention.

We now return to the “basic” insurance cover, and assume the same claim prob-
ability p for all the n risks. Hence, for j = 1,2, . . . ,n, we have

(σ ( j))2 = (x( j))2 p(1− p) (2.4.36)

Moreover, we assume that, for j = 1,2, . . . ,n, the quantity m̂( j) is proportional to
the sum insured x( j):

m̂( j) = α x( j) (2.4.37)

Note that relation (2.4.37) holds, in particular, if:

1. m( j) = β P( j) = β px( j),
and

2. m̂( j) = m( j).
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From (2.4.35) it follows that

a( j) = min

{
1, B

α
x( j) p(1− p)

}
(2.4.38)

and, in monetary terms:

a( j) x( j) = min

{
x( j), B

α
p(1− p)

}
(2.4.39)

The amount B α
p(1−p) is independent of j, so that we can write:

a( j) x( j) = min
{

x( j),x[ret]
}

(2.4.40)

Hence, the solution of the constrained optimization problem (2.4.34) is given by the
surplus reinsurance.

It is worth noting that, conversely, if a surplus reinsurance arrangement is
adopted, the probability of default is minimized, subject to the loss of expected
profit related to the value of A implied by the retention level x[ret].

2.5 Reinsurance: further aspects

2.5.1 Reinsurance arrangements

Reinsurance arrangements can be classified according to several criteria. In particu-
lar, the classification into global reinsurance arrangements (that is, on a portfolio ba-
sis) and individual arrangements (on a policy basis) has been mentioned in Sect. 2.4
(see also Fig. 2.5.1).

When a reinsurance arrangement is defined on a policy basis, the relevant pa-
rameters concern the individual risks (for example: the share a in the quota-share
reinsurance, the retained line x[ret] in the surplus reinsurance). Another reinsurance
arrangement belonging to this category, the so-called Excess-of-loss reinsurance,
will be described in Sect. 2.5.2.

The parameters of reinsurance arrangements defined on a portfolio basis relate
to quantities concerning the portfolio total payment (for example, the priority Λ and
the upper limit Θ in the stop-loss reinsurance). Another reinsurance arrangement
belonging to this category, the so-called catastrophe reinsurance, will be described
in Sect. 2.5.3.

According to another criterion, reinsurance arrangements can be classified into
proportional and non-proportional arrangements (see Fig. 2.5.1).

In a proportional reinsurance arrangement, claims and premiums are divided be-
tween the cedant and the reinsurer in the ratio of their shares in the reinsurance
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contract. Hence, the sharing of claims is determined when the reinsurance arrange-
ment is defined. Quota-share and surplus reinsurance belong to this category.

In a non-proportional reinsurance arrangement, the rule for the sharing of claims
is stated when the reinsurance contract is defined, but the actual sharing of claims is
determined depending on the severity of each claim, or the number of claims in the
portfolio, or the total portfolio payment. Examples are given by the stop-loss, the
catastrophe and the XL reinsurance.
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Le
ve

l 

P
O

LI
C

Y
 

P
O

R
T

F
O

LI
O

 

Quota-share 
 

Surplus 
Excess-of-loss  (XL) 

Stop-loss 
 

Catastrophe 

Fig. 2.5.1 Reinsurance arrangements

2.5.2 Random claim sizes. XL reinsurance

Other features of the reinsurance arrangements we have already dealt with, namely
quota-share and surplus reinsurance, emerge when moving to individual risks more
general than those related to the basic insurance cover, in particular by allowing for
random claim sizes. For example, we can refer to risks described as Cases 3d (A fire
in a factory) and 3e (Car driver’s liability) in Sect. 1.2.4. Further, the specific role of
the Excess-of-Loss reinsurance emerges if we allow for random claim sizes.

Let us refer to the j-th risk in the portfolio. An example of the (continuous) prob-

ability distribution of the generic k-th claim, X ( j)
k , is provided, in terms of the related

density function, by Fig. 2.5.2; x( j)
max represents the maximum possible outcome.

In a quota-share arrangement, with retention share a for all the risks in the port-
folio, the retained amount is defined as follows:

X ( j)[ret]
k = aX ( j)

k (2.5.1)

In a surplus reinsurance, with x[ret] as the retained line, we have:
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Fig. 2.5.2 Probability density of the random payment in a claim

X ( j)[ret]
k =

x[ret]

x( j)
max

X ( j)
k (2.5.2)

We note that, while in a quota-share arrangement the retained share is trivially
equal to a for all the risks in the portfolio, according to the surplus reinsurance the

retained share is x[ret]

x( j)
max

, and hence depends on x( j)
max which is specific to each insured

risk.
The retention and the reinsurer’s intervention in the Excess-of-Loss reinsurance

(briefly, XL reinsurance) are defined as follows:

X ( j)[ret]
k = min{X ( j)

k ,Λ} (2.5.3a)

X ( j)[ced]
k = max{X ( j)

k −Λ ,0} (2.5.3b)

where Λ denotes the deductible. The analogy with the deductible in a generic risk
transfer is apparent (see Sect. 1.3.4, and Eqs. (1.3.4)).

We note that, in this simple XL arrangement, the reinsurer pays the whole amount
beyond the deductible, net of the deductible itself, namely no upper-limit has been

stated. The retained share decreases as the claim size X ( j)
k increases; see Fig. 2.5.3.

Indeed, from (2.5.3a) we have:

X ( j)[ret]
k

X ( j)
k

= min

{
1,

Λ

X ( j)
k

}
(2.5.4)

Assume, conversely, that the upper limit of the reinsurance cover is set to hΛ
(with h an integer number, h ≥ 2). For a generic claim with random size X ( j)

k , pos-
sible situations are as follows:

1. if X ( j)
k ≤ Λ , then the insurer totally retains the claim amount;

2. if Λ < X ( j)
k ≤ hΛ , then the XL cover exhausts the cession;
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Fig. 2.5.3 The retained payment of the cedant in XL reinsurance (no upper limit)

3. if X ( j)
k > hΛ , then the insurer has still to cede X ( j)

k − hΛ , through a second XL
cover (or possibly more XL covers), with another reinsurer (or even with the first
reinsurer, however according to a technical basis usually different from the one
used in the first cover).

Hence, the cession is split into two (or more) layers: the first layer covers the interval

(Λ ,hΛ), whereas the interval (hΛ ,X ( j)
k ) can be covered by a further XL reinsurance

(or more than one XL). See Fig. 2.5.4, where it has been assumed h = 3.

2.5.3 Catastrophe reinsurance

The Catastrophe reinsurance (briefly, Cat-XL) is a non-proportional reinsurance
arrangement, at a portfolio level. Its aim is to protect the portfolio (and the insurance
company) against the risk that a single accident (that is, a “catastrophe”) causes a
huge number of claims in the portfolio itself. For example:

• in a generic portfolio, a high number of claims can occur because of a disaster
(hurricane, earthquake, and so on);

• in “a group insurance”, a number of insureds can suffer body injuries owing
to a single accident in the workplace (explosion, fire, collapse, and so on); see,
for example, Cases 3b (Disability benefits; one-year period) and 3c (Disability
benefits; multi-year period) in Sect. 1.7.2.
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Fig. 2.5.4 Layering in XL reinsurance

A catastrophe is usually defined in term of a given (minimum) number of claims,
c, within a time interval of a given (maximum) duration, for example 48 hours. In
formal terms, let K denote the random number of claims, X the consequent total
payment (before reinsurer’s intervention); the reinsurer will intervene only if K ≥ c.

There are various definitions of the Cat XL structure. We just focus on the two
following definitions.

First, the Cat XL arrangement can be defined on a claim-number basis. Let k[ret]

denote the deductible in terms of number of claims. Then, the cedant’s retention and
the reinsurer’s intervention are respectively given by:

X [ret] = min

{
X ,

k[ret]

K
X

}
(2.5.5a)

X [ced] = max

{
0,

K − k[ret]

K
X

}
(2.5.5b)

Note that, according to this definition, if X is large then X [ret] is large. Thus,
the reinsurance arrangement is effective if individual claims have approximately
the same amount, and hence the total payment X mainly depends on the number
of claims. Otherwise, effectiveness can be gained via a preliminary surplus or XL
reinsurance.

Another definition of the Cat XL arrangement is based on the amount X of the
total payment. Let x[ret] denote the deductible (in monetary terms). Then:
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X [ret] = min{X ,x[ret]} (2.5.6a)

X [ced] = max{X − x[ret],0} (2.5.6b)

Example 2.5.1. Consider the Cat XL reinsurance defined by Eqs. (2.5.5), with c = 5,
and k[ret] = 8. According to the outcome of the number of claims, K, we have the
following situations:

K =

no cat︷ ︸︸ ︷
1,2,3,4, 5,6,7,8,︸ ︷︷ ︸
no reinsurer’s intervention

9,10,11, . . .︸ ︷︷ ︸
reinsurer’s intervention

Move to the Cat XL arrangement defined by Eqs. (2.5.6), still with c = 5, and with
x[ret] = 1200. Then, we have

K =

no cat︷ ︸︸ ︷
1,2,3,4, 5,6,7,8,9,10,11, . . .︸ ︷︷ ︸

possible reinsurer’s intervention, depending on X

Consider the following cases:

(a) K = 10, X = 1000;
(b) K = 10, X = 5000.

In case (a), according to the first Cat XL arrangement we have:

X [ret] =
8
10

1000 = 800, X [ced] =
2
10

1000 = 200

whereas the second arrangement yields:

X [ret] = 1000, X [ced] = 0

In case (b), the first arrangement leads to:

X [ret] =
8
10

5000 = 4000, X [ced] =
2
10

5000 = 1000

while the second yields

X [ret] = 1200, X [ced] = 3800

�

2.5.4 Purposes of reinsurance

Although, from a strictly actuarial point of view, it is apparent that reinsurance ar-
rangements aim to keep the portfolio riskiness at a level acceptable by the insurance
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company, resorting to reinsurance can have various purposes. Some considerations
follow.

1. As regards the reduction of the portfolio riskiness, it should be noted that reinsur-
ance arrangements mainly aim at reducing the impact of random fluctuations and
catastrophic events. In fact, the reinsurance company is willing to take the ceded
risks as it can achieve a higher pooling effect and an improved diversification
of risks (see Sect. 2.3.1). From the point of view of the cedant, more insurance
implies:

• a lower capital allocation;
• an increased underwriting capacity.

Conversely, risks affected by possible systematic deviations could be rejected by
reinsurers, as these deviations affect the pool as an aggregate, and the total impact
on portfolio results increases as the portfolio size increases. Notwithstanding, the
reinsurer can take the risk of systematic deviations, with the proviso that a further
transfer of this risk can be worked out. We will address this issue in Sect. 2.6.

2. The cedant company can benefit from technical advise provided by the reinsurer.
In particular:

• the reinsurer, thanks to specific experience, can suggest statistical bases and
inform about market features for new insurance products;

• as regards in-force portfolios, the reinsurer can provide the cedant with an
update of statistical bases (which is more effective if a quota-share arrange-
ment works, as this allows the reinsurer to monitor all claims pertaining to the
reinsured portfolio).

3. Reinsurance can have a “financing” role, thanks to a sharing of policy and port-
folio expenses between the cedant and the reinsurer.

2.5.5 Insurance-reinsurance networks

Figure 2.5.5 illustrates an insurance-reinsurance network. Following the paths
marked by solid arrows, we firstly find an example of direct insurance (or primary
insurance): insurer X directly takes risks from clients A1, A2, . . . , An. Hence, X
works in the insurance market. Then, we find examples of cession: insurer X cedes
risks to Y and Z; for example, policies implying a huge exposure are only partially
accepted by Y, so that the residual portions are ceded to Z. Thus, companies Y and
Z provide company X with reinsurance. Finally, company Y cedes to W part of the
risks taken from X; this reinsurance transaction is called retrocession.

Further examples can be found following the paths marked by dashed arrows.
First, we find another example of direct insurance: insurer Y directly takes risks
from clients B1, B2, . . . , Bm. Note that company Y works both in primary insurance
and in reinsurance as well, as it takes risks ceded by company X. The relationship
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between X and Y is twofold, as Y also cedes risks to company Y. Finally, we note
that companies X and Y share a risk ceded by client B1, and this constitutes an
example of coinsurance.

. . . . .

Insured  A2Insured  A1 Insured  An. . . . .

Insured  B1

Insured  B2

Insured  Bm

Company X

Company ZCompany Y

Company W

Fig. 2.5.5 Insurance, coinsurance, and reinsurance: a network

Reinsurance arrangements can be stated on various bases, for the cedant and the
reinsurer respectively:

1. facultative / facultative (briefly, facultative);
2. obligatory / obligatory (briefly, obligatory);
3. facultative / obligatory (briefly, facob).

In arrangement type 1, an insurer can cede a risk to an insurer, and the reinsurer
can accept the risk itself. Usually, this arrangement concerns the cession of single
risks, in particular those involving huge exposures.

Types 2 and 3 require that a reinsurance contract, usually called a treaty, has been
written by the cedant and the reinsurer. In particular, in an arrangement of type 2 the
insurer is obliged to cede portions (as defined in the treaty) of the risks underwritten,
and the reinsurer is obliged to accept them. In type 3, the insurer can decide to cede
risks and, if so, the reinsurer is obliged to take them.

2.5.6 Reinsurance treaties. Reinsurance programmes

A reinsurance treaty concerns all the aspects of a reinsurance arrangement, in par-
ticular:

• the time interval of the reinsurance cover;
• the reinsurance form (stop-loss, quota-share, XL, and so on);
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• the limitations of the reinsurance cover (priority, upper limit, deductibles, reten-
tion lines, and so on);

• the technical bases for the calculation of the reinsurance premiums, and the con-
ditions concerning the premium payment.

Limitations to a reinsurance cover can be classified into “vertical” and “horizon-
tal” limitations. Horizontal limitations refer to the total reinsurer’s payment related
to the cover interval; an example is provided by the upper limit in the stop-loss
reinsurance (see Sect. 2.4.2).

Vertical limitations concern the reinsurer’s payment related either to each single
claim or to each single policy. An example of vertical limitations concerning each
single claim is provided by the layering in the XL arrangement (see Sect. 2.5.2).

A reinsurance programme combines several reinsurance treaties, possibly sup-
plemented by facultative reinsurance when needed (for example, in relation to sin-
gle huge exposures), and can involve various reinsurers. Resorting to reinsurance
programmes is more common in non-life insurance, because of the random size of
the claims and, hence, the higher riskiness.

Usually, reinsurance programmes are designed on a class-by-class basis, namely
separate reinsurance programmes concern, for example, fire insurance, third party
liability, domestic property, and so on. Notwithstanding, reinsurance programmes
can include special treaties arranged to cover risks, although belonging to various
classes, in specific geographic areas, for example exposed to the risk of hurricanes,
or earthquakes.

GROSS 
CLAIM 

SURPLUS QUOTA-SHARE 
(50%) 

RETENTION 
NET OF  

la
ye

r 

Fig. 2.5.6 Applying a reinsurance programme; effects at policy level

Applying a reinsurance programme to each individual risk within a portfolio de-
termines a progressive reduction of the cedant’s exposure, and hence of the default
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probability. Figure 2.5.6 illustrates the effect, at a policy level, of a surplus reinsur-
ance followed by a quota-share reinsurance. Figure 2.5.7, conversely, illustrates the
effects on the portfolio exposure, for which a stop-loss arrangement supplements
the proportional reinsurance covers. At a portfolio level, a reinsurance programme
can be formally represented by a sequence of m mathematical operators, each one
corresponding to a reinsurance form:

X [ret] = fm

[
. . . f3

[
f2
[

f1[X (1),X (2), . . . ,X (n)]
]]]

(2.5.7)

policy 1 

policy 2 

policy 3 

GROSS 
CLAIM 

SURPLUS QUOTA- 
SHARE 

Portfolio
payment 

NET OF  

SURPLUS 
& QUOTA-SHARE 

STOP-LOSS 

Fig. 2.5.7 Applying a reinsurance programme; effects at portfolio level

Combining quota-share and surplus arrangements provides basic examples of
reinsurance programmes. Assume the retention share a for the quota-share, and the
retention line x[ret] for the surplus. We have, for the j-th risk, the following results:

• a quota-share “followed” by a surplus reinsurance leads to the retention

x( j)[ret1] = min{ax( j),x[ret]} (2.5.8)

• a surplus “followed” by a quota-share leads to the retention

x( j)[ret2] = a min{x( j),x[ret]} (2.5.9)
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2.6 Alternative risk transfers

2.6.1 Some preliminary ideas

The (traditional) insurance - reinsurance process can be split into two basic steps
(see Fig. 2.6.1):

1. the insurance step, which consists in transferring risks from individuals (families,
firms, institutions, and so on) to an insurance company, and whose effects are

a. building-up a pool;
b. reducing the relative riskiness (caused by random fluctuations);

2. the reinsurance step, which consists in transferring risks from the insurance com-
pany (the cedant) to the reinsurer, and whose effects are

a. building-up larger pools;
b. a further reduction of the relative riskiness (caused by random fluctuations).

? 

Individual 
risks 

Insurers: 
pools  
of risks 

Reinsurers: 
larger pools 
of risks 

Insurance Reinsurance 

TRADITIONAL RISK TRANSFERS
ALTERNATIVE  
RISK  
TRANSFERS 

Fig. 2.6.1 The insurance-reinsurance process

However, risk components other than random fluctuations can affect insurers’
and reinsurers’ results, namely systematic deviations and catastrophic events. As
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regards the latter, larger pools can improve diversification, for instance thanks to
an increased variety of geographical locations of insured risks. As regards the for-
mer, the relative impact of systematic deviations is independent of the pool size
(and the absolute impact increases as the pool size increases). Thus, risk transfer
arrangements other than the traditional reinsurance, namely Alternative Risk Trans-
fers (ART),

• are needed for transferring (at least to some extent) the risk of systematic devia-
tions;

• can help in managing the catastrophe risk (lowering the cost of reinsurance, and
/ or the need for capital allocation).

In the following sections we will focus on ART in life insurance and reinsurance.

2.6.2 Securitization and the role of capital markets

Securitization consists in packaging a pool of assets or, more generally, a cash-flow
stream into securities traded on the market. The aims of a securitization transaction
can be:

• to raise liquidity by selling future flows (such as recovery of acquisition costs or
expected profits);

• to transfer risks whenever contingent payments or random cash-flows are in-
volved.

Since new securities are issued, a counter-party risk arises for the investor (see be-
low).

The organizational aspects of a securitization transaction are rather complex. Fig-
ure 2.6.2 sketches a simple design for a life insurance deal, focussing on the main
agents involved. The transaction starts in the insurance market, where policies un-
derwritten give rise to the cash-flows which are securitized (at least in part). The
insurer then sells the right to some cash-flows to a Special Purpose Vehicle (SPV),
which is a financial entity established to link the insurer to the capital market. Secu-
rities backed by the chosen cash-flows are issued by the SPV, which raises money
from the capital market. Such funds are (at least partially) acknowledged to the in-
surer.

According to the specific features of the transaction, further items may be added
to the structure. For example, a fixed interest rate could be paid to investors, so that
intervention by a Swap counter-party is required; see Fig. 2.6.3.

As it has been pointed out above, some counterpart risk is originated by the se-
curitization transaction. This is due to a possible default of the insurer with respect
to the obligations assumed against the SPV, as well as of policyholders in respect
of the insurer, for example in the form of lapses which affect the securitized cash-
flow stream. To reduce such default risks, some form of credit enhancement may be
introduced, both internal (e.g. transferring to the SPV a higher value of cash-flows
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Fig. 2.6.2 The securitization process in life insurance: a basic structure

than those required by the actual size of the securities) and external, through inter-
vention of a specific entity (issuing, for example, credit insurance, letters of credit,
and so on); see again Fig. 2.6.3. Further counterpart risk emerges from the other par-
ties involved, similarly to any financial transaction. Note that intervention by a third
financial institution may anyhow result in an increase of the rating of the securities.
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Fig. 2.6.3 The securitization process in life insurance: a more complex structure

Further details of the securitization transaction concern services for payments
provided by external bodies, investment banks trading the securities on the market,
and so on. Since we are interested on the main technical aspects of the securitization
process, we do not go deeper into these topics (which, anyhow, do play an important
role for the success of the overall transaction).
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2.6.3 An example: the mortality bonds

Mortality-linked securities are securities whose pay-off is contingent on mortality
in a given reference population; this is obtained, in particular, by embedding some
derivatives whose underlying is a mortality index assessed on the given population.
These securities may serve two opposite purposes: to hedge mortality higher than
expected, or survivorship higher than expected. In the former case, we will refer to
them as mortality bonds, in the latter as longevity bonds. We restrict the terminology
to “bond”, without making explicit reference (in the name) to the derivative which
is included in the security (which could be option-like, swap-like or other) because
we are more interested on hedging opportunities rather than on the organizational
aspects of the deal (of course, we are anyhow aware of the importance that such
aspects play from a practical point of view, but their discussion goes beyond the aim
of this Section).

The purpose of mortality bonds is to provide liquidity in the case of mortality
in excess of what expected, possibly owing to epidemics or natural disasters. So
typically a short position on the bond may hedge liabilities of an insurer/reinsurer
dealing with life insurances. Mortality bonds are typically short term (3-5 years) and
they are linked to a mortality index expressing the frequency of death observed in
the reference population in a given period. Some thresholds are set at bond issue. If
the mortality index outperforms a threshold, then either the principal or the coupon
are reduced.

We now describe some possible structures for mortality bonds. In what follows,
0 is the time of issue of the bond and T its maturity. Further, St denotes the principal
of the bond at time t, and Ct the coupon due at time t. Finally, with It we denote
the mortality index at time t years from bond issue (t = 0,1, . . . ,T ). Some examples
will be provided in Example 2.6.1 and 2.6.2.

Example 2.6.1. The bond aims at protecting against high mortality experienced
throughout the whole lifetime of the bond itself. This is obtained by reducing the
principal at maturity. Albeit just some ages could be considered in detecting situa-
tions of high mortality, it is reasonable to address a range of ages. Further, the index
should account for mortality over the whole lifetime of the bond. So the following
quantities represent possible examples of mortality index:

IT = max
t=1,2,...,T

{q(t)} (2.6.1)

IT = ∑T
t=1 q(t)

T
(2.6.2)

where q(t) is the observed annual mortality rate averaged over the reference popu-
lation in year t.

At maturity the principal paid-back to investors is
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ST = S0 ×

⎧⎪⎨
⎪⎩

1 if IT ≤ λ ′ I0

Φ(IT ) if λ ′ I0 < IT ≤ λ ′′ I0

0 if IT > λ ′′ I0

(2.6.3)

where I0 = q(0), λ ′ and λ ′′ are two parameters (stated under bond conditions), with
1 ≤ λ ′ < λ ′′, and Φ(IT ) is a proper decreasing function, such that Φ(λ ′ I0) = 1 and
Φ(λ ′′ I0) = 0. For example

Φ(IT ) =
λ ′′ I0 − IT

(λ ′′ −λ ′) I0
(2.6.4)

The coupon is independent of the experienced mortality. In particular, it can be given
by

Ct = S0 (it + r) (2.6.5)

where it is the market interest rate at time t, and r is an extra-yield rewarding in-
vestors for taking the mortality risk.
�

While the cash-flows related to the bond described in Example 2.6.1 try to match
the flows in the life insurance portfolio just at the end of a period of some years, an
alternative design of the mortality bond can be conceived to provide a match on a
yearly basis.

Example 2.6.2. Assume that the coupon is given by

Ct = S0 ×

⎧⎪⎨
⎪⎩

it + r if It ≤ Λ ′
t

(it + r)Ψ(It) if Λ ′
t < It ≤ Λ ′′

t

0 if It > Λ ′′
t

(2.6.6)

where Λ ′
t , Λ ′′

t set two mortality thresholds. For example,

Λ ′
t = λ ′

E[Dt ] (2.6.7)

Λ ′′
t = λ ′′

E[Dt ] (2.6.8)

where 1 ≤ λ ′ < λ ′′, and E[Dt ] is the expected number of deaths in the reference
population (according to a specified mortality assumption). In this structure, the
mortality index It should express the number of deaths in year (t−1, t). The function
Ψ(It) should then be decreasing; for example:

Ψ(It) =
Λ ′′

t − It
Λ ′′

t −Λ ′
t

(2.6.9)

As in (2.6.5), the rate r in (2.6.6) is the extra-yield rewarding investors for the
mortality risk inherent in the pay-off of the bond. Note that, in this structure, the
principal at maturity can be assumed independent of the experienced mortality, for
example
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ST = S0 (2.6.10)

�

2.7 The time dimension

2.7.1 General aspects

Insurance contracts with durations longer than one year have been addressed in
Chap. 1; see, for example, Cases 4a (The need for resources at retirement), and 4b
(Early death of an individual) in Sect. 1.7.4. Nonetheless, in the present Chapter, for
the sake of simplicity, we have mainly focussed on one-year insurance covers; see,
for example, Sects. 2.3 and 2.4, in which the “basic” insurance cover, namely the
Case 2 (Possible loss with fixed amount), has been referred to.

However, a one-year (or, more in general, a one-period) insight of the manage-
ment of an insurance portfolio, whatever the policy term, can provide us just with
a static perspective. Conversely, a number of problems of practical interest can be
properly defined and solved only allowing for a sequence of periods, that is, accord-
ing to a dynamic perspective. The evolution throughout time of the portfolio fund,
which originates from premium income and claim payment, and the related capi-
tal allocation policies constitute important examples of a perspective involving the
“time dimension”.

When defining a multi-period analysis of a portfolio (or an insurance company),
various approaches are available. For simplicity, we assume that all the policies in
the portfolio have the same policy term r. In Figs. 2.7.1 to 2.7.3 various policy
generations are represented with the aid of a coordinate system that has the calendar
time as abscissa and the duration as ordinate. The solid part of each line represents
the part of the related generation accounted for according to the various approaches.

A run-off analysis only addresses the “in-force” portfolio, namely the policies
already written. Thus, the portfolio is assumed to be “closed” to new entries, and
hence no future business is accounted for. See Fig. 2.7.1.

Conversely, according to a going-concern approach the portfolio is assumed
“open”, and hence also future business is allowed for. See Fig. 2.7.2. Of course,
such an approach requires an estimate of the numbers of policies written in the fu-
ture years.

The break-up (or wind-up) approach, on the contrary, consists in analyzing the
insurer’s capability of meeting all the obligations assuming that the insurance com-
pany has to stop all business within a very short period (say, one year). Figure 2.7.3
refers to this approach.
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2.7.2 Premiums, payments, portfolio fund

Consider a portfolio consisting of n one-year policies providing the “basic” insur-
ance cover, namely the cover related to Case 2 (Possible loss with fixed amount).
According to a going-concern approach, we assume a time horizon of T years.

As regards the first year, let Π [P]
0 denote the premium income (including safety

loading) at the beginning of the year, i.e. at time 0. Such amount is assumed to be

known. Further, let X [P]
1 denote the total random payment, that is

X [P]
1 =

n

∑
j=1

X ( j) (2.7.1)

We assume that, at the beginning of each future year, the insurer underwrites new
policies, which constitute a generation of the same type of the first one (possibly,
however, with a variable size).

So, we generalize the one-year portfolio model by defining, for t = 1,2, . . . ,T ,
the following quantities:

Π [P]
t−1 = premium income at time t −1, i.e. at the beginning of year t

X [P]
t = total payment in year t

The annual portfolio result, Z[P]
t , referred at the end of the year, can be defined as

follows:

• if we disregard the time-value of the money, we have

Z[P]
t = Π [P]

t−1 −X [P]
t (2.7.2)

• conversely, if we assume that all the claims are paid at the end of the year of
occurrence, and that i is the yield on investment, we have

Z[P]
t = Π [P]

t−1 (1+ i)−X [P]
t (2.7.3)

According to the second assumption, the portfolio fund (or surplus), F [P]
t ,

t = 1,2, . . . , is defined as follows:

F [P]
t =

t

∑
h=1

Z[P]
h (1+ i)t−h =

t−1

∑
h=0

Π [P]
h (1+ i)t−h −

t

∑
h=1

X [P]
h (1+ i)t−h (2.7.4)

With the (provisional) assumption

F [P]
0 = 0 (2.7.5)

we then find:
F [P]

t = F [P]
t−1 (1+ i)+Z[P]

t ; t = 1,2, . . . (2.7.6)
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namely

F [P]
t = (F [P]

t−1 +Π [P]
t−1)(1+ i)−X [P]

t ; t = 1,2, . . . (2.7.7)

From recursion (2.7.6), it clearly appears that, as regards the annual results, the

hypothesis underlying the definition of F [P]
t is the accumulation of profits (and pos-

sibly losses) in the portfolio fund.
If the portfolio fund takes, for some t, a negative value, a default (or ruin) situa-

tion occurs. To lower the probability of such an event, shareholders’ capital should
be allocated to the portfolio, in particular at time t = 0. If M0 denotes the (initial)
allocation, the portfolio fund process must be redefined as follows:

F [P]
t = M0 (1+ i)t +

t

∑
h=1

Z[P]
h (1+ i)t−h (2.7.8)

which implies

F [P]
0 = M0 (2.7.9)

in recursions (2.7.6) and (2.7.7).

2.7.3 Solvency and capital requirements

As seen in Sect. 2.3.7, the insurer’s solvency should be meant in a probabilistic
sense, namely as the capability of meeting, with an assigned (high) probability, the
random payments as described by a probabilistic model (which specifies the claim
probability and, as regards more general insurance covers, the probability distribu-
tion of the claim size, interest rates, expenses, and so on).

The following quantities must be stated:

• the probability of meeting the random payments (say 0.99, or 0.995, . . . );
• the quantity representing the insurer’s solvency level; for example, the portfolio

fund F [P]
t can be addressed; if, at time t, we have F [P]

t < 0, then the portfolio is in
the default state;

• the time horizon which the concept of solvency is referred to (say 2 years, or 5
years, . . . ).

Note that the time horizon must be chosen, as we are working in a multi-year frame-
work.

In formal terms, the following equation expresses the solvency requirement,

when the fund F [P]
t is addressed to check the solvency:

P[F [P]
1 ≥ 0∩F [P]

2 ≥ 0∩·· ·∩F [P]
T ≥ 0] = 1−α (2.7.10)

where 1−α denotes the stated probability of meeting the random payments (and
hence α denotes the accepted default probability).
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In order to achieve the stated probability 1−α , Eq. (2.7.10) has to be solved with

respect to M0, which enters the definition of the portfolio fund F [P]
t via Eq. (2.7.8).

The following equation represents an alternative solvency requirement:

P[F [P]
T ≥ 0] = 1−α (2.7.11)

For a given probability α , Eq. (2.7.11) expresses a requirement weaker than that
expressed by (2.7.10) (trivially, if T > 1). Note, however, that temporary negative

values of the portfolio fund F [P]
t are feasible only if capital outside the portfolio

is available and can be used for an immediate reinstatement of the fund. Thus, re-
quirement (2.7.11) should not be adopted when referring to the whole insurance
company.

Remark Solvency concepts described above generalize ideas presented in Sect. 2.3.7, referring
to the one-period model. In particular, we note that, given the expression (2.7.8), requirements
expressed by (2.7.10) and (2.7.11) can be interpreted as generalizations of the solvency requirement
(2.3.59).

To achieve a required degree of solvency 1−α , Eq. (2.7.10), or (2.7.11) must be
solved with respect to capital allocation M0. In practice, numerical methods based
on Montecarlo simulation must be adopted to solve those equations. The simula-

tion procedure consists in generating a sample of paths of F [P]
t , for t = 1,2, . . . ,T .

Then, the probability P[F [P]
1 ≥ 0∩F [P]

2 ≥ 0∩·· ·∩F [P]
T ≥ 0] can be estimated via the

sample frequency

number of paths with F [P]
t ≥ 0 for t = 0,1, . . . ,T

number of simulations
(2.7.12)

whereas the probability P[F [P]
T ≥ 0] can be estimated via

number of paths with F [P]
T ≥ 0

number of simulations
(2.7.13)

Example 2.7.1. We refer to a portfolio initially consisting of n = 10000 one-year
policies, all with sum insured x = 1000, and claim probability p = 0.005. Assum-

ing a safety loading rate equal to 10%, we have a premium income Π [P]
0 = 55000.

Further, we assume a time horizon of T = 5 years, and suppose that at the beginning
of each future year a new generation, with the same size and structure of the first one,
enters the portfolio. Finally, we assume an initial capital allocation M0 = 10000.

Figure 2.7.4 illustrates 50 paths of the portfolio fund. It has been assumed that
times of claim occurrence and payment are uniformly distributed over each year.
Time-value of the money has been disregarded (that is, setting i = 0). Moreover, the

construction of the statistical distribution of the portfolio fund F [P]
5 , relying on the

simulated paths, is sketched.



2.7 The time dimension 133

-20000

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5

Fig. 2.7.4 50 paths of the portfolio fund

Finally, Figs. 2.7.5 and 2.7.6 show the statistical distribution of the fund F [P]
1 and

F [P]
5 respectively. In particular, it is interesting to note the higher dispersion of the

fund at time t = 5. Further, both statistical distributions reveal a positive frequency
of negative values of the portfolio fund. Clearly, risk management actions should be
taken (e.g. a higher capital allocation) if these frequencies seem to be to high.
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Fig. 2.7.5 Statistical distribution of F [P]
1

(5000 simulations)
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Fig. 2.7.6 Statistical distribution of F [P]
5

(5000 simulations)

�

Example 2.7.2. To provide an example of capital allocation effects on the solvency
degree, we still refer to the portfolio described in Example 2.7.1. Table 2.7.1 shows

some probabilities related to the behavior of the portfolio fund F [P]
t . Of course, all
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the probabilities depend on the initial capital allocation M0, and, in particular, in-
crease as M0 increases.

If we choose, according to the criterion expressed by Eq. (2.7.11), a solvency de-
gree 1 − α = 0.99, the required capital allocation is M0 = 10000: indeed

P[F [P]
5 ≥ 0]≈ 0.99. Conversely, this allocation implies a lower solvency degree if the

criterion expressed by (2.7.10) is adopted: in fact, we find

P[F [P]
1 ≥ 0∩F [P]

2 ≥ 0∩·· ·∩F [P]
5 ≥ 0] ≈ 0.95.

Table 2.7.1 Probabilities concerning the non-negativity of the portfolio fund

M0 P[F [P]
1 ≥ 0] P[F [P]

5 ≥ 0] P[F [P]
1 ≥ 0∩·· ·∩F [P]

5 ≥ 0]

0 0.7844 0.9454 0.6954
5000 0.9264 0.9710 0.8606

10000 0.9848 0.9894 0.9518
14000 0.9970 0.9928 0.9788

Finally, we note that if M0 is equal to 0, or anyhow is small, compensations

among period results are possible, as we can realize by comparing P[F [P]
1 ≥ 0] to

P[F [P]
5 ≥ 0].

�

2.7.4 Generalizing the model

The model described above can be generalized in various ways. We just outline
some ideas. For example, we can assume that:

1. policies are issued throughout each year according to a time-uniform stream; this
implies a time-continuous premium income; the premium income cumulated up
to time t, Π [P](t), is given by

Π [P](t) = Π [P] t (2.7.14)

where Π [P] denotes the annual income, assumed constant over time;
2. each (one-year) policy can claim more times over the year;
3. each claim has a random size.

Note that, thanks to assumptions 2 and 3 a more realistic representation of claims
in a portfolio is achieved. In the time-continuous setting, it is usual to define, for any
real t (t ≥ 0), the following quantities:

K(t) = number of claims up to time t
X [P](t) = total payment cumulated up to time t



2.7 The time dimension 135

The quantity K(t), as a function of t, is called the claim number process, whereas
X [P](t) is called the aggregate claim process (see Figs. 2.7.7 and 2.7.8).

If we disregard the time-value of the money (namely, if we assume i = 0), the
portfolio fund process, F [P](t), can be defined as follows:

F [P](t) = M0 +Π [P](t)−X [P](t) (2.7.15)

(see Fig. 2.7.9).
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Fig. 2.7.8 The aggregate claim process

2.7.5 Solvency and capital flows

Also capital allocation strategies, aiming at solvency, can be redesigned in a more
general context. We still assume that the amount M0 represents the initial capital al-
location. Then, we assume that capital flows can take place in various anniversaries,
with the following purposes:
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Fig. 2.7.9 The portfolio fund process

• to protect the portfolio against possible default (see Figs. 2.7.10 and 2.7.11);
• to release capital exceeding a reasonable solvency target (see Fig. 2.7.12).
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Fig. 2.7.10 Portfolio fund process incurring in default

Note that this more general setting can be properly represented in terms of a
barrier model: the two barriers provide thresholds which suggest capital release
and, respectively, capital allocation to reinstate the portfolio solvency.

Remark Simulations of real-world portfolios require a significant computation time, especially
when a multi-year framework is involved. Hence, alternative approaches leading to feasible for-
mulae, which can approximate the relevant results, can be very useful in insurance practice. In par-
ticular, the so-called short-cut formulae express the required capital, for example M0, as a function
of some known quantities (e.g. the total amount of insured benefits, the total amount of premiums,
etc.) and a set of parameters which should reflect the risk profile of the portfolio (or the insurance
company). Formulae of this type are proposed, for instance, by the supervisory authorities.
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Fig. 2.7.12 Portfolio fund process with capital flows according to a “barrier” model

2.8 References and suggestions for further reading

Also in this Section, as in Sect. 1.8, we only cite textbooks dealing with general
aspects of risks and insurance. Studies specifically devoted to non-life insurance,
life insurance and post-retirement solutions will be cited in the relevant sections of
the following chapters.

Chapters 6, 9 and 15 in [4] focus on managing risks, the need for capital and
solvency issues, respectively.

The textbook [9] deals with various technical and financial aspects of life and
non-life insurance and pension funds. All the important topics of risk theory are
presented in [17], which provides a significant bridge between theory and insurance
practice.

Quantitative tools, and in particular statistical models, used in non-life insurance
are described in [33].
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The object of [13] is to explain the fundamental principles and practice of non-
life reinsurance. A more technical presentation of reinsurance issues is provided by
[17].

The transfer of risks to capital markets via insurance-linked securities is dealt
with by [3]. In [2], longevity bonds are in particular addressed.

An extensive presentation of solvency issues, with specific reference to a number
of supervisory systems, is given by [50].

Finally, [27] provides extensive information about the early history of risk theory
and insurance mathematics and technique up to 1919.

2.A Appendix

As noted in Sect. 2.3.4, various approximations to the (exact) probability distribu-
tion of the total random payment X [P] can be adopted. Whatever the approximating
distribution may be, the goodness of the approximation must be carefully assessed,
especially with regard to the right tail of the distribution itself, as this tail quantifies
the probability of large payments.

The following examples can provide some ideas about the degree of approx-
imation obtained by using the Poisson (see (2.3.22) to (2.3.24)) and the Normal
approximation (see (2.3.25) to (2.3.30)) to the binomial distribution (given by
(2.3.21)).

Example 2.A.1. Assume the following data:

• individual loss: x( j) = 1, for j = 1, . . . ,n;
• probability: p = 0.005;
• pool sizes: n = 100, n = 500, n = 5000.

The (exact) binomial distribution and the normal approximation have been
adopted for n = 500 and n = 5000; the (exact) binomial distribution and the Poisson
approximation have been used for n = 100. Tables 2.A.1 to 2.A.3 and Figures 2.A.1
and 2.A.2 show numerical results.

The following aspects should be stressed. In relation to portfolio sizes n = 500
and n = 5000, the normal approximation tends to underestimate the right tail of
the payment distribution (see Table 2.A.1). Conversely, the Poisson distribution
provides a good approximation to the exact distribution, also for n = 100 (see Ta-
bles 2.A.2 and 2.A.3); unlike the normal approximation, the Poisson model tends to
overestimate the right tail, so that a prudential assessment of the payment follows.
�
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Fig. 2.A.1 Probability distribution of the random payment (n = 500). Binomial distribution and
Normal approximation
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Fig. 2.A.2 Probability distribution of the random payment (n = 5000). Binomial distribution and
Normal approximation

Table 2.A.1 Right tails of Binomial distribution and Normal approximation

n = 500 n = 5000
P[X [P] > k] P[X [P] > k]

k Binomial Normal k Binomial Normal

5 0.04160282 0.056471062 30 0.136121887 0.158048811
6 0.013944069 0.013238288 35 0.022173757 0.022480517
7 0.004135437 0.002164124 40 0.001983179 0.001316908
8 0.001097966 0.000244022 45 0.000101743 3.03545E-05
9 0.000263551 1.88389E-05 50 3.13201E-06 2.68571E-07
10 5.76731E-05 9.90663E-07 55 6.02879E-08 8.9912E-10
. . . . . . . . . . . . . . . . . .
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Table 2.A.2 Binomial distribution and Poisson approximation

n = 100

P[X [P] = k]

k Binomial Normal

0 0.605770436 0.60653066
1 0.304407255 0.30326533
2 0.075719392 0.075816332
3 0.012429649 0.012636055
4 0.001514668 0.001579507
5 0.000146139 0.000157951
6 1.16275E-05 1.31626E-05
7 7.84624E-07 9.40183E-07
8 4.58355E-08 5.87614E-08
9 2.35447E-09 3.26452E-09
10 1.07667E-10 1.63226E-10
. . . . . . . . .

Table 2.A.3 Right tails of Binomial distribution and Poisson approximation

n = 100

P[X [P] > k]

k Binomial Normal

3 0.001673268 0.001752
4 0.000158599 0.000172
5 1.24604E-05 1.42E-05
6 8.32926E-07 1.00E-06
7 4.83022E-08 6.22E-08
. . . . . . . . .



Chapter 3
Life insurance: modeling the lifetime

3.1 Introduction

When writing insurance contracts, the insurer takes risks originating from various
causes. In life insurance, causes of risk relate to financial aspects (e.g. investment
yield, inflation, etc.), demographical aspects (e.g. lifetimes of policyholders, lapses
and surrenders, etc.), expenses. In this Chapter we deal with demographical aspects
only, focussing on policyholders’ lifetimes, which in turn determine the frequency
of death in a portfolio.

A number of risk factors affect individual mortality. Important risk factors are
age, gender, health status, profession, smoking habits, etc. So, formulae used to cal-
culate premiums and reserves for life insurance and annuity products should allow
for various risk factors. In particular, the insured’s age enters formulae via the age-
pattern of mortality, that is a structure linking probabilities of survival and death to
the attained age.

The age-pattern of mortality can be specified, in quantitative terms, by using
various “tools”. A common choice, rather usual in actuarial practice, consists in
taking the so-called life table as the basis for premium and reserve calculation.

Remark Mortality data and mortality assumptions constitute a critical issue in life insurance
technique. However, need for mortality data and models also arise in a number of other fields, for
example: social security, pension funds, health care (both public and private), and so on.

3.2 Life tables

3.2.1 Elements of a life table

The expression life table is commonly used to denote a set of sequences, like those
represented in Table 3.2.1. The first column indicates the age, denoted by x. In the
second column, the lx’s represent the estimated (rounded) numbers of people alive

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 141
DOI 10.1007/978-3-642-16029-5 3, c© Springer-Verlag Berlin Heidelberg 2011
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at age x in a properly defined population. The exact meaning of the lx’s will be ex-
plained after discussing two approaches to the calculation of these numbers. What-
ever the exact meaning, the numbers l0, l1, l2, . . . , constitute a decreasing sequence.
Note that, in Table 3.2.1, l109 ≈ 0; thus, 108 represents the maximum attainable age,
or limiting age. This age is usually denoted by ω; hence, lω > 0 whilst lω+1 = 0.

The sequences of dx’s and qx’s are strictly related to the lx’s. In particular, dx

denotes the number of deaths between exact age x and x+1; thus

dx = lx − lx+1 (3.2.1)

Note that
ω

∑
x=0

dx = l0 (3.2.2)

The quantity qx is the probability of an individual aged x dying within 1 year, and
can be expressed as follows

qx =
dx

lx
(3.2.3)

Expression (3.2.3) will be discussed further in the following sections.
The graphs obtained by plotting the lx’s and the dx’s against age x are usually

called the survival curve and the curve of deaths respectively; see Example 3.2.1.

Table 3.2.1 A life table

x lx dx 1000qx

0 100000 879 8.788
1 99121 46 0.461
2 99076 33 0.332

. . . . . . . . . . . .
50 93016 426 4.582
51 92590 459 4.961
. . . . . . . . . . . .

108 1 1 1000.000
109 ≈ 0 ≈ 0 −

3.2.2 Cohort tables and period tables

Assume that the sequence l0, l1, . . . , lω is directly provided by statistical evidence,
that is by a longitudinal mortality observation of the actual numbers of individuals
alive at age 1, 2, . . . , ω , out of a given initial cohort consisting of l0 newborns. Thus,
the observation is by year of birth. The sequence l0, l1, . . . , lω is called a cohort life
table.
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If ω is the limiting age, then the construction of the cohort table requires ω + 1
years.

Assume, conversely, that the statistical evidence consists of the frequency of
death at the various ages, observed throughout a given period, for example one year.
Thus, the mortality observation is by year of death. Further, assume that the fre-
quency of death at age x (possibly after a graduation with respect to x) is an estimate
of the probability qx.

Then, for x = 0,1, . . . ,ω −1, define

lx+1 = lx (1−qx) (3.2.4)

with l0 (the radix) assigned (e.g. l0 = 100000), and ω denoting, as previously, the
age such that lω > 0 and lω+1 = 0 (or lω+1 ≈ 0). Hence, lx is the expected number of
survivors out of a notional cohort (also called a synthetic cohort) initially consisting
of l0 individuals. The sequence l0, l1, . . . , lω , defined by recursion (3.2.4), is called a
period life table, as it is derived from period mortality observations.

Period observations are also called cross-sectional observations, because they
analyze (in terms of the frequency of death) an existing population “across” the
various ages. Note, in particular, that the qx’s derive from the observed mortality of
people born ω,ω −1, . . . ,x, . . . ,1,0 years before the observation year.

An important hypothesis underlying recursion (3.2.4) should be stressed. As the
qx’s are assumed to be estimated from mortality experience in a given period (say,
one year), the calculation of the lx’s relies on the assumption that the mortality pat-
tern does not change in the future.

Statistical evidence shows that human mortality, in many countries, has declined
over the 20th century, and in particular over its last decades (for more details, see
Sect. 3.8.1). So, the hypothesis of a “static” mortality cannot be assumed in prin-
ciple, at least when long periods of time are referred to. Hence, in life insurance
applications, the use of period life tables should be restricted to products involv-
ing short or medium durations (5 to 10 years, say), like the term insurance and the
endowment insurance, whilst it should be avoided when dealing with life annuities
and pension plans. Conversely, life annuities and pensions require life tables which
allow for the anticipated future mortality trend, namely projected life tables con-
structed on the basis of the experienced mortality trend. This topic will be dealt
with in Sects. 3.8.2 to 3.8.5.

Example 3.2.1. In Fig. 3.2.1 a survival curve is plotted. The lx’s are calculated start-
ing from a period mortality observation. The related dx’s, which constitute the curve
of deaths, are plotted in Fig. 3.2.2.

Some features, which are shared by most life tables, clearly emerge (in particular
looking at the curve of deaths):

1. the infant mortality;
2. the mortality hump at young-adult ages, mainly due to accidental deaths;
3. the age of maximum mortality (at old ages).
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Note that the point of highest mortality (at old ages) in the curve of deaths corre-
sponds to the inflexion point in the survival curve.
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Fig. 3.2.1 lx in the Italian male population - 1992 (source: ISTAT)
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Fig. 3.2.2 dx in the Italian male population - 1992 (source: ISTAT)
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3.2.3 Construction of a period life table

Several methods can be adopted for constructing a period life table. As a detailed
discussion of this topic is beyond the scope of this book, we just mention a method,
which can be implemented in order to obtain a numerical assessment of the one-year
probabilities of dying.

We denote with θx the observed number of deaths between age x and x + 1,
and with ETRx, the number of individuals exposed to risk, i.e. “generating” the
θx deaths. The number ETRx can be estimated according to various approaches.
Here, we briefly describe the so-called census method. We assume one year as the
observation period.

Let Px(0) denote the size of the population aged between x and x + 1 at the be-
ginning of the year (i.e. at time 0), and Px(1) the size of the population aged be-
tween x and x+1 at the end of the year (time 1). In Fig. 3.2.3 the numbers Px(t), for
x = 0,1, . . . , referred to a generic time t, are depicted, separately for males ([M]) and
females ([F]). Lower ages are in the bottom part of the graph. The resulting graph
describes the structure of a population by age and gender, and is usually called in
Demography the age-gender pyramid (or the population pyramid). Note that the
shape of the “pyramid” reflects the evolution of a population over time: for exam-
ple, a small size in the low age classes, compared to the size in the medium and high
age classes, denotes an ageing population.

P[M](t)x xP[F](t)
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Fig. 3.2.3 Population structure at time t, by age and gender
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We define the number of individuals exposed to risk as follows:

ETRx =
Px(0)+Px(1)+θx

2
(3.2.5)

Thus, we take as exposed to risk first the average between the population at the
beginning of the year and the population at the end of the year, both populations
consisting of individuals aged between x and x + 1; further, we add to this quantity
one half of the number of people dying in the year, as we assume that the deaths
occur on average at the mid of the year.

The frequency of death at age x, denoted with q̂x, is then calculated as follows:

q̂x =
θx

ETRx
(3.2.6)

The q̂x’s, which result from statistical observation, are called raw mortality rates.
As they may have an erratic behavior, for example because of very small population
sizes at very old ages, whereas previous experience and intuition suggest a smooth
progression, a graduation procedure is usually applied to the sequence of q̂x. Grad-
uated period mortality rates should exhibit a progressive change over a set of ages,
without sudden and/or huge jumps, which cannot be explained by intuition nor sup-
ported by past experience.

Various approaches to graduation can be adopted. In particular, two broad cate-
gories can be recognized:

• parametric graduation, involving the use of mortality laws;
• non-parametric graduation.

According to a parametric approach, a functional form is chosen (some examples
will be presented in Sects. 3.4.2 and 3.9.5), and the relevant parameters are estimated
in order to find the parameter values which provide the best fit to the observed
mortality rates. Various fitting criteria can be adopted for parameter estimation, for
example maximum likelihood.

The choice of a particular functional form is avoided when a non-parametric
graduation method is adopted. Traditional methods in this category are, for example,
the weighted moving average methods. In what follows, we simply assume that
some graduation procedure has been applied to raw mortality data, providing as its
output a set of graduated values.

We denote with qx, x = 0,1,2, . . . the graduated values, and we assume qx as the
probability of an individual age x dying within one year, thus before reaching age
x+1. Hence, the qx’s are the annual (or one-year) probabilities of death.

Finally, the lx’s can be calculated by using the relation (3.2.4). Figure 3.2.4 sum-
marizes the procedure which, starting from the population structure, leads to the
sequence of lx.
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Fig. 3.2.4 From the population structure by age to the life table

3.2.4 “Population” tables versus “market” tables

Mortality data, and hence life tables, can originate from observations concerning
a whole national population, a specific part of a population (for example, retired
workers, disabled people, etc.), an insurer’s portfolio, a pension plan, and so on.

Life tables constructed on the basis of observations involving a whole national
population (usually split into females and males) are commonly referred to as pop-
ulation life tables.

Market life tables are constructed using mortality data arising from a collection
of insurance portfolios and/or pension plans. Usually, distinct tables are constructed
for insurance products providing death benefits (for example term insurances), life
annuities purchased on an individual basis, pensions (namely annuities paid to the
members of a pension plan).

The rationale for distinct market tables lies in the fact that mortality levels may
significantly differ as we move from one type of insurance product to another. This
aspect will be discussed in Sect. 3.6.2.
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Market tables provide experience-based data for premium and reserve calcula-
tions and for the assessment of expected profits. Population tables can provide a
starting point when market tables are not available. Moreover, population tables
usually reveal mortality levels higher than those expressed by market tables and
hence are likely to constitute a prudential (or conservative, or on the safe-side) as-
sessment of mortality in portfolios of insurance products providing death benefits.
Thus, population tables can be used when pricing such products, in order to include
a profit margin (or an implicit safety loading) into the premiums.

3.2.5 The life table as a probabilistic model

We now assume that the sequence l0, l1, . . . , lx, . . . , lω constitutes our data base, and
define various probabilities, useful in life insurance calculations, taking this se-
quence as the starting point.

We denote by px the probability of an individual age x being alive at age x + 1.
Clearly

px = 1−qx (3.2.7)

and hence (see Eq. (3.2.4))

px =
lx+1

lx
(3.2.8)

Further, we denote by h px the probability that an individual age x is alive at age
x + h. This event can be expressed in terms of one-year events concerning a given
individual, namely:

• the individual age x is alive at age x+1;
• the individual age x+1 is alive at age x+2;
• . . .
• the individual age x+h−1 is alive at age x+h.

Hence
h px = px px+1 . . . px+h−1 (3.2.9)

and then, using (3.2.8), we find

h px =
lx+1

lx

lx+2

lx+1
. . .

lx+h

lx+h−1
=

lx+h

lx
(3.2.10)

Note that, clearly, 0 px = 1. Conversely, 1 px = px. The following relation is useful
in a number of actuarial calculations:

h+k px = h px k px+h (3.2.11)

We denote by hqx the probability that an individual age x dies before attaining
age x+h. We have
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hqx = 1− h px =
lx − lx+h

lx
(3.2.12)

Of course, 0qx = 0, whereas

1qx = qx =
lx − lx+1

lx
=

dx

lx
(3.2.13)

Remark Sometimes the one-year probabilities qx and px are called mortality rates and survival
rates respectively. We prefer to avoid these expressions to denote probability of death and survival,
as the term “rate” should be referred to a counter expressing the number of events per unit of time.

The probability of a person age x dying between age x+h and x+h+k is denoted
with h|kqx. Referring to a given individual, this event can be split as follows:

• the individual age x is alive at age x+h;
• the individual age x+h dies before age x+h+ k

Hence, we have

h|kqx = h px kqx+h =
lx+h − lx+h+k

lx
(3.2.14)

The probability h|kqx is usually called “deferred” probability of dying, the deferment
being the period of h years.

The following relations can be easily interpreted and proved by using the formu-
lae presented above:

h|kqx = h+kqx − hqx = h px − h+k px (3.2.15)

3.2.6 One-year measures of mortality

Consider the probability defined in (3.2.14). In particular, with k = 1 we find

h|1qx = h px qx+h =
lx+h − lx+h+1

lx
=

dx+h

lx
(3.2.16)

Referring to a newborn, namely setting x = 0, we have

h|1q0 =
dh

l0
(3.2.17)

We note that
ω

∑
h=0

h|1q0 =
1
l0

ω

∑
h=0

dh = 1 (3.2.18)

Actually, the h|1q0’s constitute the probability distribution of the lifetime of a new-
born (with integer outcomes 0,1, . . . ,ω; see Sect. 3.2.7). In particular, 0|1q0 is the
probability of death during the first year of life, 1|1q0 is the probability of death
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during the second year of life, and so on. Further, for all integer k, we have:

ω

∑
h=k

h|1q0 =
1
l0

ω

∑
h=k

dh =
lk
l0

= k p0 (3.2.19)

Consider the following probabilities:

• qx, expressed by (3.2.13);
• x|1q0, expressed by (3.2.17) replacing h with x.

Both the probabilities quantify one-year mortality, namely between age x and x+1.
Figure 3.2.5 illustrates the behavior of the two probabilities as functions of age
x (assuming, for simplicity, that x can take all real values). We note that qx (see
Fig. 3.2.5a) refers to an individual alive at age x, whereas x|1q0 (see Fig. 3.2.5b)
refers to a newborn. The different behavior is easily explained looking at the defi-
nitions of the two one-year probabilities, i.e. (3.2.13) and (3.2.17) respectively, and
noting that lx decreases as x increases. In particular, when lx is close to l0, the two
graphs are quite similar, whereas as lx strongly decreases, qx definitely increases.
Note also that the behavior of the x|1q0 trivially reflects the behavior of the dx (for
example, see Fig. 3.2.2).

age x0

qx

(a)

age x0

x|1q0

(b)

Fig. 3.2.5 One-year probabilities of death

Another one-year measure of mortality can be defined, namely the quantity

mx =
dx

lx + lx+1

2

(3.2.20)

usually called the central mortality rate.
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It is interesting to compare mx to the probability qx (see (3.2.13)). Both the quan-
tities relate the expected number, dx, of people dying between age x and x+1 to an
expected number of “exposed to risk”. The latter takes as the number of exposed
to risk the quantity lx, namely the “initial” number of people in the age interval
(x,x + 1), whereas the former relates the numerator to the average number lx+lx+1

2 ,
i.e. the “central” number of people in the same age interval.

Table 3.2.2 One-year measures of mortality

definition usual name
age
referred to

exposed
to risk

qx = dx
lx

(initial) mortality rate x lx

x|1q0 = dx
l0

deferred mortality rate 0 l0

mx = dx
lx+lx+1

2

central mortality rate x lx+lx+1
2

φx = qx
1−qx

mortality odds x lx

Finally, we introduce a further quantity related to one-year mortality. When qx

can be expressed as qx = φx
1+φx

, the function φx represents the so-called mortality
odds, namely

φx =
qx

1−qx
(3.2.21)

From 0 < qx < 1 (for x < ω), it follows that φx > 0. Thus, focussing on the odds,
rather than the annual probabilities of dying, can make easier the choice of a math-
ematical formula fitting the age-pattern of mortality (see Sect. 3.4.2), as the only
constraint is the positivity of the odds.

Table 3.2.2 summarizes these one-year measures of mortality. As regards the use
of the term “rate” (common in actuarial practice) also to denote the probabilities qx

and x|1q0, see the Remark in Sect. 3.2.5.

Example 3.2.2. A life table includes the elements represented in Table 3.2.3.
For example, the following probabilities can be calculated:

1. the probability of a newborn (i.e. age 0) dying between age 65 and 66,

65|1q0 =
l65 − l66

l0
= 0.004

2. the probability of a person age 43 being alive at age 65
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Table 3.2.3 Expected number of survivors in a life table

x lx

0 100000
. . . . . .
40 98000
41 97920
42 97800
43 97650
44 97450
45 97220
. . . . . .
65 85000
66 84600
. . . . . .

22 p43 =
l65

l43
= 0.87046

3. the probability of a person age 40 dying between age 42 and 45

2|3q40 =
l42 − l45

l40
= 0.00592

4. the probability of a person age 42 dying between age 42 and 45

3q42 =
l42 − l45

l42
= 0.00593

�

Example 3.2.3. Probabilities 1 and 2 in Example 3.2.2 involve very long time inter-
vals (65 years as the deferred period in probability 1, and 22 years in probability 2).
If the lx’s are drawn from a period life table, these probabilities (although formally
correct) can be affected by severe errors in the presence of a mortality trend.

Conversely, the other two probabilities involve short intervals, and thus can be
reasonably accepted. Hence, an appropriate use of a period life table should be re-
stricted to rather short interval, say 10 years at most. For example, refer to an insured
age 40 at policy issue; the following probabilities can be used for a five-year term
insurance (see Case 4b in Sect. 1.7.4):

1q40 =
l40 − l41

l40
, 1|1q40 =

l41 − l42

l40
, . . . , 4|1q40 =

l44 − l45

l40

�
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3.2.7 A more formal setting: the random lifetime

A more formal setting can be defined if we refer our probabilistic model to the
remaining lifetime of an individual age x. We denote by Tx this lifetime, which is
clearly a random variable. Whatever its outcome may be, the (random) age at death
is given by Tx + x. The possible outcomes of Tx are the positive real numbers; how-
ever, it is rather usual to take ω − x as the maximum possible outcome.

In particular, T0 represents the total lifetime of an individual age 0, namely a
newborn. Of course, we have

Tx = T0 − x |T0 > x (3.2.22)

In life insurance calculations, probabilities like P[Tx > h], P[h < Tx ≤ h + k],
and so on, are needed. When a life table is available, those probabilities can be
immediately derived from the life table itself, provided that the ages and durations
are integers. Thus, we have for example

P[Tx > h] = h px =
lx+h

lx
(3.2.23)

P[Tx ≤ h] = hqx = 1− h px =
lx − lx+h

lx
(3.2.24)

P[h < Tx ≤ h+ k] = h|kqx =
lx+h − lx+h+k

lx
(3.2.25)

If we have to calculate probabilities like (3.2.23), (3.2.24) and (3.2.25) when ages
or durations are real number, then an extension of the probabilistic model is needed.
We will address this topic in Sect. 3.9.

The curtate remaining lifetime, usually denoted with Kx is defined as the inte-
ger part of Tx. Thus, the possible outcomes of Kx are 0,1,2, . . . , according to the
following scheme:

0 < Tx < 1 ⇔ Kx = 0

1 ≤ Tx < 2 ⇔ Kx = 1

2 ≤ Tx < 3 ⇔ Kx = 2

. . . . . .

A similar definition applies in particular to the random variable T0, leading to the
curtate total lifetime K0. Note that the probability distribution of K0 is given by

0|1q0, 1|1q0, . . . , x|1q0, . . . ,ω|1q0 (3.2.26)

Indeed, we have

x|1q0 = P[x < T0 ≤ x+1] = P[K0 = x]; x = 0,1, . . . ,ω (3.2.27)
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3.3 Summarizing a life table

Age-specific functions are usually needed in actuarial calculations. For example, in
the age-discrete context functions like lx, qx, etc. are commonly used in order to
calculate premiums, reserves, and so on.

Nevertheless, the role of single-figure indices, also called markers, which sum-
marize the life table and hence the lifetime probability distribution, should not be
underestimated. In particular, important features of past mortality trends can be sin-
gled out by focussing on the behavior of some indices over time, as we will see in
Sect. 3.8.1.

3.3.1 The life expectancy

The expected value of the random lifetime is a typical marker. More precisely, con-
sider the curtate total lifetime K0, and then the random variable K0 + 1

2 . Hence,
calculate the expected value E[K0 + 1

2 ], which is given by

E[K0 + 1
2 ] =

ω

∑
h=0

(
h+ 1

2

)
h|1q0 (3.3.1)

The quantity expressed by (3.3.1) is called expected total lifetime (or life ex-

pectancy at the birth), and is usually denoted with
◦
e0. Note that, using (3.2.19),

after a little algebra we obtain:

◦
e0 = 1

2 +
ω

∑
k=1

k p0 (3.3.2)

Referring to an individual age x, the expected remaining lifetime (or life ex-

pectancy at age x), usually denoted with
◦
ex, is defined as follows

◦
ex = E[Kx + 1

2 ] =
ω−x

∑
h=0

(
h+ 1

2

)
h|1qx (3.3.3)

Using a relation similar to (3.2.19), we find:

◦
ex = 1

2 +
ω−x

∑
k=1

k px (3.3.4)
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The expected age at death (that is, the expected total lifetime for an individual

alive at age x) is then given by x+
◦
ex.

The probabilities adopted in the previous formulae are commonly provided by

cross-sectional observations. Then, the expected values
◦
e0 and

◦
ex represent pe-

riod life expectancies, and hence rely on the hypothesis of static mortality (see
Sect. 3.2.2). Expected values calculated accounting for future mortality trend will
be introduced in Sect. 3.8.3.

Example 3.3.1. Assume that the life table constructed via a period observation of

mortality in population A leads to the expected total lifetime
◦
e
[A]
0 . An analogous

observation concerning population B leads to
◦
e
[B]
0 . Suppose, for example, that we

find

◦
e
[A]
0 = 74
◦
e
[B]
0 = 76

How can we interpret the difference
◦
e
[B]
0 −◦

e
[A]
0 = 2 ? What can we say about the im-

pact of this difference, for instance, on the costs related to the payment of pensions
and life annuities ?

Consider the following statement: “The higher expected total lifetime implies
that the costs for paying pensions to population B are higher then the costs concern-
ing population A, as people in B receive on average two annual payments more”.
This statement may be wrong. Let’s try to understand why.

The expected total lifetime
◦
e0 depends on the whole probability distribution of

the random variable K0 (see definition (3.3.1)), hence including, in particular, the
infant mortality and the young-adult mortality hump (see Fig. 3.2.5b). So, the higher

value of
◦
e
[B]
0 can be explained, in particular, in terms of

1. a lower infant mortality;
2. a lower mortality at young-adult ages;
3. a longer life expectation for people who reach, for example, age 50.

Clearly, items 1 and 2 cannot support the above statement. Conversely, item 3
does support the statement itself, and, at the same time, stresses an interesting as-
pect. When pension problems are dealt with, a useful information is provided by
the expected remaining lifetime at a given adult age, say 50 or 60. So, if we find
◦
e
[B]
60 >

◦
e
[A]
60 , then we can state that the costs for paying pensions to population B are

likely to be higher then the costs concerning population A.

�

By using formula (3.3.3), it is easy to prove that

1+
◦
ex =

1
px−1

◦
ex−1 (3.3.5)
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and hence
x+

◦
ex > x−1+

◦
ex−1 (3.3.6)

From (3.3.6), it follows in particular that

x+
◦
ex >

◦
e0 (3.3.7)

Inequalities (3.3.6) and (3.3.7) are self-evident: the expected total lifetime in-
creases as the attained age increases, because the individual has overcome the risk
of dying in the past years.

3.3.2 Other markers

A number of markers, other than the expected total lifetime (or the expected remain-
ing lifetime at some given age), can be adopted to summarize a life table. Some
examples follow.

• The Lexis point is the modal value, at old ages, of the probability distribution of
the total lifetime, namely the (old) age with the highest mortality, i.e. the highest
dx (and hence the highest x|1q0).

• The variance of the probability distribution of the total lifetime (or its standard
deviation) is a traditional variability measure.

• The probability that a newborn dies before a given age x′, namely x′q0, provides,
for x′ small (say 1, or 5), a measure of the infant mortality.

Although these and other markers, which summarize the probability distribution
of the lifetime, are of great interest in demographical studies, their use is quite lim-
ited in the actuarial field. Actually, life insurance calculations require working with
functions of the random lifetime, rather than directly with the random lifetime itself.

3.4 A mortality “law”

3.4.1 From tables to parameters

Since the earliest attempt to describe in analytical terms a mortality schedule (due
to A. De Moivre and dating back to 1725), great effort has been devoted by demog-
raphers and actuaries to the construction of analytical formulae (or mortality laws)
that fit the age-pattern of mortality. When a mortality law is used to fit observed
data, namely a parametric graduation is chosen (see Sect. 3.2.3), the age-pattern of
mortality is summarized by a small number of parameters (two to ten, say, in the
mortality laws commonly used in actuarial and demographical applications). Thus,
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we can replace the 110, say, items of a life table by a small number of parameters
without sacrificing much information.

Many mortality laws have been proposed in the age-continuous context. Some
of these laws will be presented and discussed in Sect. 3.9.5. Here we focus on one
type of mortality law only, namely the Heligman-Pollard formula, which, although
defined for any real age x, expresses the one-year probability of death qx and the
mortality odds qx

1−qx
, and hence can perfectly work in a framework in which ages

and durations are integers.

3.4.2 The Heligman-Pollard law

Heligman and Pollard proposed in 1980 a class of formulae which aim to represent
the age-pattern of mortality over the whole span of life. The first Heligman-Pollard
law, expressed in terms of the odds, is

φx = A(x+B)C
+De−E(lnx−lnF)2

+GHx (3.4.1)

while the second Heligman-Pollard law, in terms of qx, is given by

qx = A(x+B)C
+De−E(lnx−lnF)2

+
GHx

1+GHx (3.4.2)

Note that, in both cases, at high ages we have

qx ≈ GHx

1+GHx (3.4.3)

Formula (3.4.3) can be used as an approximation when calculating values related to
life annuities and pensions, e.g. for x ≥ 65.

Two other laws, generalizing the second Heligman-Pollard law, were proposed;
however, a deep analysis of such a topic is beyond the scope of this book.

Example 3.4.1. Assume the following values for the parameters of the first Heligman-
Pollard law (see (3.4.1)):

A = 0.000544 B = 0.017

C = 0.101 D = 0.000158

E = 10.72 F = 18.67

G = 0.0000183 H = 1.11

These parameters have been estimated on the basis of a UK mortality experience. 1

Figure 3.4.1 illustrates the age-pattern of mortality in terms of the probabilities qx.

1 See: Dellaportas P., Smith A.F.M., Stavropoulos P. (2001), Bayesian Analysis of Mortality Data,
Journal of the Royal Statistical Society. Series A, vol. 164 (2), pp. 275-291.
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A better representation, because of the range of values, is provided by the graph of
the logarithms lnqx; see Fig. 3.4.2. Finally, the probabilities x|1q0 are depicted in
Fig. 3.4.3.
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3.5 From the basic model to more general models

The model we have so far dealt with can be considered a “basic” one, as only the
attained age is accounted for in assigning the probability of an individual dying
within one year (or being alive after one year, or after a given number of years, and
so on).

However, statistical experience and, at least to some extent, intuition suggest
that, in many applications among which the life insurance and pension business,
more complex models are needed, for example allowing for heterogeneity (inside
a population) in respect of mortality, for future mortality trends, for the effect of
medical ascertainment in the underwriting process, and so on.

Figure 3.5.1 illustrates the main directions along which we will now move, in
order to build up more general models to be used in life insurance and pension
calculations. The various terms used in the blocks of the figure will be explained in
the next sections.

3.6 Heterogeneity

3.6.1 Some preliminary ideas

Any given population is affected by some degree of heterogeneity, as far as indi-
vidual mortality is concerned. Heterogeneity in populations should be approached
addressing two main issues:
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Fig. 3.5.1 From the basic model to more general models

• detecting and modeling observable heterogeneity factors (e.g. age, gender, occu-
pation, etc.);

• allowing for unobservable heterogeneity factors.

In the insurance framework, heterogeneity factors are also called risk factors (see
Sect. 2.2.6). As regards observable heterogeneity factors, mortality depends on:

1. biological and physiological factors, such as age, gender, genotype;
2. features of the living environment; in particular: climate and pollution, nutritional

standards (mainly with reference to excesses and deficiencies in diet), population
density, hygienic and sanitary conditions;

3. occupation, in particular in relation to possible professional disability or exposure
to injury, and educational attainment;

4. individual lifestyle, in particular with regard to nutrition, alcohol and drug con-
sumption, smoking, physical activities and pastimes;

5. current health conditions, personal and/or family medical history, civil status, and
so on.

Item 2 affects the overall mortality of a population. That is why mortality tables
are typically considered specifically for a given geographic area. The remaining
items concern the individual and, when dealing with life insurance, they can be ob-
served at policy issue. Their assessment is performed through appropriate questions
in the application form and, as to health conditions, possibly through a medical ex-
amination. The specific items considered for insurance rating depend on the types
of benefits provided by the insurance contract (see Sect. 3.6.2).

Differences among the individuals can also be attributed to unobservable het-
erogeneity factors. Examples of unobservable factors are the individual’s attitude
towards health, and some congenital personal characteristics.
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When allowing for unobservable heterogeneity factors, various approaches can
be adopted. However, the basic idea is that the population life table, or the popu-
lation mortality law, should be interpreted as a mixture of a set of tables or laws,
each one expressing a specific level of mortality. We do not deal with these aspects,
which are beyond the scope of this book.

3.6.2 Rating classes

The observable risk factors lead to a partitioning of the insured population into risk
classes. However, for various reasons, not all the risk factors are allowed for when
pricing an insurance product (and hence a solidarity effect is introduced in the pre-
mium system). Risk factors accounted for in the pricing (or “rating”) procedure are
called rating factors; consequently, the insured population is split into rating classes
(see also Sect. 2.2.6).

The rating procedure should be organized, for any given insurance product, as
follows.

1. An appropriate choice of the rating factors should aim at grouping people in
classes within which insured lives bear an analogous expected mortality profile.

2. For each individual applying for insurance, a selection process should be per-
formed, whose aim is to assign the applicant to her proper rating class.

When defining a rating procedure, possible adverse selection (or anti-selection)
should be taken into account. This expression denotes a higher propensity to buy
insurance in people bearing a worse risk profile.

The specific risk factors considered for life insurance rating depend, to some ex-
tent, on the types of benefits provided by the insurance contract. Age is always con-
sidered, due to the apparent variability of mortality in this regard. Gender is usually
accounted for, especially when living benefit are involved, given that females on
average live longer than males. This difference clearly appears in Figs. 3.6.1 and
3.6.2, in terms of the curves of death and the survival curves respectively.

As far as genetic aspects are concerned, the evolving knowledge in this area has
raised a lively debate (which is still running) on whether it is legitimate for insurance
companies to resort to genetic tests for underwriting purposes.

Applicants for life annuities are usually in good health, so a medical examination
is not necessary; on the contrary, a proper investigation is needed for those who buy
death benefits, given that people in poorer health conditions may be more interested
in them and hence more likely to buy such benefits.

When death benefits are dealt with, health conditions, occupation and smoking
status can be taken as rating factors. These lead to a classification into standard and
substandard risks in life insurance. For the latter (also referred to as impaired lives),
a higher premium level is adopted in order to avoid adverse selection, given that
they bear a higher probability to become eligible for the benefit. In some markets,
standard risks are further split into regular and preferred risks, the latter having a
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better profile than the former (for example, because they never smoked); as such,
they are allowed to pay a reduced premium rate.

Mortality for people in poorer or better conditions than the average is usually
expressed in relation to average (or standard) mortality. This allows us to deal only
with one life table (or one mortality law), properly adjusted when substandard or
preferred risks are dealt with. Thus, if qx denotes the annual probability of death in
the age-pattern of mortality taken as the standard, the adjusted probability of death,

q[adj]
x , is assumed to be expressed as follows:

q[adj]
x = Φ(qx) (3.6.1)

where Φ denotes an appropriate function.
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3.6.3 Substandard risks

In this Section we introduce some models which can be adopted to express the age-
pattern of mortality for substandard risks, as a “transform” of the standard mortality.

We denote by x the age at policy issue, and by m the policy term. Further, we
denote by qx+t (0 ≤ t ≤ m) the one-year probability of dying according to the life
table (or the mortality law) adopted for expressing the age-pattern of mortality of
standard risks.

A rather general transform is provided by the linear model, that is

q[L]
x+t = (1+β )qx+t +α; 0 ≤ t ≤ m (3.6.2)

From this model, more specific transforms can be derived. The additive model
(see Fig. 3.6.3) is defined by setting β = 0 and α > 0 in (3.6.2). Thus:

q[A]
x+t = qx+t +α; 0 ≤ t ≤ m (3.6.3)

Note that the additive model implies an extra-mortality, given by α , which is con-
stant and independent of the initial age. Such a model is consistent, for example,
with extra-mortality due to accidents (related either to occupation or to extreme
sports).

A slight modification of model (3.6.3) allows us to express a constant extra-
mortality which, however, depends on the age x at policy issue via the probability
of death qx:

q[A]
x+t = qx+t +α ′ qx; 0 ≤ t ≤ m (3.6.4)

Conversely, setting α = 0 and β > 0 in (3.6.2), we obtain the multiplicative model
(see Fig. 3.6.4):

q[M]
x+t = (1+β )qx+t ; 0 ≤ t ≤ m (3.6.5)

In this model, the extra-mortality is given by β qx+t . In the age intervals of interest,
qx+t increases as the attained age x + t increases. Hence, the multiplicative model
implies an increasing extra-mortality.

The evolution of some diseases, which either lead to an early death or have a
short recovery time, suggests the adoption of models implying a decreasing extra-
mortality. An example is provided by the following model:

q[D]
x+t =

{
(1+β )qx+t +α; 0 ≤ t ≤ r

qx+t ; r < t ≤ m
(3.6.6)

with 0 < r < m, and α,β such that

q[D]
x = qx + initial extra-mortality (3.6.7)

q[D]
x+r = qx+r (3.6.8)
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We note that, according to model (3.6.6), the extra-mortality extinguishes within a
period of r years (see Fig. 3.6.5).

The mortality pattern of substandard risks can be assumed, at least approxi-
mately, as equal to the standard mortality pattern referred to an older individual.
The age-shift model (see Fig. 3.6.6) implements this idea, and can be considered as
an approximation to the multiplicative model. It is defined as follows:

q[S]
x+t = qx+t+s; 0 ≤ t ≤ m, s > 0 (3.6.9)

A higher increment s in the insured’s age expresses a higher extra-mortality (corre-
sponding to a higher value for the parameter β in the multiplicative model (3.6.5)).
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Fig. 3.6.3 The additive model

age

q

x x+m

q[M]

Fig. 3.6.4 The multiplicative model

age

q

x x+m

q[D]

x+r

Fig. 3.6.5 Decreasing extra-mortality

age

q

x x+m

q[S]

x+s x+m+s

Fig. 3.6.6 The age-shift model

3.6.4 The “factor formula”

Model (3.6.5) can be used not only to represent a mortality higher than the standard
one. Indeed, setting −1 < β < 0 a mortality lower than the standard is expressed.
So, the model can be adopted to represent a wide range of mortality patterns in terms
of the standard one given by the qx+t ’s.
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An interesting example is provided by the so-called numerical rating system,
introduced in 1919 by New York Life Insurance and still adopted by many insurers.
A set of k rating factors is referred to. The annual specific probability of death of
a given individual currently age x + t, q[spec]

x+t , is expressed by the following formula
(also called the factor formula):

q[spec]
x+t = qx+t

(
1+

k

∑
h=1

γh

)
(3.6.10)

The parameters γh lead to a higher or lower death probability for the individual in
relation to the values assumed by the chosen rating factors. Clearly, the following
constraint must be fulfilled for all ages x+ t:

−1 <
k

∑
h=1

γh <
1

qx+t
−1 (3.6.11)

Note that an additive effect of each of the rating factors is assumed.

Remark In insurance practice, a mortality different from the standard one is frequently accounted
for by adjusting directly the premium rates, rather than the probabilities of death. For example, this
may be the case for the age-shifting, or the factor formula. Although the results may be quite
similar, at least over some age ranges and for some insurance products, the approach is not correct,
as in premium calculation elements other than the demographic one are included, e.g. expenses,
financial aspects summarized by the technical rate of interest, etc.

3.7 Mortality by age and duration

3.7.1 Some preliminary ideas

Consider, for example, a group of insureds, all age 45, deriving from a population
whose mortality can be described by a given life table. Is q45 (drawn from the as-
sumed life table) a reasonable assessment of the one-year probability of dying for
each insured in the group?

In order to answer this question, the following points should be addressed.

1. When starting a life insurance policy with an insurance company, an individual
may be subject to medical screening and, possibly, to a medical examination (see
Sect. 3.6.2).

2. It has been observed that the mortality experienced by policyholders recently
accepted (as standard risks) is lower than the mortality experienced by policy-
holders (of the same age) with a longer duration since policy issue.

So, the answer to the above question is negative if the insureds have entered insur-
ance in different years: it is reasonable to expect that an individual, who has just
bought insurance, will be of better health than an individual who bought insurance
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several years ago, and whose health conditions could have worsened over those
years.

In order to express the dependence of the probability of death on the time elapsed
since policy issue, the attained age (45, in the example) should be split as follows:

attained age = age at entry + time since policy issue

The following notation is usually adopted to address the annual probabilities of
death for an insured currently age 45:

q[45],q[44]+1, . . . ,q[40]+5, . . .

where the number in square brackets denotes the age at policy issue, whereas the
second number denotes the time since policy issue. In general, q[x]+u denotes the
probability that an individual currently aged x + u, who bought insurance at age x,
dies within one year.

According to point 2 above, it is usual to assume:

q[45] < q[44]+1 < · · · < q[40]+5 < .. .

3.7.2 Select tables and ultimate tables

Allowing for the dependence of the probability of death on the time elapsed since
policy issue requires the use of life tables in which probabilities are functions of age
x at entry and time u since policy issue.

We look at the life table in terms of the probabilities of death. We assume that
the generic row of the table contains the following elements:

q[x], q[x]+1, q[x]+2, . . . , q[x]+u, . . . (3.7.1)

We denote by xmin and xmax the minimum and respectively the maximum age at
entry (for example, xmin = 20, and xmax = 70 if death benefits are involved). The set
of sequences (3.7.1), for x = xmin,xmin+1, . . . ,xmax, is called a select life table.

However, experience shows that it is reasonable to assume that the selection ef-
fect vanishes after some years, say r years after policy issue. Hence, we can assume:

q[x] < q[x−1]+1 < · · · < q[x−r]+r = q[x−r−1]+r+1 = · · · = q̄x (3.7.2)

where q̄x denotes the probability that an individual currently age x, who bought
insurance more than r years ago, dies within one year. The period r is called the
select period.

Assuming, for example, a select period of r = 3 years, the following probabilities
should be used (rather than those in (3.7.1)) for an individual entering insurance at
age x:
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q[x],q[x]+1,q[x]+2, q̄x+3, q̄x+4, . . . (3.7.3)

The set of sequences (3.7.3), for x = xmin,xmin+1, . . . ,xmax, is called a select-ultimate
table. In particular, the table used after the select period, namely the sequence

q̄xmin+r, q̄xmin+r+1, . . . , q̄z, . . . (3.7.4)

(where z denotes a generic age) is called the ultimate life table.
Life tables in which mortality is assumed to depend on attained age only (as is

the case for the life tables described in Sect. 3.2.2) are called aggregate life tables.
Clearly, the ultimate life table is an aggregate life table.

Figure 3.7.1 illustrates a likely behavior of one-year probabilities of death, in the
select part and the ultimate part of a select-ultimate life table.

agex x+1 x+2 x+3

pr
ob

ab
ili

ty

q[x]+u

qz
_

q[x+1]+u

q[x+2]+u

Fig. 3.7.1 Select and ultimate probabilities (r = 3)

Remark The selection effect, due to medical ascertainment (in the case of insurances with death
benefit) or self-selection (in the case of life annuities), operates during the first years after policy
issue, and the related age-pattern of mortality is often called issue-select. Another type of selection
is allowed for, when some contingency can adversely affect the individual mortality. For exam-
ple, in actuarial calculations regarding insurance benefits in the case of disability, the mortality of
disabled policyholders is usually considered to be dependent on the time elapsed since the time of
disablement inception (as well as on the attained age). In this case, the mortality is called inception-
select.
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3.7.3 A practical issue

Select probabilities q[x]+u should be estimated from observations of insureds’ mor-
tality. However, this requires the splitting of the insured population into a high num-
ber of “cells”, as age at policy issue and duration since policy issue should be sep-
arately accounted for. Likely, such an estimation would be based on small numbers
of individuals in each cell, then leading to a poor reliability of the resulting estimate.

Assume, conversely, that just the ultimate mortality is estimated (that is, irrespec-
tive of the time since policy issue, provided that this time is greater than the select
period), leading to the probabilities q̄z which are functions of the attained age z only.
Then, the selection effect can be expressed by using appropriate reduction factors.

Trivially, select probabilities can be formally expressed as follows:

q[x]+u = q̄x+u ρx(u); for u = 0,1, . . . ,r−1 (3.7.5)

where the factor ρx(u) depends on both the age at entry x and the time u. However,
the use of factors ρx(u) does not reduce the dimension of the estimation problem.
Instead of (3.7.5), we can then assume the (approximate) relation

q[x]+u = q̄x+u ρ(u); for u = 0,1, . . . ,r−1 (3.7.6)

where the factor ρ(u) (ρ(u) < 1) only depends on the time since policy issue u (or,
at least, can be assumed to be independent of age x for wide age ranges, say 20 to
40, 41 to 60, etc.).

3.8 Mortality dynamics

3.8.1 Mortality trends

In many countries, mortality experience over the last decades shows some aspects
affecting the shape of curves representing the mortality as a function of the attained
age. Figures 3.8.1 and 3.8.2 illustrate the moving mortality scenario referring to the
Italian male population, in terms of survival curves, i.e. in terms of lx, and curves
of deaths, i.e. in terms of dx. Survival curves and curves of deaths relate to various
period mortality observations from 1881 to 2002 (“SIM t” refers to period observa-
tions on Italian males centered on calendar year t).

Obviously, experienced trends also affect the behavior of other quantities ex-
pressing the mortality pattern, such as the life expectancy and the mortality rates.
In Fig. 3.8.3, referring to Italian males, the life expectancy at the birth, the life ex-
pectancy at age 65, and the mode of the curve of deaths (i.e. the Lexis point) are
compared in their evolution.

Finally, Figs. 3.8.4 and 3.8.5 concern the behavior of mortality rates. In Fig. 3.8.4
mortality rates qx referring to various life tables are plotted against the age x, while
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Fig. 3.8.5 shows the so-called mortality profiles at various age x in relative terms,
namely the mortality rates qx(t) as functions of calendar year t divided by the mor-
tality rate qx(1881) referring to the oldest table considered.
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Fig. 3.8.5 Mortality profiles

Results are self-evident. In particular the following aspects can be pointed out:

1. an increase in the life expectancy (at the birth as well as at old ages);
2. a decrease in the infant mortality, and in mortality rates in particular at adult and

old ages.
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Turning back to the shape of the survival function and the curve of deaths, the
following aspects of mortality in many countries can be singled out:

3. an increasing concentration of deaths around the mode (at old ages) of the curve
of deaths is evident; so the survival function moves towards a rectangular shape,
whence the term rectangularization to denote this aspect (see Fig. 3.8.6a);

4. the mode of the curve of deaths (which, because of the rectangularization, tends
to coincide with the maximum age ω) moves towards very old ages; this aspect
is called the expansion of the survival function (see Fig. 3.8.6b);

5. higher levels and a larger dispersion of accidental deaths at young ages (the so-
called young mortality hump) have been more recently observed.

age 0 ω

l0

(a)

age 0 ω ω’

l0

(b)

Fig. 3.8.6 Mortality trends in terms of the survival function

3.8.2 Representing mortality dynamics

The progressive decline of human mortality, witnessed by a number of population
statistics, leads to the rejection of the hypothesis of “static” mortality, which would
lead to biased actuarial evaluations. Trends in mortality imply the use of “projected”
survival models for several purposes in life insurance and annuity calculations.

A dynamic approach to mortality underpins mortality forecasts or projections.
When working in a dynamic context, the basic idea is to express mortality as a
function of the (future) calendar year t. As in actuarial calculations age-specific
measures of mortality are usually needed, in a dynamic context mortality is assumed
to be a function of both age x and calendar year t.

In particular, we now focus on one-year probabilities of death. We denote by
qx(t) the probability that a person age x in the calendar year t dies within one year.
A matrix of one-year probabilities of death is represented in Table 3.8.1.

The probabilities in Table 3.8.1 can be read according to three arrangements:
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Table 3.8.1 Annual probabilities of death in a dynamic context

. . . t −1 t t +1 . . .

0 . . . q0(t −1) q0(t) q0(t +1) . . .
1 . . . q1(t −1) q1(t) q1(t +1) . . .
. . . . . . . . . . . . . . . . . .
x . . . qx(t −1) qx(t) qx(t +1) . . .
x+1 . . . qx+1(t −1) qx+1(t) qx+1(t +1) . . .
. . . . . . . . . . . . . . . . . .
ω . . . qω (t −1) qω (t) qω (t +1) . . .

1. a vertical arrangement (i.e. by columns),

q0(t), q1(t), . . . , qx(t), . . . (3.8.1)

corresponding to a sequence of period life tables, with each table referring to
people living in a given calendar year t;

2. a diagonal arrangement,

q0(t), q1(t +1), . . . , qx(t + x), . . . (3.8.2)

corresponding to a sequence of cohort life tables, with each table referring to the
cohort born in year t;

3. a horizontal arrangement (i.e. by rows),

. . . ,qx(t −1), qx(t), qx(t +1), . . . (3.8.3)

yielding the mortality profiles, with each profile expressing the mortality trend at
a given age x.

In general, the matrix in Table 3.8.1 contains elements referring to past years
(and possibly originating from mortality observations) and elements referring to
future years. Let t ′ denote the current calendar year, or possibly the year for which
the most recent (reliable) period life table is available. Thus, probabilities qx(t) for
t > t ′ refer to future years, or years for which a life table is not yet available. Hence,
these probabilities should be estimated by using a projection procedure.

For a given year t ′ and a given maximum year t∗ (time horizon), the projected
life table consists of the submatrix

{qx(t)}; x = 0,1, . . .ω; t = t ′ +1, t ′ +2, . . . , t∗ (3.8.4)

(see Fig. 3.8.7).
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3.8.3 Probabilities and life expectancy in a dynamic context

The appropriate use of the one-year probabilities in Table 3.8.1 requires that, in each
year t, probabilities concerning the lifetime of a person age x in that year are derived
from the diagonal

qx(t), qx+1(t +1), . . . (3.8.5)

that is, from the relevant cohort table. Then, the probability of a person age x in year
t being alive at age x+h is given by:

h px(t) =
(
1−qx(t)

)(
1−qx+1(t +1)

)
. . .

(
1−qx+h−1(t +h−1)

)
(3.8.6)

From probabilities (3.8.6), we can derive the following probabilities of dying:

h|1qx(t) = h px(t)qx+h(t +h) (3.8.7)

and then the cohort life expectancy at age x (namely, for an individual age x in year
t):

◦
ex(t) = 1

2 0|1qx(t)+(1+ 1
2 )1|1qx(t)+ . . . (3.8.8)

Note that, in a dynamic context, formula (3.8.8) should be used instead of (3.3.3),
in order to evaluate the expected lifetime allowing for future mortality trends.
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3.8.4 Approaches to mortality forecasts

A number of approaches can be adopted to mortality projection in order to obtain
forecasts of future mortality. Whatever the approach may be, an important role is
obviously played by the mortality experienced in the past, which constitutes the data
base for the projection procedures (see Fig. 3.8.8). Usually the data base consists
of period tables, possibly complemented by segments of cohort tables. According
to some approaches, mortality forecasts are only based on mortality observed in the
past, whereas other approaches require further inputs. We just mention the following
approaches, which can provide an insight into forecasting methods.

x

0

1

ω

 
PROJECTED 

TABLE 

DATABASE

PROJECTION

Fig. 3.8.8 Construction of a projected table

1. The analysis of mortality profiles for each age x, namely the sequences (3.8.3)
for t ≤ t ′, can suggest a likely behavior of qx(t) for t > t ′. Basically, the pro-
jection procedure consists in the graduation of the observed mortality rates with
respect to time, and the consequent extrapolation to obtain the one-year prob-
ability of dying in future years. In the framework of graduation-extrapolation
procedures, an important point should be addressed, namely: how are the items
in the database interpreted? Depending on the answer, two classes of projection
procedures are defined.

a. If the answer is “data are simply numbers”, then the extrapolation procedure
does not allow for any statistical feature of the information available, as, for
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example, the reliability of the data. In this case, the output of the procedure is
just a point estimate of future mortality (see Fig. 3.8.9).

b. Conversely, when the data are interpreted as the outcomes of random variables
(namely, random frequencies of death), the extrapolation procedure must rely
on sound statistical assumptions and, as a consequence, future mortality can
be represented in terms of both point estimates and interval estimates.

2. When projecting mortality, the collateral information available to the forecaster
can be allowed for. Information may concern a wide range of trends and events,
for example trends in smoking habits, trends in prevalence of some illness, im-
provements in medical knowledge and surgery, etc. Thus, projections can be per-
formed according to an assumed scenario. The introduction of relationships be-
tween events (e.g. advances in medical science) and effects (mortality improve-
ments) underpins mortality projections which are carried out according to as-
sumed scenarios. Obviously, some degree of arbitrariness follows, affecting the
results.

3. Both extrapolation procedures and scenarios can be used to project mortality by
different causes separately, instead of projecting mortality in “aggregate” terms.
Projections by cause of death offer a useful insight into the changing incidence
of the various causes. Conversely, some important problems arise when this type
of projection is adopted. In particular, it should be stressed that complex inter-
relationships exist among causes of death, whilst the classic assumption of in-
dependence is commonly accepted. For example, mortality from heart diseases
and lung cancer are positively correlated, as both are linked to smoking habits.
A further problem concerns the difficult identification of the cause of death for
elderly people.

time t

PAST
(graduation)

FUTURE
(extrapolation)

t'

qx(t)

Fig. 3.8.9 Extrapolation of the qx(t)’s

Remark Graduation - extrapolation methods rely on the assumption that the observed trend
continues in future years. Even if a very long sequence of observations is available (throughout
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a time interval of, say, more than 50 years), the past trend addressed in the graduation procedure
should be restricted to rather recent observations, in order to avoid the inclusion of causes of
mortality improvements whose effect should be considered already extinguished. Figure 3.8.10
illustrates a possible overestimation of future mortality improvements, due to a too long period
assumed as the basis of the graduation.

time tt'

qx(t)

Fig. 3.8.10 Extrapolation results depending on the graduation period

The existence of various approaches to mortality forecasts witnesses that this
topic is very complex. A deeper analysis of these issues is beyond the scope of this
book. Hence, in Sect. 3.8.5 we just mention a simple extrapolation method, which
can be placed in the framework of approach 1(a). Despite the lack of a rigorous
statistical support, such a method is still widely used in current actuarial practice.
Basic ideas underpinning approach 1(b) are presented in Sect. 3.8.6.

3.8.5 Extrapolation via exponential formulae

Let us assume that several period observations are available for a given population.
Each observation consists of the age-pattern of mortality for a given set of ages, say
xmin,xmin +1, . . . ,xmax. The observation referred to calendar year t, t = t1, t2, . . . , tn,
is expressed by:

qxmin(t),qxmin+1(t), . . . ,qxmax(t) (3.8.9)

that is, a (part of a) column of the matrix in Table 3.8.1. Note that, for each x, the
sequence

qx(t1),qx(t2), . . . ,qx(tn) (3.8.10)

represents the observed mortality profile at age x (namely, along a row of the matrix
in Table 3.8.1).
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Assume that the trend observed in past years can be graduated via an exponen-
tial function. Further, suppose that the observed trend will continue in future years.
Then, future mortality can be estimated extrapolating the trend itself. In formal
terms, we assume:

qx(t) = qx(t ′)rt−t ′
x (3.8.11)

where t ′ is the base year, and rx is the mortality (annual) variation factor (reduction
factor if rx < 1) at age x, estimated on the basis of the observed mortality profile
(3.8.10).

time tt'

qx(t')

(a)

time tt'

qx(t')

qx(t') λx

(b)

Fig. 3.8.11 Exponential models

From formula (3.8.11) it follows that, if rx < 1 then

lim
t→+∞

qx(t) = 0 (3.8.12)

(see Fig. 3.8.11a). Although the validity of mortality forecasts should be restricted to
a limited time interval, it is more realistic to assign a positive limit to the mortality
at any age x. To this purpose, the following formula with an assigned (positive)
asymptotic mortality can be adopted:

qx(t) = qx(t ′)
(

λx +(1−λx)rt−t ′
x

)
(3.8.13)

where λx ≥ 0 for all x. Thus, the asymptotic mortality at age x is given by

lim
t→+∞

qx(t) = qx(t ′)λx (3.8.14)

(see Fig. 3.8.11b).
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3.8.6 Mortality forecasts allowing for random fluctuations

A rigorous approach to mortality forecasts should take into account the stochastic
nature of mortality. In particular, the following points should underpin a stochastic
projection model:

• observed mortality rates are outcomes of random variables representing past mor-
tality;

• forecasted mortality rates are estimates of random variables representing future
mortality.

Hence, stochastic assumptions about mortality are required, namely probability
distributions for the random numbers of death (see Sect. 3.10.1 and 3.10.3), and a
statistical structure linking forecasts to observations must be specified (as sketched
in Fig. 3.8.12).

time tt'

Sample =
observed outcomes
of the random
mortality frequency

Path of
a stochastic process =
possible future outcomes
of the random
mortality frequency

A model linking the probabilistic structure
of the stochastic process to the sample

. . .
..

qx(t)

Fig. 3.8.12 A statistical approach in the graduation - extrapolation procedure

In a stochastic framework, the results of projection procedures consist in both
point estimates and interval estimates of future mortality rates (see Fig. 3.8.13) and
other life table functions. Clearly, traditional graduation - extrapolation procedures,
which do not explicitly allow for randomness in mortality, produce just one numer-
ical value for each future mortality rate. Moreover, such values can be hardly inter-
preted as point estimates, because of the lack of an appropriate statistical structure
and model.

An effective graphical representation of randomness in future mortality is given
by the so-called fan charts; see Fig. 3.8.14, which refers to the projection of the ex-
pected lifetime. The fan chart shows a “central projection” together with some “pre-
diction intervals”. The narrowest interval, namely the one with the darkest shading,
correspond to a low probability prediction, say 10%, and is included in prediction
intervals with higher probabilities (say 25%, 50%, etc.).
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Fig. 3.8.14 Fan chart of the expected lifetime

The Lee-Carter method (proposed in 1992) represents a significant example of
the stochastic approach to mortality forecasts, and constitutes one of the most influ-
ential proposals in recent times.

3.9 Moving to a time-continuous context

As seen in Sect. 3.2.7, if we want to evaluate probabilities like (3.2.23), (3.2.24)
and (3.2.25) when ages or durations are real numbers, tools other than the life table
are needed. In this Section we describe some tools which allows us to extend the
calculation of probabilities of survival and death to a time-continuous context.
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Although in the following chapters calculations concerning life insurance con-
tracts will be presented in a time-discrete context, some important issues suggest us
to extend the survival model to a time-continuous framework. An important exam-
ple is provided by the expression of mortality assumptions via the so-called force of
mortality, as we will see in Sects. 3.9.3 and 3.9.5.

3.9.1 The survival function

Assume that the function S(t), called the survival function and defined for t ≥ 0 as
follows

S(t) = P[T0 > t] (3.9.1)

has been assigned. Of course, T0 denotes the random lifetime for a newborn.
Consider the probability (3.2.23), which can be expressed as follows:

P[Tx > h] = P[T0 > x+h |T0 > x] =
P[T0 > x+h]

P[T0 > x]
(3.9.2)

From relation (3.2.22), we then find

h px =
S(x+h)

S(x)
(3.9.3)

For probability (3.2.24) we obtain

hqx =
S(x)−S(x+h)

S(x)
(3.9.4)

The same reasoning leads to

h|kqx =
S(x+h)−S(x+h+ k)

S(x)
(3.9.5)

The survival function and the life table are strictly related each other. We note
that, since lx is the expected number of people alive out of a cohort initially consist-
ing of l0 individuals, we have:

lx = l0 P[T0 > x] (3.9.6)

and, in terms of the survival function,

lx = l0 S(x) (3.9.7)

(provided that all the individuals in the cohort have the same mortality pattern, de-
scribed by S(x)). Thus, the lx’s are proportional to the values the survival function
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takes on integer ages x, and hence the life table can be interpreted as a tabulation of
the survival function.

The typical shape of the survival curve, namely the graph of the survival function,
is illustrated in Fig. 3.9.1. The analogy with the behavior of the lx’s is apparent (see,
for example, Fig. 3.2.1), and is justified by relation (3.9.7).

age x0

S(x)

1

Fig. 3.9.1 The survival function

We now assume that a life table is available, for example thanks to a period
observation providing an estimate of the mortality rates, from which the lx’s are
calculated, for x = 0,1,2, . . . , according to the procedure described in Sect. 3.2.3.
How to obtain the survival function for all real ages x?

Relation (3.9.7) suggests a practicable approach. First, for x = 0,1, . . . ,ω , set

S(x) =
lx
l0

(3.9.8)

using the available life table. Then, for x = 0,1, . . . ,ω and 0 < t < 1, define

S(x+ t) = (1− t)S(x)+ t S(x+1) (3.9.9)

and assume S(x) = 0 for x > ω . Hence, a piece-wise linear function is obtained.
Graduation models other than the linear model used in (3.9.9) can be adopted.

Moreover, the values of S(x) can be fitted using some mathematical formula; how-
ever, the use of formulae for representing the age-continuous mortality pattern can
be better placed in the framework we will describe in Sect. 3.9.3.

3.9.2 Other related functions

Other functions can be involved in age-continuous actuarial calculations. The most
important is the force of mortality (or mortality intensity), dealt with in Sect. 3.9.3.
In the present Section we introduce the probability density function (pdf) and the
distribution function of the random variable Tx, x ≥ 0.
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First, we focus on the random lifetime T0. Let f0(x) and F0(x) denote, respec-
tively, the pdf and the distribution function of T0. In particular, F0(x) expresses, by
definition, the probability of a newborn dying within x years. Hence,

F0(x) = P[T0 ≤ x] (3.9.10)

or, according to the usual notation,

F0(x) = xq0 (3.9.11)

Of course, we have
F0(x) = 1−S(x) (3.9.12)

The following relation holds between the pdf f0(x) and the distribution function
F0(x):

F0(x) =
∫ x

0
f0(t)dt (3.9.13)

Usually it is assumed that, for x > 0, the pdf f0(x) is a continuous function. Then,
we have

f0(x) =
dF0(x)

dx
= −dS(x)

dx
(3.9.14)

The graph of the pdf f0(x) is frequently called the curve of deaths (see also
Sect. 3.2.1).

Figure 3.9.2 illustrates the typical behavior of the pdf f0(x). Equation (3.9.14)
justifies the relation between the curve of deaths and the survival curve (see
Fig. 3.9.1). In particular, we note that the point of maximum downward slope in
the survival curve corresponds to the modal point (at adult-old ages) in the curve of
deaths.

age x0

f0(x)

Fig. 3.9.2 The probability density function

age x0

μx

Fig. 3.9.3 The force of mortality

Moving to the remaining lifetime at age x, Tx (x > 0), the following relations
link the distribution function and the pdf of Tx with the analogous functions relating
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to T0:

Fx(t) = P[Tx ≤ t] =
P[x < T0 ≤ x+ t]

P[T0 > x]
=

F0(x+ t)−F0(x)
S(x)

(3.9.15)

fx(t) =
dFx(t)

dt
=

dF0(x+ t)
dt

S(x)
=

f0(x+ t)
S(x)

(3.9.16)

From functions Fx(t) and fx(t) (and in particular, via (3.9.15) and (3.9.16), from
F0(t) and f0(t)), all of the probabilities involved in actuarial calculations can be
derived. For example:

t px = 1−Fx(t) =
∫ +∞

t
fx(u)du =

1
S(x)

∫ +∞

t
f0(x+u)du (3.9.17)

3.9.3 The force of mortality

Consider the function μx, defined for all x ≥ 0 as follows:

μx = lim
t→0

tqx

t
(3.9.18)

The function μx is called the force of mortality (or the mortality intensity, or the haz-
ard function). It can be estimated, for example for x = 0,1, . . . , using period mor-
tality observations. Then, the estimated values can be graduated, in particular using
a mathematical mortality law. A number of laws have been proposed in actuarial
and demographical literature, and are used in actuarial practice. Some important
examples are presented in Sect. 3.9.5.

Figure 3.9.3 shows the typical behavior of the force of mortality. The relation be-
tween its graph and the curve of deaths can be explained thanks to relation (3.9.21).

An interesting relation links the survival function to the force of mortality. From
definition (3.9.18), by using (3.9.4) we obtain

μx = lim
t→0

S(x)−S(x+ t)
t S(x)

(3.9.19)

and then

μx =
−dS(x)

dx
S(x)

(3.9.20)

and also (see (3.9.14)):

μx =
f0(x)
S(x)

(3.9.21)
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Hence, once the survival function S(x) has been assigned, the force of mortality can
be derived. Thus, the force of mortality does not add any information concerning
the age-pattern of mortality, provided that this has been described in terms of S(x).

The role of the force of mortality is to provide a tool for a fundamental state-
ment of assumptions about the behavior of individual mortality as a function of the
attained age. The Gompertz law for the force of mortality (see Sect. 3.9.5) pro-
vides an excellent example. Indeed, when μx has been assigned, relation (3.9.20)
is a differential equation. Solving with respect to S(x) (with the obvious boundary
condition S(0) = 1) leads to:

S(x) = e
−

∫ x

0
μt dt

(3.9.22)

Clearly, the possibility of finding a “closed” form for S(x) strictly depends on the
mathematical structure of μx.

Once the survival function has been obtained, then all survival and death proba-
bilities can be derived (see equations (3.9.3) to (3.9.5), with x, h and k positive real
numbers). In particular, for example

qx = 1− px = 1− S(x+1)
S(x)

= 1− e
−

∫ x+1

x
μt dt

(3.9.23)

Remark Functions of age x, like lx, qx, dx, etc. in the age-discrete context, and S(x), f0(x),
μx, etc. in the age-continuous context, constitute examples of biometric functions (other biometric
functions relate to disability, mortality of disabled people, and so on). In the age-discrete context,
they are also named life table functions.
We recall that, once one of these functions has been assigned, the other functions (in the same
context) can be derived. For example, in age-discrete calculations from the lx values we can derive
the functions qx, dx, etc.; in the age-continuous framework, from the force of mortality μx the
survival function can be calculated and then all of the probabilities of interest.
Links between quantities used in an age-discrete context (like lx, dx, etc.) and quantities used in
age-continuous circumstances (like S(x), f0(x), etc.) may be of interest, especially when comparing
and interpreting graphical representations of data provided by statistical experiences. The analogy
between lx and S(x) immediately emerges from (3.9.7). As regards dx (see Eq. (3.2.1)), the analogy
with the pdf f0(x) follows from the fact that the former is minus the first-order difference of the
function lx, while the latter is minus the derivative of the survival function S(x). Further, thanks to
relation (3.2.17), also the link between x|1q0 and f0(x) emerges.

3.9.4 Markers

Single-figure indices, namely markers, summarizing the lifetime probability distri-
bution can be defined also in a time-continuous context.

The expected total lifetime (or life expectancy at the birth) is defined as follows:
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ē0 = E[T0] =
∫ +∞

0
t f0(t)dt (3.9.24)

Integrating by parts, we can express ē0 in terms of the survival function:

ē0 =
∫ +∞

0
S(t)dt (3.9.25)

The definition can be extended to all (real) ages x. So, the expected remaining
lifetime at age x (or life expectancy at age x) is given by

ēx = E[Tx] =
∫ +∞

0
t fx(t)dt =

1
S(x)

∫ +∞

0
S(x+ t)dt (3.9.26)

For an individual age x, the expected age at death is clearly given by:

x+E[Tx] = ēx (3.9.27)

It is possible to prove that the expected values
◦
e0 and

◦
ex (see Eqs. (3.3.1) to

(3.3.4)) are approximations to the expected values ē0 and ēx respectively, by apply-
ing the trapezoidal rule to integrals in Eqs. (3.9.25) and (3.9.26).

Another location index is provided by the Lexis point which, in a time-continuous
context, is defined as the (old) age x(L) such that

f0(x(L)) = max
x

{ f0(x)} (3.9.28)

A traditional variability measure is provided by the variance of the random life-
time:

Var[T0] =
∫ +∞

0
(t − ē0)2 f0(t)dt (3.9.29)

The interquartile range provides another variability measure. It is defined as fol-
lows:

IQR[T0] = x(75) − x(25) (3.9.30)

where x(25) and x(75) are respectively the first quartile (the 25-th percentile) and the
third quartile (the 75-th percentile) of the probability distribution of T0, namely the
ages such that S(x(25)) = 0.75 and S(x(75)) = 0.25. Note that IQR decreases as the
lifetime distribution becomes less dispersed.

The 10-th percentile of the probability distribution of T0, x(10), is usually called
the endurance; thus, S(x(10)) = 0.90.

The probability of a new born dying before a given age x′,

x′q0 = 1−S(x′) =
∫ x′

0
f0(t)dt (3.9.31)

for x′ small (say 1, or 5), provides a measure of infant mortality.
Figure 3.9.4 illustrates some markers of practical interest.
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3.9.5 Parametric models

Parametric models, i.e. mortality laws, have been proposed in relation to various
functions expressing the age-pattern of mortality, in both the age-discrete and the
age-continuous context. An important example, namely the Heligman-Pollard laws
which focus on the odds and the one-year probabilities of death, have been presented
in Sect. 3.4.2. In the age-continuous context, a number of mortality laws refer to
the force of mortality, μx, although some of them have been originally proposed in
different terms.

The Gompertz law, proposed in 1825, is as follows:

μx = Bcx (3.9.32)

with B,c > 0. Sometimes the following equivalent notation is used

μx = α eβ x (3.9.33)

It is interesting to look at the hypothesis underlying the Gompertz law. Assume
that, moving from age x to age x + Δx, the increment of the mortality intensity is
proportional to its initial value, μx, and to the length of the interval, Δx; thus

Δ μx = β μx Δx (3.9.34)
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with β > 0. This assumption leads to the differential equation

dμx

dx
= β μx, (3.9.35)

and finally to (3.9.33), with α > 0. The Gompertz law is used to represent the age
progression of mortality at the old ages, namely the senescent mortality.

The (first) Makeham law, proposed in 1867, is a generalization of the Gompertz
law, namely

μx = A+Bcx (3.9.36)

where the term A ≥ 0 (independent of age) represents non-senescent mortality, e.g.
because of accidents. The following equivalent notation is also used:

μx = γ +α eβ x (3.9.37)

By using (3.9.22), from (3.9.36) we obtain:

S(x) = exp

(
−Ax− B

logc
(cx −1)

)
(3.9.38)

In particular, setting A = 0 we find the survival function of the Gompertz law.
The second Makeham law, proposed in 1890, is as follows

μx = A+H x+Bcx (3.9.39)

and hence constitutes a further generalization of the Gompertz law.
The Thiele law, proposed in 1871, can represent the age-pattern of mortality over

the whole life span (see Fig. 3.9.3):

μx = Ae−Bx +C e−D(x−E)2
+F Gx (3.9.40)

where all the parameters are positive real numbers. The first terms decreases as
the age increases and represents the infant mortality. The second term, which has
a “Gaussian” shape, represents the mortality hump (mainly due to accidents) at
young-adult ages. Finally, the third term (of a Gompertz type) represents the senes-
cent mortality.

It is worth noting that the structure of the first Heligman-Pollard law (as well as
its aim, namely to represent the age-pattern of mortality over the whole life span) is
analogous to the structure of Thiele’s law.

In 1932 Perks proposed two mortality laws. The first Perks law is as follows:

μx =
α eβx + γ
δ eβx +1

(3.9.41)

Conversely, the second Perks law has the following more general structure
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μx =
α eβx + γ

δ eβx + ε e−βx +1
(3.9.42)

Perks’ laws, whose graphs have a logistic shape, play an important role in represent-
ing the mortality pattern at very old ages (say, beyond 80). Actually, recent statistical
observations show that the force of mortality is slowly increasing at very old ages,
approaching a rather flat shape. This fact leads to the rejection of the exponential
increase (implied by the previous models).

3.10 Stochastic mortality

3.10.1 Number of people alive in a cohort

Assume that, at time t = 0, a “group” (for example a pension fund, or a portfolio
of life insurance contracts) consists of n0 initial individuals. Further, assume that all
the members of this group are aged x initially, and that no other individual will enter
the group in future years. Thus, the group is a cohort. Finally, assume that the only
cause of exit is the death.

The number of people alive at time t, t = 1,2, . . . , is a random number, which we
denote with Nt . Any sequence of integers n1,n2, . . . , such that

n0 ≥ n1 ≥ n2 ≥ . . . (3.10.1)

is a possible outcome of the random sequence

N1, N2, . . . (3.10.2)

Of course, any single outcome of the random sequence (3.10.2) does not pro-
vide, by itself, significant information about the reasonable evolution of the cohort.
Conversely, the meaning of “reasonable” can be specified as soon as a probabilistic
structure describing the lifetimes of the cohort members has been assigned.

3.10.2 Deterministic models versus stochastic models

We assume that the individuals in the cohort are analogous in respect of the age-
pattern of mortality, thus for all the individuals we assume the same life table (or
survival function). Hence, the probability of being alive at time t is given, for any
member of the cohort, by t px = lx+t

lx
.

It follows that the expected number of individuals alive at time t, out of the initial
n0 members, is given by

E[Nt ] = n0 t px; t = 1,2, . . . (3.10.3)
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It should be noted that, although formula (3.10.3) involves probabilities, the
model built up so far is a deterministic model, as probabilities are only used to de-
termine expected values and the probabilities themselves are assumed to be known.
A first step towards stochastic models follows.

We assume that the random lifetimes of the individuals in the cohort are inde-
pendent. For any given t and for j = 1,2, . . . ,n0, we denote by E

( j)
t the event “the

member j is alive at time t”. Of course, P[E ( j)
t ] = t px for all j. From the indepen-

dence of the lifetimes, the independence of the events E
( j)

t , j = 1,2, . . . ,n0 follows.
We note that Nt can be defined as the random number of true events out of the n0

events defined above; hence, Nt has a binomial distribution, with parameters n0, t px.
Thus

P[Nt = k] =
(

n0

k

)
(t px)k(1− t px)n0−k; k = 0,1, . . . ,n0 (3.10.4)

In particular, the variance of Nt is given by

Var[Nt ] = n0 t px (1− t px) (3.10.5)

Example 3.10.1. We consider a cohort of n0 individuals, all age x = 40 initially. We
assume that the age-pattern of mortality is described by the first Heligman-Pollard
law, with the parameters specified in the Example 3.4.1.

Figures 3.10.1 and 3.10.2 refer to a cohort initially consisting of n0 = 500 indi-
viduals. The probability distributions of N5 and N10, respectively, are depicted. In
particular, we have

E[N5] = 496.269; Var[N5] = 3.703; CV[N5] = 0.003878

E[N10] = 490.083; Var[N10] = 9.720; CV[N10] = 0.006362
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Fig. 3.10.1 Probability distribution of N5
(n0 = 500)
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Fig. 3.10.3 Probability distribution of N5
(n0 = 1000)
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Fig. 3.10.4 Probability distribution of N10
(n0 = 1000)

In Figs. 3.10.3 and 3.10.4 the probability distributions of N5 and N10 are respec-
tively illustrated, referring to a cohort initially consisting of n0 = 1000 individuals.
In particular, we have

E[N5] = 992.538; Var[N5] = 7.406; CV[N5] = 0.002741;

E[N10] = 980.166; Var[N10] = 19.441; CV[N10] = 0.004498

The effect of the portfolio size on the variability of the results (namely, the pool-
ing effect) is evident: in particular the relative variability, which is expressed by the
coefficient of variation (see Sect. 1.5.2), decreases, at any time, as the portfolio size
increases. The effect of the portfolio size also emerges if we compare the graphs in
Figs. 3.10.1 and 3.10.2, on the one hand, to those in Figs. 3.10.3 and 3.10.4 on the
other, of course taking into account the different scales adopted for the axes. Note
that, on the contrary, for any given portfolio size the variability (in both absolute and
relative terms) increases as the time increases.
�

The probability distribution of Nt witnesses the presence of random fluctuations
in the number of survivors around its expected value E[Nt ]. As seen in Sect. 2.3.1,
random fluctuations are the consequence of the process risk, which, in the demo-
graphical framework, constitutes one of the components of the mortality / longevity
risk. Conversely, systematic deviations are the consequence of the uncertainty risk,
which constitutes another component of the mortality / longevity risk.

According to recent glossary standards, in the following we will use the term
mortality risk to denote a mortality higher than that expected, when this generates
negative consequences (for example, for an insurer dealing with death benefits).
Conversely, the term longevity risk will denote a mortality lower than expected,
when this originates negative consequences (for example, for an insurer dealing with
life annuities). The expression mortality / longevity risk will be used to generically
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denote risks arising from lifetimes. Note that the mortality and the longevity risk
may consist of random fluctuations as well as systematic deviations.

Remark The mortality and the longevity risks belong to the class of biometric risks, which
include all the risks related to human life conditions. Thus, besides mortality and longevity risks,
also risks arising from the behavior of disability, natality, and so on, fall in the class of biometric
risks.

3.10.3 Random fluctuations in mortality

Further insights into the process risk can be obtained looking at the random behavior
of the number of survivors in the cohort over time. As life insurance is, typically, a
medium-long term business, the features of this activity can be better perceived in a
dynamic perspective.

To this purpose, we can implement a simulation procedure, based on the genera-
tion of (pseudo-) random numbers. The procedure can be as follows:

1. simulate the random lifetime (i.e. the age at death) for each member of the cohort;
2. given the simulated values of the n0 lifetimes, calculate the numbers of individu-

als alive at times 1,2, . . . , namely the simulated outcome n1,n2, . . . of the random
sequence N1,N2, . . . ;

3. repeat steps 1 and 2, for a given number s of times.

The output of this procedure is a (simulated) sample consisting of s outcomes, or
paths, of the random sequence N1,N2, . . . .

Example 3.10.2. We consider a cohort of n0 = 100 individuals, all age x = 40 ini-
tially. As in Example 3.10.1, we assume the age-pattern of mortality described by
the first Heligman-Pollard law, with the parameters specified in Example 3.4.1.

Figure 3.10.5 illustrates the behavior of 50 paths of the random sequence

N1,N2, . . . ,N10

namely limited to the first 10 years. The dashed line represents the sequence of
expected values

E[N1],E[N2], . . . ,E[N10]

around which the simulated paths develop.

�

For any given time t, information about the distribution of the random number
Nt can be obtained looking at the simulated outcomes of Nt , namely by constructing
the statistical distribution of Nt .

However, it is worth noting that, when just one cohort consisting of individu-
als with the same age-pattern of mortality is involved, probability distributions of
the random numbers of survivors can be found via analytical formulae, as seen in
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Fig. 3.10.5 Simulated number of survivors: random fluctuations

Sect. 3.10.2. Further, approximations to the probability distribution of the numbers
of people dying in the various years can be adopted, when several initial ages and
thus several mortality patterns are involved.

Conversely, simulation procedures are useful, even when the structure by age
of the cohort is very simple, when we have to analyze the behavior of quantities
depending on the random numbers of people alive or dying. Important examples are
given by the cash-flows in life insurance portfolios. So, the simulation procedure we
have described should be meant as the starting point for building up more complex
models involving, for example, incomes and outflows. Examples will be provided
in the following chapters.

3.10.4 Systematic deviations in mortality

In order to represent the age-pattern of mortality in a given group (namely, a life
insurance portfolio or a pension plan), we have to choose a life table or a mortality
law. However, the mortality actually experienced by the group in future years may
“systematically” differ from the one we have assumed. This may occur for various
reasons. For example:

• because of poor past experience, we have chosen a life table relying on mortality
experienced in other populations;

• the future trend in mortality differs from the forecasted one (expressed by a pro-
jected table).
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So, whatever hypothesis has been assumed, the future level and trend in mortality
are random. Then, an uncertainty risk arises, namely a risk due to the uncertainty in
the representation of the mortality scenario. Hence, systematic deviations from the
expected values can occur, which combine with ordinary random fluctuations. See
Sect. 2.3.10 for an introduction to this topic.

Example 3.10.3. We refer to the cohort already considered in Example 3.10.2. First,
we assume the age-pattern of mortality described by the Heligman-Pollard law with
the parameters adopted in Example 3.10.2. Then, we suppose that the future mor-
tality follows the Heligman-Pollard law in which parameters G and H are replaced
by

Ḡ = 0.000022875; H̄ = 1.0878

We denote by E[Nt |G,H] and E[Nt |Ḡ, H̄], t = 1,2, . . . , the expected values based on
the first and the second assumption respectively.

Figure 3.10.6 illustrates the behavior of 50 paths of the random sequence

N1,N2, . . . ,N10

(i.e. limited to the first 10 years), simulated according to the new assumption about
the mortality. The dashed line represents the expected values

E[N1|G,H],E[N2|G,H], . . . ,E[N10|G,H]

whereas the dotted line represents the expected values

E[N1|Ḡ, H̄],E[N2|Ḡ, H̄], . . . ,E[N10|Ḡ, H̄]

around which the simulated paths develop.
The process risk causes the random fluctuations around the E[Nt |Ḡ, H̄]’s, whilst

the uncertainty risk originates the systematic deviations from the E[Nt |G,H]’s.

�

3.10.5 The impact of mortality / longevity risk on life insurance

The impact of mortality / longevity risk on the results of a life insurance portfolio
depends on the features of the insurance products involved.

For example, an actual mortality lower than anticipated leads to insurer’s profits
when just benefits in the case of death are concerned. This can be originated either
by random fluctuations in mortality, or by an overestimation of the probabilities of
death. On the contrary, a mortality higher than expected may cause insurer’s losses.
Thus, the term mortality risk (see Sect. 3.10.2) expresses a downside risk for the
insurer providing death benefits.

Conversely, when a life annuity portfolio is involved, an actual mortality lower
than anticipated causes losses as only benefits in the case of survival are concerned.
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Fig. 3.10.6 Simulated number of survivors: systematic deviations (and random fluctuations)

Heavy negative results can be the consequence of an overestimation of the proba-
bilities of death, and hence an underestimation of the probabilities of survival; in
particular, this can be caused by a mortality trend leading to unanticipated mortality
improvements. The term longevity risk is then used to express a downside risk for
the insurer providing benefits in case of survival, e.g. life annuities.

3.11 References and suggestions for further reading

A number of textbooks of actuarial mathematics deal with life tables and mortality
models, in both an age-discrete and an age-continuous context. The reader can refer
for example to [10], [16], [20], [25], [26], [47], and [49].

The textbook [5] is particularly devoted to mortality analysis, graduation methods
and mortality laws. For risk classification in life insurance and the numerical rating
system in particular, the reader should refer to [15].

The reader interested in various perspectives on forecasting mortality can con-
sult [52]. The textbook [46] is specifically devoted to mortality projections and the
impact of future mortality trends on the costs of life annuities.

Historical aspects, also concerning the construction of life tables and mortality
modeling in general, are dealt with in [27].

Mortality data can be found on a number of websites. As regards population
mortality, we cite the following databases.

• The Human Mortality Database (HMD) is maintained by the Department of De-
mography at the University of California, Berkeley (USA), and the Max Planck
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Institute for Demographic Research, Rostock (Germany). It provides information
about mortality for 37 countries, based on official observations. HMD is available
at www.mortality.org or www.humanmortality.de.

• The Human Life-Table Database (HLD) provides national life tables published
officially, as well as non-official tables produced by researchers. HLD includes
countries not included in HMD, because of lack of official sources. Three sci-
entific institutions are jointly developing the HLD: the Max Planck Institute for
Demographic Research, Rostock (Germany), the Department of Demography at
the University of California, Berkeley (USA), and the Institut National d’Études
Démographiques, Paris (France). HLD is available at www.lifetable.de.

• The database maintained by the World Health Organization (WHO) provides
data for 130 countries, based on civil registration systems. Mortality data are
subdivided by causes of death. WHO is available at www.who.int/en.

Mortality data related to insurance markets can be found on several websites. We
cite the following ones.

• The American Academy of Actuaries provides mortality tables constructed
by the Commissioners Standard Ordinary (CSO) Task Force. See
www.actuary.org/life/cso_0702.asp.

• Mortality data related to the United Kingdom insurance and pension market
are provided by Continuous Mortality Investigation (CMI) Library, available at
www.actuaries.org.uk/knowledge/cmi. Data concern assured lives,
annuitants, pensioners. Mortality projections are also available.





Chapter 4
Life insurance: pricing

4.1 Life insurance products

A short description of the main features of life insurance products is provided in
this Section, which mainly aims at paving the way to premium calculation and other
quantitative assessments.

4.1.1 General aspects

The object of a life insurance contract is to pay benefits depending on events con-
cerning the lifetime of one or more individuals. The amount of benefits can be quan-
tified in various ways. The following arrangements are of practical interest.

1. Amount of benefits stated at policy issue (namely, fixed benefits). In this case, we
can have:

a. benefit with a constant amount;
b. benefit with an amount varying according to a stated rule (e.g. exponentially

increasing, arithmetically decreasing, and so on).

2. Initial amount of benefits stated at policy issue, then varying because of some
linking mechanism. Various linking models have been proposed and imple-
mented; in particular we find:

a. inflation-linked benefits;
b. unit-linked benefits (namely, linked to the value of the unit of an investment

fund);
c. increasing benefits via profit participation, for example:

i. bonus mechanisms (adopted in the UK);
ii. revaluation mechanisms (adopted in continental Europe).

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 197
DOI 10.1007/978-3-642-16029-5 4, c© Springer-Verlag Berlin Heidelberg 2011
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Insurance products with benefits of type 1 are dealt with in this Chapter, whereas
benefits of type 2 will be described in Chap. 7.

Besides the insurer, the parties involved in an insurance contract are:

• the insured (or the insureds), whose lifetime determines the payment of benefits;
• the contractor (or policyholder), who makes the contract and pays the pre-

mium(s);
• the beneficiary, who receives the benefits.

Two, or even three, of the parties above mentioned can coincide, depending on
the type of benefits provided by the insurance contract. In what follows we will dis-
regard insurance products involving more than one individual as the insured party.

The following categories of life insurance products can be singled out.

1. Insurance products providing benefit in the case of survival.

• Their aim is to provide the beneficiary (who can coincide with the contractor
and the insured) with deferred amounts;

• the benefit is either a lump sum or an annuity;
• typical products are the pure endowment and the life annuities.

2. Insurance products providing benefit in the case of death.

• These products aim to cover the death risk and the related financial conse-
quences;

• the benefit is usually a lump sum (whereas annuities are less common) paid to
the beneficiary (while the contractor and the insured can coincide);

• the term insurance and the whole life insurance belong to this category.

3. Insurance products combining death and survival benefits.

• In these products, usually the benefit is certain, although paid at a random
time;

• the benefit is a lump sum; two distinct beneficiaries are usually involved, one
for the benefit in the case of death, and the other (who can coincide with the
insured and the contractor) for the benefit in the case of survival;

• a typical product is the endowment insurance.

Further categories could be added in order to enlarge the framework of life in-
surance (also in accordance to legislation and market practice in many countries).
For example, products providing disability benefits constitute an important cate-
gory, as well as products in which benefits are linked to the insured’s health condi-
tions. Moreover, disability or health-related benefits can be packaged in insurance
products providing benefits related to the insured’s lifetime, thus constituting sup-
plementary (or rider) benefits. In the following, we will disregard these types of
benefits.

Various premium arrangements, meeting the benefits, can be conceived. In par-
ticular, we can have:

1. a single premium, paid at the policy issue;
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2. a sequence of periodic premiums, the first one paid at the policy issue, and the
following ones paid, for example, at the policy anniversaries.

Whatever the premium arrangement, at any time the policyholder should be in
a credit position (and, hence, the insurer in a debt position). We will focus on this
feature in Sect. 4.4.1.

Premiums, benefits and expenses are the monetary ingredients of any life insur-
ance product. The related cash-flow streams develop throughout the policy duration.
In order to achieve an equilibrium situation, premiums must meet benefits and ex-
penses. Hence, when benefits are stated and expenses assessed, premiums must be
consequently determined. Conversely, if the amount of premiums is chosen by the
policyholder, the benefits which can be financed by the premiums (net of expenses)
have to be calculated.

The relation which links premiums, on the one hand, to benefits and expenses,
on the other, must rely on a premium calculation principle. A principle commonly
adopted in life insurance technique is the equivalence principle (see Sect. 1.7.4,
and Cases 4a and 4b in particular), according to which the expected present value
(shortly, the actuarial value) of benefits (and expenses) must be calculated.

In Sect. 4.2 we address the basics of expected present values in life insurance
covers. For brevity, we will use the term “discounting” to denote the calculation
of expected present values. In Sects. 4.3 to 4.4 we will focus on the application of
this principle to net premium calculation. Finally, in Sect. 4.5 we will deal with the
calculation of premiums also allowing for expenses.

4.1.2 Alterations of a life insurance contract

The “natural” conclusion of a life insurance contract occurs either at the maturity
of the contract itself (and with the payment of the survival benefit, if any), or at the
insured’s death (and with the payment of the death benefit, if any).

Nevertheless, according to usual policy conditions, the policyholder has the right
to alter some contract features. The following alterations are of practical interest:

• early termination;
• conversion.

In general, any alteration is determined by the exercise of an insured’s option,
and implies a change in future cash-flow streams (premiums, benefits, expenses).

The early termination of an insurance contract usually occurs because of ces-
sation of the payment of periodic premiums. If the insurance contract provides a
benefit certain, in the case of early termination a cash amount, called the surrender
value, is paid to the policyholder. The surrender value is linked to the policyholder’s
credit, as we will see in Sect. 5.7.

As regards products only providing a benefit in the case of survival at maturity,
the cessation of premium payments leads to a reduction of the sum insured, rather
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than a cash payment. This restriction to the possibility of surrendering clearly aims
at reducing the risk of adverse selection in policyholders’ choices.

Further, no surrender (and hence no cash payment) takes place when the policy-
holder’s credit is very small. This happens in the first policy years (the first and the
second, in particular) of a large range of insurance products with periodic premiums,
as well as throughout the whole duration of short-term insurances just providing a
death benefit. In all these cases the cessation of premium payment simply leads to
the lapse of the contract.

The policyholder’s credit can be used to help finance a conversion of an insur-
ance policy, that is, a change in some elements of the policy itself. For example, an
increase in the sum insured can be financed by both the policyholder’s credit and
future increased premiums.

Another example of conversion is given by the transformation of an insurance
contract into a paid-up insurance contract, namely one for which no further premium
payments are required. The sum insured is of course reduced, and its amount is
determined accounting for the policyholder’s credit, as we will see in Sect. 5.7.

4.2 Discounting cash-flows

Each insurance contract originates cash-flows. In particular, we will denote as cash-
inflow stream any sequence of amounts cashed by the insurer, and cash-outflow
stream any sequence of amounts paid by the insurer.

In what follows, we focus on discounting cash-inflows and outflows.

4.2.1 Premiums, benefits, expenses

The cash-inflow originated by an insurance contract consists of a sequence of pre-
miums. In particular, it can reduce to a single premium, cashed at the policy issue.

The cash-outflows, namely the amounts paid by the insurer, consist of:

1. the benefits,
2. the expenses.

Most of the items of the cash-flow streams are deferred (that is, cashed or paid
by the insurer after the policy issue), and random, as they depend on the random
lifetime of the insured. Thus, the amounts which will be actually cashed and paid
depend on the outcome of the lifetime.

Example 4.2.1. Figure 4.2.1 provides an example of cash-flow streams in a life in-
surance contract.

• Benefits are defined as follows:
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– the amount Ch, h = 1,2, . . . ,5 is paid at time h if the insured dies between time
h−1 and h; thus, the Ch’s are death benefits;

– the amount S is paid at time 5 (that is, at maturity), if the insured is alive at
that time; thus, S is a survival benefit.

• The expense EX0 is paid at the policy issue, i.e. at time t = 0.
• Premiums P0,P1,P2 are cashed at time t = 0,1,2 respectively; however, the sec-

ond and the third one are cashed provided that the insured is alive at time t = 1
and t = 2 respectively.

Note that only the premium P0 and the expense EX0 are immediate and hence cer-
tain.

10

C2 C3 C4 C5C1

EX0

S

P0 P1 P2

Death benefits 

Survival benefit 

Expenses 

Premiums                   INFLOW 

OUTFLOWS 

time 2 3 4 5

Fig. 4.2.1 Cash-inflows and outflows in a life insurance contract

Figure 4.2.2 illustrates the actual outcomes of the cash-flows, in the case of death
in the second year (panel (a)), and in the case of survival at maturity (panel (b)).
Clearly, all missing items (compared to those in Fig. 4.2.1) do not belong to the
actual cash-flows.
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Fig. 4.2.2 Actual outcomes of cash-inflows and outflows

�

In what follows, we first focus on outflows originated by benefits, namely disre-
garding expenses. We denote the time of policy issue as time 0, and assume the year
as the time unit.
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4.2.2 A lump sum benefit in the case of death

Assume that the amount C will be paid at time h to the beneficiaries if the insured
dies between time h−1 and h, i.e. during the h-th policy year (where h is given).

We denote with Y the random present value (at time 0) of this benefit. We assume
that x is the insured’s age at policy issue, and denote with Kx her curtate remaining
lifetime (see Sect. 3.2.7). Hence

Y =

{
C (1+ i)−h if Kx = h−1

0 otherwise
(4.2.1)

where i is the interest rate used for discounting.
Further, we denote with h−1|1qx the probability of dying in year h-th (see

Sects. 3.2.5 and 3.2.6, and formula (3.2.16) in particular). Then, the expected present
value is given by

E[Y ] = C (1+ i)−h
h−1|1qx (4.2.2)

4.2.3 A lump sum benefit in the case of survival

Assume that the amount S will be paid at time m (a stated time) to the beneficiaries
(the insured in particular) if the insured is alive at that time.

We still denote with Y the random present value (at time 0) of this benefit. Hence

Y =

{
S (1+ i)−m if Kx ≥ m

0 otherwise
(4.2.3)

Further, we denote with m px the probability of being alive at time m (see
Sect. 3.2.5, and formulae (3.2.9) and (3.2.10) in particular). Then, the expected
present value of the benefit is given by

E[Y ] = S (1+ i)−m
m px (4.2.4)

4.2.4 Combining benefits

Formulae (4.2.1) and (4.2.2), as regards benefits in the case of death, and formulae
(4.2.3) and (4.2.4), as regards benefits in the case of survival, constitute the building
blocks for more complex structures expressing random present values and expected
present values. We note that expected present values can be easily derived, thanks
to the additivity of the expectation.

For example, assume that:
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• the amount Ch will be paid at time h to the beneficiaries if the insured dies be-
tween time h−1 and h, h ≤ m, where m denotes the policy term;

• the amount S will be paid at time m to the beneficiaries (the insured in particular)
if the insured is alive at that time.

Note that this benefit structure has been considered in Example 4.2.1, with m = 5.
Further, setting S = 0 and Ch = C for h = 1,2, . . . ,m, we find the insurance product
illustrated as Case 4b in Sect. 1.7.4.

The random present value of the benefits is given by:

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 (1+ i)−1 if Kx = 0

C2 (1+ i)−2 if Kx = 1

. . . . . .

Cm (1+ i)−m if Kx = m−1

S (1+ i)−m if Kx ≥ m

(4.2.5)

Then, the expected present value is as follows:

E[Y ] =
m

∑
h=1

Ch (1+ i)−h
h−1|1qx +S (1+ i)−m

m px (4.2.6)

By combining survival benefits, we can define the cash-flow streams originated
by life annuities. Assume, in particular, that the amount S is paid to the insured
(namely, the “annuitant”), at times 1,2, . . . , while she is alive. Then, we have:

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Kx = 0

S (1+ i)−1 if Kx = 1

S (1+ i)−1 +S (1+ i)−2 if Kx = 2

S (1+ i)−1 +S (1+ i)−2 +S (1+ i)−3 if Kx = 3

. . . . . .

(4.2.7)

or, according to the notation commonly adopted in financial mathematics:

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Kx = 0

Sa1� if Kx = 1

Sa2� if Kx = 2

Sa3� if Kx = 3

. . . . . .

(4.2.8)

In compact terms, (4.2.8) can be written as follows:

Y = SaKx� (4.2.9)

The expected present value is then given by



204 4 Life insurance: pricing

E[Y ] = E[SaKx�] = S
ω−x

∑
h=1

ah� h|1qx (4.2.10)

where ω denotes the maximum attainable age.
An alternative expression for the expected present value of a life annuity can be

found thanks to the identity

k px =
ω−x

∑
h=k

h|1qx (4.2.11)

that holds for any integer k. After a little algebra, we obtain the following expression

E[Y ] = S (1+ i)−1
1 px +S (1+ i)−2

2 px +S (1+ i)−3
3 px + . . . (4.2.12)

which has an easy direct interpretation.

Remark Formulae (4.2.10) and (4.2.12) reflect, in a modern form, calculation procedures pro-
posed in the second half of the 17th century. Indeed, formula (4.2.10) generalizes the calcula-
tion procedure proposed in 1671 by the Dutch prime minister Jan de Witt, while formula (4.2.12)
was proposed in 1693 by Edmond Halley, the famous astronomer. It is worth noting that formula
(4.2.12) is computationally more straightforward, whereas formula (4.2.10) is much more interest-
ing for further developments. In fact, as (4.2.10) directly refers to the random number Kx, de Witt’s
method can be easily adopted to calculate higher moments, e.g. the variance of the random present
value, aKx�, of a life annuity.

4.2.5 Actuarial values: terminology and notation

In the previous sections, we have shown that, for any given set of benefits, a random
present value, Y , can be defined, and this value is a function of the remaining random
lifetime of the insured, Kx. The expected value of Y is the actuarial value of the
benefits. As seen above, its calculation consists in discounting the benefits, and relies
on a life table and the interest rate i, which constitute the technical basis.

We now define the terminology used to denote cash-flows related to life insurance
contracts, and the notation for the relevant actuarial values. Although reference is
mainly to benefits, some of the following actuarial values are of interest also when
evaluating inflows arising from periodic premiums, as well as outflows related to
expenses.

The actuarial value of 1 monetary unit payable at time m if the insured (currently
age x) is alive at that time, is given by:

mEx = (1+ i)−m
m px (4.2.13)

(see (4.2.4)). This benefit is provided by the pure endowment insurance.
Consider a sequence of unitary amounts, payable at the beginning of each year as

long as the insured is alive. The benefit is provided by the whole life annuity (paid
in advance). Its actuarial value is given by:
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äx =
ω−x

∑
h=0

hEx (4.2.14)

If the annual amounts are payable for at most m years, we have the temporary
life annuity (paid in advance), whose actuarial value is:

äx:m� =
m−1

∑
h=0

hEx (4.2.15)

Conversely, if the annual amounts are payable as long as the insured is alive,
but starting from time r, we have the deferred life annuity (paid in advance). The
actuarial value is given by:

r|äx =
ω−x

∑
h=r

hEx = äx − äx:r� (4.2.16)

Combining the restrictions defined above, we have:

r|äx:m� = äx:r+m� − r|äx (4.2.17)

Formulae similar to the previous ones express the actuarial values of sequences of
unitary amounts, payable at the end of each year, namely the values of life annuities
paid in arrears. We have:

ax =
ω−x

∑
h=1

hEx = äx −1 (4.2.18)

ax:m� =
m

∑
h=1

hEx (4.2.19)

r|ax =
ω−x

∑
h=r+1

hEx = ax −ax:r� (4.2.20)

r|ax:m� = ax:r+m� − r|ax (4.2.21)

The actuarial value of a unitary amount payable at time h if the insured dies
between time h and h+1 is given by:

h|1Ax = (1+ i)−(h+1)
h|1qx (4.2.22)

(see (4.2.2)).
The actuarial value of a unitary amount payable at the end of the year of death,

if this occurs within m years, is as follows:

mAx =
m−1

∑
h=0

h|1Ax (4.2.23)
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This benefit is provided by the term insurance (or temporary insurance).
Conversely, if the amount is payable whenever the death occurs, we have the

whole life insurance; its actuarial value is given by:

Ax =
ω−x

∑
h=0

h|1Ax (4.2.24)

Death benefit can be restricted to time intervals which start after a given period
r (the deferred period) has been elapsed since policy issue. Then, we have the fol-
lowing actuarial values:

r|mAx =
r+m−1

∑
h=r

h|1Ax (4.2.25)

r|Ax =
ω−x

∑
h=r

h|1Ax (4.2.26)

Of course:
Ax = rAx + r|Ax (4.2.27)

Combining the benefits provided by the pure endowment and the term insurance
(whose actuarial values are given by formulae (4.2.13) and (4.2.23) respectively),
we obtain the benefit provided by the endowment insurance. Its actuarial value is
then:

Ax,m� = mEx + mAx (4.2.28)

We note that the resulting benefit consists in paying the unitary amount at the end
of the year of death, if this occurs before m, or at time m at the latest.

Actuarial values (4.2.22) to (4.2.28) can be “adjusted” to allow (approximately)
for benefit payment at the time of death, instead of the end of the year of death.
Assuming that the probability distribution of the time of death is uniform over each
year, we first define:

h|1Āx = (1+ i)−
(

h+ 1
2

)
h|1qx = h|1Ax (1+ i)

1
2 (4.2.29)

Then, we find:

mĀx = mAx (1+ i)
1
2 (4.2.30)

Āx = Ax (1+ i)
1
2 (4.2.31)

Āx,m� = mEx + mĀx (4.2.32)

Remark The notation defined in this Section is commonly used in the actuarial practice, espe-
cially in continental Europe. Nonetheless, it differs, to some extent, from the “standard” notation
proposed at an international level. The interested reader can refer to some textbooks quoted in
Sect. 4.6.
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4.2.6 Actuarial values: inequalities

For any pair x, m, and any technical basis, the following inequalities hold:

mAx ≤ Ax ≤ Ax,m� (4.2.33)

mEx ≤ (1+ i)−m ≤ Ax,m� (4.2.34)

In particular, we note what follows.

• The inequality mAx ≤Ax holds because the benefit provided by the term insurance
is just a “part” of that provided by the whole life insurance (see (4.2.27)). In
practice, we have mAx < Ax, if x and m are not huge numbers.

• The inequality Ax ≤ Ax,m� holds because the endowment insurance pays the
benefit not later than the whole life insurance (see the comment after formula
(4.2.28)). In particular, we have Ax = Ax,m� = 1 if i = 0; in fact, the benefit is paid
certainly in both the insurance products, only the time of payment being random.

• The inequality mEx ≤ (1+ i)−m is obvious, as the pure endowment benefit is paid
only if the insured is alive at time m (and, in practice, we have mEx < (1+ i)−m).

• As the endowment insurance pays the benefit at time m at the latest, the inequality
(1+ i)−m ≤ Ax,m� follows.

4.2.7 Actuarial values with zero interest rate

When a zero interest is assumed, namely no time-value of the money is accounted
for, actuarial values only depend on probabilities assigned to the possible outcomes
of the insured’s lifetime. For example:

mAx =
m−1

∑
h=0

h|1qx = mqx (4.2.35)

mEx = m px (4.2.36)

On the contrary, when the payment of the benefit is certain, whatever the in-
sured’s lifetime, probabilities do not affect the actuarial value. This is the case, for
example, of the whole life insurance and the endowment insurance. Indeed, we have:

Ax =
ω−x

∑
h=0

h|1qx (4.2.37)

Ax,m� =
m−1

∑
h=0

h|1qx + m px (4.2.38)

Then, as seen in Sect. 4.2.6, we find:
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Ax = Ax,m� = 1 (4.2.39)

A further interesting result concerns the relation between the life expectancy at
age x (see Sect. 3.3.1) and the actuarial value of a life annuity. From (4.2.18) and
(4.2.13), if i = 0 we have:

ax =
ω−x

∑
h=1

h px (4.2.40)

and hence, via (3.3.4), we obtain:

◦
ex = ax + 1

2 (4.2.41)

4.2.8 The actuarial discount factor

Consider, for example, the actuarial value defined by (4.2.26), namely

r|Ax =
ω−x

∑
h=r

h|1Ax =
ω−x

∑
h=r

(1+ i)−(h+1)
h|1qx (4.2.42)

Using relation (3.2.16), we can write

r|Ax = (1+ i)−r
r px

ω−x−r

∑
h=0

(1+ i)−(h+1)
h|1qx+r (4.2.43)

and finally:

r|Ax = rEx Ax+r (4.2.44)

In Eq. (4.2.44) the actuarial value rEx plays the role of r-year actuarial discount
factor (at age x), thanks to which an actuarial value of deferred benefits (that is, r|Ax)
can be expressed in terms of an actuarial value of immediate benefits (Ax+r).

Note that, while rEx is the actuarial value at time 0 (age x) of 1 unit payable at

time r (age x+ r) in the case of survival,
1

rEx
is the amount payable at time r whose

actuarial value at time 0 is 1 unit. Thus,
1

rEx
can be meant as the r-year actuarial

accumulation factor (at age x).
Relations similar to (4.2.44) are based on formula (3.2.11). In particular, we have:

r+mEx = rEx mEx+r (4.2.45)

r|äx = rEx äx+r (4.2.46)

Remark Relations like (4.2.44), (4.2.45), and (4.2.46) require, of course, that the same technical
basis is adopted in both the terms of the right-hand side. In particular, relation (4.2.46) relies on
mortality (and interest) assumption at age x, e.g. x = 40, while the annuity duration can be greater
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than 50 years, say. Given the uncertainty in future mortality trends, such an assumption is rather
unrealistic.

4.2.9 Actuarial values: further relations

Interesting relations can be found by comparing cash-flow streams and the related
actuarial values.

A perpetuity is a stream of perpetual payments. We now refer to a perpetuity
of annual payments of 1 monetary unit in advance. The present value, ä∞�, of a
perpetuity in advance is given, for i > 0, by

ä∞� = 1+(1+ i)−1 +(1+ i)−2 + · · · = 1+ i
i

(4.2.47)

Denoting with d the discount rate (or rate of interest-in-advance), namely d =
i

1+ i
,

we have:

ä∞� =
1
d

(4.2.48)

Of course, we have äx < ä∞�. In particular, to obtain a perpetuity, we have to
add to the whole life annuity a deferred perpetuity, whose first payment is placed at
the end of the year of death of the annuitant. Recalling that the actuarial value (at
time 0) of a given amount C payable at the end of the year of death is C Ax, we find
that the actuarial value of the deferred perpetuity is ä∞� Ax. Hence:

ä∞� = äx + ä∞� Ax (4.2.49)

Using (4.2.48), we obtain
1 = d äx +Ax (4.2.50)

Relation (4.2.50) can be interpreted as follows. A debt of 1 monetary unit (con-
tracted at time 0) is repaid with annual interests d in advance as long as the debtor is
alive and the final payment of 1 at the end of the year of her death. We note that rela-
tion (4.2.50), which expresses a lifetime repayment, generalizes in term of expected
values the well known relation

1 = d äm� +(1+ i)−m (4.2.51)

which expresses an m-year repayment.
Interesting relations between actuarial values can be expresses as recursive for-

mulae, which can be useful in calculation procedure, but also suggest instructive
interpretations.

First, we consider the whole life insurance. From Eq. (4.2.27) with r = 1, we
have

Ax = 1Ax + 1|Ax (4.2.52)
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and, thanks to (4.2.44):
Ax = 1Ax + 1Ex Ax+1 (4.2.53)

In explicit terms:
Ax = (1+ i)−1

1qx +(1+ i)−1
1 px Ax+1 (4.2.54)

Interpretation is as follows: the actuarial value at age x, Ax, is the expected value of a
random variable whose outcomes are the discounted unitary sum insured in the case
of death (hence, with probability 1qx), and the discounted actuarial value of a whole
life insurance from age x+1 onwards, in the case of survival at that age (probability
1 px).

As regards life annuities, we consider the following example. From (4.2.16) and
using (4.2.46), with r = 1, we obtain:

äx = 1+(1+ i)−1
1 px äx+1 (4.2.55)

Interpretation is as follows: the actuarial value at age x, äx, includes the payment
of 1 immediately due, and the discounted actuarial value of a life annuity from age
x+1 onwards, in the case of survival at that age, thus with probability 1 px.

4.2.10 Actuarial values at times following the policy issue

Actuarial values have been sofar referred to time 0, i.e. the policy issue. Clearly,
these valuations are required for premium calculation, as we will see in the next
sections. However, also valuations at (integer) times t following the policy issue,
namely at policy anniversaries, are of practical interest, for example when calcu-
lating reserves (for basic ideas on reserving in life insurance, refer to Sect. 1.7.6).
The time interval between policy issue and a generic time t is called duration since
initiation.

Actuarial values at time t rely on the assumption that the insured is alive at that
time. Hence, if the insured is age x at policy issue, her curtate remaining lifetime is
Kx+t , and probabilities referred to age x+ t must be used.

For example, the actuarial value at time t of a m-year term insurance, with a
unitary sum insured, is given by:

m−tAx+t =
m−t−1

∑
h=0

h|1Ax+t =
m−t−1

∑
h=0

(1+ i)−(h+1)
h|1qx+t (4.2.56)

The actuarial value at time t of a pure endowment with maturity at time m is
given by:

m−tEx+t = (1+ i)−(m−t)
m−t px+t (4.2.57)

As final example, the actuarial value at time t of a whole life annuity in advance is
given by:
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äx+t =
ω−x−t

∑
h=0

hEx+t (4.2.58)

4.3 Single premiums

As noted in Sect. 4.2.1, the cash-inflow originated by an insurance contract can, in
particular, reduce to a single premium, cashed by the insurer at the policy issue. We
start the discussion on premium calculation focussing on this particular case, yet of
practical interest.

After recalling the equivalence principle (see Sect. 1.7.4), we deal with sin-
gle premiums of insurance products providing benefits in the case of survival
(Sects. 4.3.2 and 4.3.3), in the case of death (Sects. 4.3.4 and 4.3.5), and in both
the cases (Sect. 4.3.6).

4.3.1 The equivalence principle

Refer to a generic life insurance contract, and denote with

• Y the random present value of the benefits;
• Π the single premium;
• Z the random present value of the insurer’s result (profit, or loss).

Of course, we have:
Z = Π −Y (4.3.1)

Assume the equivalence principle for the premium calculation. Hence, Π must
be such that

E[Z] = 0 (4.3.2)

and then
Π = E[Y ] (4.3.3)

As noted in Sect. 1.7.4, a safety loading should be added to the premium, in order
to

1. provide the insurer with a positive expected result, namely a profit;
2. face possible adverse experience as regards

a. yield from investments,
b. insureds’ mortality.

In particular, the safety loading can be directly included into the premium, as is
common in life insurance. In this case it is referred to as an implicit safety loading.
To this purpose, cash-flows are discounted adopting an appropriate interest rate i′,
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and an appropriate life table, namely probabilities of death q′ or survival p′, which
constitute the pricing basis, often denoted also as the first-order basis.

Remark We note that, unlike in Sect. 1.7.4, the expected present value E[Y ] must be meant as
calculated according to the first-order basis. More precisely, the random present value Y relies on
the interest rate i′, and the expected value is quantified by adopting probabilities q′ (or p′).

Clearly, the interest rate i′ should be lower than that expected as the yield from
investment, whereas the life table must be chosen looking at the type of benefit, as
we will see in the following sections.

In particular, the life tables we will adopt in the numerical examples are con-
structed by assuming that the age pattern of mortality follows the first Heligman-
Pollard law (see Sect. 3.4.2). Various alternative parameters are shown in Ta-
ble 4.3.1, while some corresponding markers can be found in Table 4.3.2.

Table 4.3.1 Life tables derived from the first Heligman-Pollard law: parameters

A B C D E F G H

LT1 0.00054 0.01700 0.10100 0.00016 10.72 18.67 1.83000E −05 1.11000
LT2 0.00054 0.01700 0.10100 0.00014 10.72 18.67 1.64700E −05 1.11000
LT3 0.00054 0.01700 0.10100 0.00013 10.72 18.67 1.46400E −05 1.11000
LT4 0.00054 0.01700 0.10100 0.00014 10.72 18.67 2.00532E −06 1.13025
LT5 0.00054 0.01700 0.10100 0.00014 10.72 18.67 1.06038E −06 1.13705

Table 4.3.2 Life tables derived from the first Heligman-Pollard law: some markers

◦
e0

◦
e40

◦
e65 Lexis q0 q40 q80

LT1 77.282 38.601 16.725 83 0.00684 0.00121 0.07178
LT2 78.288 39.568 17.485 84 0.00684 0.00109 0.06507
LT3 79.412 40.653 18.352 85 0.00684 0.00097 0.05826
LT4 85.128 46.133 22.350 90 0.00682 0.00029 0.03475
LT5 86.464 47.446 23.389 91 0.00682 0.00020 0.02984

The five life tables can be interpreted as follows. Table LT1 could be a pop-
ulation table (see Sect. 3.2.4), e.g. representing the mortality in a whole national
population, constructed as a period table. Mortality in LT1 could be also meant as
slightly reduced with respect to the observed population mortality, in order to allow
for a (generic) selection or self-selection in the insured populations. Hence LT1,
if adopted as the pricing basis, can constitute a prudential choice in particular for
insurance products providing death benefits. Tables LT2 and LT3 could be market
tables, constructed as period tables, representing the mortality among insureds; the
selection process underlying LT3 is likely to be more rigorous than that underlying
table LT2 (if any). Finally, tables LT4 and LT5 could be cohort tables extracted from
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projected tables (see Sects. 3.8.2 to 3.8.4), representing a weaker and, respectively,
a stronger mortality improvement. These tables should be adopted in relation to life
annuities.

In the following sections, actuarial values calculated for pricing purposes will be
denoted with mE ′

x, mA′
x, a′x, and so on, to recall the underlying use of a pricing basis,

namely a first-order basis.
Further, we will denote with TB a generic technical basis, when a compact no-

tation can be useful. In particular, the first-order basis will be denoted with TB1,
and the second-order basis, namely the scenario or realistic basis, with TB2. For
example, the notation TB1 = (0.02,LT4) will denote that, in the pricing basis, the
interest rate i′ = 0.02 and the life table LT4 have been assumed.

4.3.2 The pure endowment

The pure endowment insurance provides the beneficiary (who often coincides with
the insured) with a lump sum benefit, S, at time m (namely, at maturity), if the
insured is alive at that time. The time from policy issue to maturity is also called the
duration of the contract.

The single premium is then given by:

Π = S mE ′
x = S (1+ i′)−m

m p′x (4.3.4)

Note that mE ′
x is the single premium for 1 monetary unit. It is often denoted as the

“premium rate” (of the pure endowment).
It is worth noting that this insurance product is not very common, because the

benefit is only paid in the case of survival (and yet the premium is high because,
for usual values of x and m, the probability of being alive at maturity is high). A
more common product is the pure endowment combined with the counterinsurance
benefit, which provides the beneficiary with the premium reimbursement (the so-
called return of premium) in the case the insured dies before the maturity. Clearly,
the premium is raised in order to account for this supplementary (or rider) benefit.

Example 4.3.1. Table 4.3.3 shows the effect of age and duration on the single pre-
mium of a pure endowment, with S = 1000. For any given policy duration m, the
premium decreases as the age x at the policy issue increases, because the probability
of being alive at maturity decreases. For the same reason, the premium decreases as
the duration increases, for any given age x.

Of course, the single premium depends on the technical basis underlying its cal-
culation, namely the pricing basis, as illustrated in Table 4.3.3. We recall that, mov-
ing from table LT1 to LT5, a higher life expectancy (and, in general, an improved
mortality) is allowed for.
�
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Table 4.3.3 The single premium of a pure endowment; S = 1000, TB1 = (0.02,LT1)

x m = 5 m = 10 m = 15

40 898.97 804.08 713.10
45 894.44 793.24 693.49
50 886.86 775.33 661.73
55 874.25 746.15 611.70
60 853.48 699.69 536.39

Table 4.3.4 The single premium of a pure endowment; S = 1000, x = 45, m = 10

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 966.96 875.37 793.24 719.51
LT2 970.19 878.30 795.90 721.91
LT3 973.44 881.24 798.56 724.33
LT4 990.76 896.93 812.77 737.22
LT5 993.34 899.26 814.88 739.14

Remark It is worth noting that the assumption of a zero interest rate (in Example 4.3.1, and in
the following examples) does not necessarily imply that no time-value of the money is ultimately
accounted for. Indeed, in most insurance products the contract is yearly credited with an interest
which depends on the return of insurer’s investments, through various participation mechanisms,
as we will see in Chap. 7. Thus, i′ = 0 simply means that no interest is allowed for in advance,
namely when pricing the insurance product.

Example 4.3.2. It is interesting to compare the single premium of a pure endowment
with the present value of a lump sum certainly paid at maturity. Table 4.3.5 allows
us to compare these values. In particular:

• the rows corresponding to i = 0,0.01,0.02,0.03 allow us to perceive the effect
of the “mortality discounting”, if compared to the corresponding columns in Ta-
ble 4.3.3;

• if we discount adopting the interest rate i = 0.02343, we obtain a present value
equal to the premium of a pure endowment with x = 45, m = 10, according to the
pricing basis TB1 = (0.02,LT1). In what follows, we turn back on this issue.

�

The calculation of the single premium of a pure endowment relies on a two-fold
discounting, namely a “financial” discounting (via the interest rate i′), and a “mor-
tality” discounting (via the probabilities p′). This feature is common to all insurance
products. However, for some insurance products, among which the pure endowment,
it is interesting to express the joint effect through an “equivalent” discount rate. As
the effect of the mortality discounting depends on the insured’s age throughout the
policy duration, we denote this rate with gx,m. It is defined by the following equation:

(1+gx,m)−m = (1+ i′)−m
m p′x (4.3.5)
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Table 4.3.5 Present value of a lump sum certain; S = 1000, m = 10

i 1000(1+ i)−10

0 1 000.00
0.01 905.29
0.02 820.35
0.02343 793.24
0.03 744.09
0.04 675.56
0.05 613.91

The spread gx,m − i′ can be interpreted as follows. For a given sum insured S and
a given interest rate i′, the actuarial value of a pure endowment accounts for mor-
tality, and hence for the mutuality effect inside the pure endowment portfolio (see
Sect. 1.7.4). Consequently, the premium Π turns out to be lower than the present
value (at the same rate) of the lump sum S paid certainly at maturity. Hence, if a
person is willing to invest the amount Π in a purely financial transaction providing
her (or some beneficiary) with the amount S at maturity, a yield higher than i′ is
needed, in order to recover the mutuality effect (which clearly is not involved in a
purely financial transaction). Thus, the extra-yield gx,m − i′, often called the mortal-
ity drag, “covers” the mutuality effect.

Example 4.3.3. Table 4.3.6 shows the equivalent rates for various ages x at the com-
mencement of the financial transaction, and various durations m. Of course, the rate
(and hence the extra-yield) increases as the age or the duration increase.

Table 4.3.6 Equivalent discount rate gx,m; TB1 = (0.02,LT1)

x m = 5 m = 10 m = 15

40 0.02153 0.02205 0.02280
45 0.02256 0.02343 0.02470
50 0.02430 0.02577 0.02791
55 0.02724 0.02972 0.03331
60 0.03219 0.03636 0.04240

�

4.3.3 Life annuities

A life annuity provides the annuitant with a sequence of periodic amounts, while
she is alive. The payment frequency may be monthly, quarterly, semi-annual, or
annual. In the following, for the sake of brevity we only focus on annual payments,
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even though annuities payable more frequently than once a year can be of practical
interest.

A number of types of life annuities are sold on insurance markets, and paid by
pension plans as well. The following terminology is usual:

• a voluntary life annuity (or purchased life annuity) is a life annuity bought as a
consequence of individual choice, that is, exercised on a voluntary basis;

• a pension annuity is a life annuity paid to an individual as a direct consequence
of her membership of an occupational pension plan, or a life annuity bought
because a compulsory purchase mechanism works.

Although the two kinds of life annuity share the same technical structure, the ad-
verse selection effect is clearly higher in the voluntary annuities, and this should be
accounted for when choosing the pricing basis.

As seen in Sect. 4.2.5, annual amounts can be paid either in advance or in arrears.
Further, life annuities can be either immediate or deferred.

As regards the payment profile, the following types of life annuities can be sin-
gled out.

• Level annuities (sometimes called standard annuities) provide the annuitant with
an annual income, b, which is constant in nominal terms. Thus, the payment
profile is flat.

• In the fixed-rate escalating annuity (or constant-growth annuity) the annual ben-
efit increases at a fixed annual rate, α , so that the sequence of payments is

b1, b2 = (1+α)b1, b3 = (1+α)2 b1, . . .

• Various types of index-linked escalating annuities are available in insurance and
pension markets. In these annuities, annual benefits vary in line with an inflation
index, or a stock index, or according to some profit participation mechanism, and
so on. Some types of index-linking will be discussed in Chap. 7.

We now focus on an immediate life annuity in arrears, with flat payment profile.
The single premium, Π , is given, according to the equivalence principle, by

Π = ba′x = b
ω−x

∑
h=1

hE ′
x = b

ω−x

∑
h=1

(1+ i′)−h
h p′x (4.3.6)

(see (4.2.18)) where b denotes the annual benefit.

Example 4.3.4. Table 4.3.7 shows the single premium of an immediate life annuity,
given by formula (4.3.6), as a function of the pricing basis. Clearly, table LT4 or
LT5 should be used for pricing, as they embed a forecast of the future mortality
trend. The other tables are referred to only to show the dramatic differences in the
resulting actuarial values.
�

The complete life annuity (or apportionable annuity) is a life annuity in arrears
which provides a pro-rata adjustment on the death of the annuitant, consisting in a
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Table 4.3.7 The single premium of an immediate life annuity; b = 100, x = 65

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 1622.55 1462.05 1325.15 1207.62
LT2 1698.55 1524.98 1377.64 1251.72
LT3 1785.24 1596.23 1436.66 1300.97
LT4 2185.04 1923.61 1706.88 1525.74
LT5 2288.92 2007.36 1774.94 1581.51

final payment proportional to the time elapsed since the last payment date. Assum-
ing that the probability distribution of the time of death is uniform over each year,
the single premium is approximately given by:

Π = ba′x +
b
2

Ā′
x (4.3.7)

(see also (4.2.31)).
From (4.2.18), it follows that the single premium for a life annuity in advance is

given by
Π = bä′x = b(a′x +1) (4.3.8)

When dealing with the life annuities we have just described, it is natural to look
at the single premium as the result of an accumulation process, in particular carried
out during (a part of) the working life of the annuitant (see Case 4a in Sect. 1.2.5).
It is worth noting that, insurance products which extend over the whole accumula-
tion period can be conceived. This is, typically, the case of the deferred life annuity
whose deferred period coincides with the accumulation period. A reasonable pre-
mium arrangement should then consist of a sequence of periodic premiums. How-
ever, we stress that, the longer is the deferred period the higher is the risk borne by
the insurer, provided that the pricing basis is stated at the policy commencement,
or, at least, when each periodic premium is determined and paid. In particular, an
unanticipated improvement in mortality can cause serious technical problems.

4.3.4 The term insurance

The term insurance (or temporary insurance) pays the sum insured C at the end of
the year of death, if the insured dies prior to the term m.

This product faces the risk of a financial distress caused to a family by the early
death of a member who provides the family with an income. As noted in Sect. 1.2.5,
it is almost impossible to quantify in monetary terms the impact of an early death,
in particular because of the unknown value of the loss of income. Thus, the sum
insured should represent a tentative estimation of the random impact, and hence
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it should be chosen in relation to the insured’s age, present income, presence of
dependants, and so on.

This insurance product is very common in all the insurance markets. Given the
purpose, the age at entry is usually not old (say, in the range 30 - 50). Various risk
factors can be accounted for in determining the premium rates (see Sects. 3.6.1 and
3.6.2). Their assessment is performed through appropriate questions in the appli-
cation form and, as to health conditions, possibly through a medical examination.
In the presence of poor health conditions, or a risky occupation, the applicant can
be accepted as a substandard risk (or impaired life; see Sect. 3.6.3); in this case, a
higher premium rate is adopted.

The single premium of a term insurance is given by

Π = C mA′
x (4.3.9)

Example 4.3.5. Table 4.3.8 shows the single premium of a term insurance as a func-
tion of the interest rate i′ and the life table. We note that, for this insurance product,
the life table LT1 can constitute a prudential choice of the pricing basis, whereas
LT2 or LT3 can represent the expected mortality among the insureds.

Table 4.3.8 The single premium of a term insurance; C = 1000, x = 40, m = 10

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 19.83 18.63 17.53 16.51
LT2 17.89 16.80 15.81 14.89
LT3 15.93 14.97 14.08 13.26

Table 4.3.9 shows the effect of the age at policy issue and the duration on the sin-
gle premium of a term insurance. For any given duration m, the premium increases
as the age increases, because of an increasing probability of dying before the policy
term. For the same reason, the premium increases as the duration increases, for any
given age x.

Table 4.3.9 The single premium of a term insurance; C = 1000, TB1 = (0.02,LT1)

x m = 5 m = 10 m = 15

40 7.01 17.53 33.26
45 11.70 29.20 55.10
50 19.57 48.52 90.53
55 32.64 80.01 146.52
60 54.19 130.26 231.30

�
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In formula (4.3.9) it has been assumed that the sum insured is constant over the
whole policy duration. If, on the contrary, the benefit changes moving from year to
year, we have the term insurance with varying benefit. Let Ch+1 denote the sum paid
at time h+1 if the insured dies between times h and h+1; then:

Π =
m−1

∑
h=0

Ch+1 h|1A′
x (4.3.10)

In particular, the decreasing term insurance provides a decreasing benefit defined
as follows:

C1 = C; C2 =
m−1

m
C; C3 =

m−2
m

C; . . . ; Cm =
1
m

C (4.3.11)

Hence, from (4.3.10), we obtain the single premium

Π =
C
m

m−1

∑
h=0

(m−h)h|1A′
x (4.3.12)

which, after a little algebra, can also be expressed as follows:

Π =
C
m

m−1

∑
h=0

m−hA′
x (4.3.13)

The decreasing term insurance is usually sold to guarantee a loan repayment
carried out via amortization; indeed, the decreasing benefit is approximately in line
with the outstanding debt.

4.3.5 The whole life insurance

The whole life insurance pays the sum insured C at the end of the year of death,
whenever the death occurs.

Π = C A′
x (4.3.14)

The main historical purpose of the whole life insurance was the financing of
inheritance taxes. Currently, a typical aim of this insurance product is as follows:

• to cover the risk of death up to a certain age (60 or 65, say);
• to provide the insured with a lump sum at a certain age, by surrendering the

policy (see Sect. 4.1.2).

Example 4.3.6. Table 4.3.10 shows the single premium of a whole life insurance,
for various life tables and interest rates. It is interesting to note that, whatever the
life table and the interest rate, the premium is much higher than that of the term
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insurance; this is obviously due to the fact that the benefit of the whole life insurance
is certainly paid, the only random item being the time of payment.

Table 4.3.10 The single premium of a whole life insurance; C = 1000, x = 40

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 1000.00 682.24 473.72 334.94
LT2 1000.00 675.76 464.90 325.80
LT3 1000.00 668.57 455.20 315.82
LT4 1000.00 632.24 406.23 265.44
LT5 1000.00 623.78 395.14 254.36

Premiums for various ages at entry (and a fixed technical basis) can be found in
Table 4.3.11. We note that the single premium increases as the age at entry increases;
this is clearly due to the shortening of the residual lifetime.

Table 4.3.11 The single premium of a whole life insurance; C = 1000, TB1 = (0.02,LT1)

x 1000 A′
x

40 473.72
45 519.16
50 567.35
55 617.66
60 669.17

�

4.3.6 Combining survival and death benefits

Survival benefits and death benefits can be packaged in several ways. Figure 4.3.1
shows three combinations of two lump sum benefits, in the case of survival and
death respectively.

We note that, depending on the insured’s lifetime:

• according to arrangement A, there will be either no payment or one payment;
• arrangement B will generate either one payment or two payments;
• according to arrangement C, there will be one and only one payment.

Usually, combining survival and death benefits aims at achieving the certainty of
some payments. Assuming this target, we note what follows:

• arrangement A fails the target, if the insured dies between time m and n;
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Fig. 4.3.1 Combining benefits in the case of death and survival

• arrangement B can lead to “over-insurance”, because of the double payment in
the case the insured dies between time n and m;

• arrangement C looks like the most appropriate; of course, the amounts of the
death benefit and the survival benefit should be stated to comply with the specific
policyholder’s needs.

In the most common insurance products, in the framework of endowment insur-
ance, benefits are arranged as in structure C; nonetheless, some insurance products
follow the arrangement B.

4.3.7 Endowment insurance products

The standard endowment insurance (shortly, the endowment insurance), is defined
as the combination of a pure endowment and a term insurance, with a common sum
insured C and a common duration m. Hence, this type of endowment constitute an
example of arrangement C defined in the previous Section.

We note that the purpose of this insurance product is twofold:

• savings, as the sum insured will be available (in the case of survival) at maturity;
• protection, as the sum insured will be paid to the beneficiaries in the case of the

insured’s death prior to maturity.

The single premium is given by

Π = C
(

mE ′
x + mA′

x

)
= C A′

x,m� (4.3.15)
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Example 4.3.7. Table 4.3.12 displays the single premium as a function of the pricing
basis. It is worth noting that, although the premium obviously depends on the life
table adopted, a change in the life table has a very weak effect on the premium
itself. This is clearly due to the fact that the sum insured is certainly paid, and only
the time of payment is affected by the mortality assumption. Anyway, the premium
is higher when the mortality is assumed to be higher (as expressed, for example, by
table LT1). Hence, a mortality higher than that expected among insureds represents
a prudential choice.

Table 4.3.12 The single premium of an endowment insurance; C = 1000, x = 50, m = 15

Life table i′ = 0 i′ = 0.01 i′ = 0.02 i′ = 0.03

LT1 1000.00 866.51 752.26 654.32
LT2 1000.00 866.01 751.37 653.11
LT3 1000.00 865.51 750.47 651.90

�

Example 4.3.8. Table 4.3.13 shows, in particular, the splitting of the single premium
of an endowment insurance into the single premiums of the two components, namely
the pure endowment (C mE ′

x) and the term insurance (C mA′
x), for various ages at

entry. We note that the single premium of the endowment insurance has a small
increase in spite of a significant increase in the age at entry, whereas the premiums
of the two components strongly depend on the age itself, decreasing and increasing
respectively, as the age increases. We also note that, for all the ages addressed, the
actuarial value of the survival benefit is much higher than that of the death benefit,
because the probability of being alive at maturity is higher than the probability of
dying prior to maturity (at least in the range of ages we have considered). This result
seems to be in contrast with the effect of the life table on the single premium, which
has been stressed in Example 4.3.7; then, a deeper analysis of the nature of the
endowment insurance is needed.

Table 4.3.13 Components of the single premium of an endowment insurance; C = 1000, m = 15,
TB1 = (0.02,LT1)

pure endowment +
term insurance benefit-certain + acceleration benefit

x 1000A′
x,15� 1000 15E ′

x 1000 15A′
x 1000(1+ i′)−15 1000

(
A′

x,15� − (1+ i′)−15
)

40 746.36 713.10 33.26 743.01 3.35
45 748.59 693.49 55.10 743.01 5.57
50 752.26 661.73 90.53 743.01 9.25
55 758.23 611.70 146.52 743.01 15.21
60 767.69 536.39 231.30 743.01 24.67
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�

The (usual) definition of the endowment insurance, as the combination of a pure
endowment and a term insurance, does not allow us to correctly capture the tech-
nical contents of this insurance product, and consequently the risk borne by the
insurer (whereas it does allow to understand the twofold purpose of the endowment
insurance). We now address this point.

From the identity

A′
x,m� = (1+ i′)−m +

(
A′

x,m� − (1+ i′)−m
)

(4.3.16)

namely

A′
x,m� = (1+ i′)−m

+
m−1

∑
h=0

(1+ i′)−(h+1)
h|1q′x +(1+ i′)−m

m p′x︸ ︷︷ ︸
A′

x,m�

− (1+ i′)−m

(
m−1

∑
h=0

h|1q′x + m p′x

)
︸ ︷︷ ︸

1

(4.3.17)

we obtain:

Π = C A′
x,m� = C (1+ i′)−m +C

(
A′

x,m� − (1+ i′)−m
)

= C (1+ i′)−m +
m−2

∑
h=0

C
(
(1+ i′)−(h+1)− (1+ i′)−m

)
︸ ︷︷ ︸

Γh

h|1q′x (4.3.18)

We note that each Γh is the present value of the “acceleration” in the benefit payment
due to the insured’s death before maturity (and, anyhow, before the last year of the
insurance cover). Thus, formula (4.3.18) suggests the following interpretation: the
single premium of an endowment insurance can be obtained as the present value of
an amount certain at maturity plus the actuarial value of the acceleration benefit.

Hence, the endowment insurance can be seen as a product providing the benefi-
ciary with a payment acceleration in the case of death. It follows that the risk borne
by the insurer is the risk of insured’s death prior to maturity.

If i′ = 0, trivially we have Γh = 0 for all h, and, of course Π = C.

Example 4.3.9. The last column in Table 4.3.13 shows the actuarial value of the ac-
celeration benefit. Of course, the value increases as the age increases, because of
the higher probability of dying prior to maturity. The actuarial value of the accel-
eration benefit turns out to be the only term depending on the insured’s lifetime
(see the last line of formula (4.3.18)), and this explains how a mortality higher than
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that expected inside the endowment portfolio is a prudential choice (as remarked in
Example 4.3.7).
�

The survival benefit, S, in an endowment insurance can be different from the
death benefit, C. The single premium is then given by

Π = S mE ′
x +C mA′

x (4.3.19)

In particular, when S > C we have the product sometimes called the endowment
insurance with additional survival benefit. Setting S = (1+α)C, we obtain:

Π = α C mE ′
x +C A′

x,m� (4.3.20)

Note that also this product implements the arrangement C (see Sect. 4.3.6).
The insurance product built up combining a pure endowment with a whole life in-

surance is denoted as the double endowment insurance. Its single premium is given
by:

Π = C
(

mE ′
x +A′

x

)
= C A′

x,m� +C m|A′
x (4.3.21)

This product constitutes an example of arrangement B, with m = ω − x.

Remark We note that, whenever a death benefit is included in the insurance contract, this can
be assumed to be payable at the time of death rather than at the end of the year death. Then, the
approximations expressed by formulae (4.2.30) to (4.2.32) can be used for the single premiums of
the term insurance, the whole life insurance, and the endowment insurance products.

4.3.8 The expected profit: a first insight

The assessment of expected profits is one of the main topics in actuarial mathe-
matics. Section 5.5 and Sects. 6.2 to 6.4 are specifically devoted to this important
aspect of life insurance. Nevertheless, some basic ideas already emerge from single
premium calculation models.

As stated in Sect. 4.3.1, we assume that, for all the insurance products, the single
premium Π is calculated as the actuarial value of the benefits provided by the in-
surance policy, and that, in the relevant calculations, the first-order technical basis,
denoted by TB1, is assumed.

For example, referring to a whole life insurance providing the benefit C, we have
Π =C A′

x (see (4.3.14)). Let C A′′
x denote the actuarial value of the benefit, calculated

by adopting the second-order basis, TB2. Thus, C A′′
x provides us with a “realistic”

evaluation of the benefit, in terms of

• the interest rate, i′′, which should represent the estimated investment yield;
• the probabilities of death, q′′, which should represent the portfolio mortality ac-

tually expected.
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Let PL denote the expected present value of the profit / loss, also called the profit
margin; we have:

PL = Π −C A′′
x = C(A′

x −A′′
x ) (4.3.22)

Example 4.3.10. Table 4.3.14 shows the profit margin, in absolute terms and relative
terms (that is, referred to the single premium), for the term insurance, the whole life
insurance, and the endowment insurance. A′ and A′′ generically denote the expected
present value of benefits, according to TB1 and TB2 respectively. As regards the
interest rate, it should be noted that we have assumed i′ = i′′ = 0.03; it follows that
the profit margins originate from the spread between the first-order mortality and
the second-order mortality. Further, it is interesting to note that, in relative terms,
the effect of the mortality spread is very high in the term insurance, in which the
benefit is only paid in the case of death before the policy term, while it is extremely
low in the endowment insurance, in which the benefit is certainly paid within the
policy term.

Table 4.3.14 Profit margins. TB1 = (0.03,LT1); TB2 = (0.03,LT3)

Insurance product Π = C A′ C A′′ PL PL/Π

Term insurance; C = 1000; x = 40, m = 10 16.51 13.26 3.25 19.69%
Whole life insurance; C = 1000; x = 40 334.94 315.82 19.12 5.71%
Endowment insurance; S = C = 1000; x = 50, m = 15 654.32 651.90 2.42 0.37%

Table 4.3.15 shows the profit margins originated by the spread between interest
rates. Indeed, it has been assumed that the mortality adopted in the first-order basis
coincides with the mortality actually expected in the portfolio. It is worth noting that
the effect is much higher in the whole life insurance and the endowment insurance
than in the term insurance; this happens because the former insurance products have
more important financial contents, as we will see in Chap. 5.

Table 4.3.15 Profit margins. TB1 = (0.02,LT3); TB2 = (0.03,LT3)

Insurance product Π = C A′ C A′′ PL PL/Π

Term insurance; C = 1000; x = 40, m = 10 14.08 13.26 0.82 5.82%
Whole life insurance; C = 1000; x = 40 455.20 315.82 139.38 30.62%
Endowment insurance; S = C = 1000; x = 50, m = 15 750.47 651.90 98.57 13.13%

�
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4.4 Periodic premiums

The expression periodic premiums denotes a wide range of premium arrangements,
which share the common target of meeting reasonable policyholders’ wishes. Dif-
ferent premium arrangements originate different technical and financial problems.
We start dealing with this issue by focussing on a simple preliminary example.

4.4.1 An example

We refer to a term insurance, with m = 5 and sum assured C = 1. The single premium
is then given by Π = 5A′

x. Assume that, instead of the single premium Π , a sequence
of annual premiums

P0, P1, P2, P3, P4 (4.4.1)

payable at times t = 0,1, . . . ,4 respectively, is agreed. Each premium will be paid
at the beginning of a policy year, provided that the insured will be alive at that
time. Hence, the stream of annual premiums is a random inflow, which constitutes a
temporary life annuity.

We start considering the case of two premiums only, and we set:

P2 = P3 = P4 = 0

For the premium calculation, we adopt the equivalence principle (see Sect. 4.3.1).
First, we note that, as the premium P1 will be paid provided that the insured will be
alive at time t = 1, the sequence of premiums has a random present value, X , given
by

X = P0 +

{
P1 (1+ i′)−1 if Kx ≥ 1

0 otherwise
(4.4.2)

The related actuarial value is then

E[X ] = P0 +P1 (1+ i′)−1
1 p′x = P0 +P1 1E ′

x (4.4.3)

(assuming that the pricing basis is also adopted for discounting premiums).
According to the equivalence principle, as the expected value of benefits is given

by 5A′
x, the premiums must be solutions of the following equation:

P0 +P11E ′
x = 5A′

x (4.4.4)

We note that Eq. (4.4.4) has two unknowns, and thus ∞ solutions. We start con-
sidering two particular solutions:
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P0 = 5A′
x, P1 = 0 (4.4.5a)

P0 = 0, P1 = 5A′
x

1E ′
x

(4.4.5b)

As regards these solutions, the following features should be stressed.

a. Solution (4.4.5a) trivially yields the single premiums.
b. Solution (4.4.5b) is not feasible. To this regard, we note what follows.

• Solution (4.4.5b) complies with the equivalence principle; thus, its unfeasibil-
ity concerns another criterion (not yet declared).

• If the policyholder “lapses” (i.e. abandons) the contract at time 1, before pay-
ing premium P1, she has obtained a one-year insurance cover free of any
charge, namely without contributing to mutuality.

• In the case of lapse, for the insurer a practical difficulty arises in obtaining the
payment.

Remarks under point b above leads to the conclusion that the insurer should never
be in a credit position. This requirement is denoted as the financing condition.

The expected present value of the first year cover is given by 1A′
x. Hence, feasible

solutions, namely solutions fulfilling the financing condition, are the pairs P0,P1

such that
P0 ≥ 1A′

x (4.4.6)

In particular, it can be proved that

P0 = 1A′
x ⇒ P1 = 4A′

x+1 (4.4.7)

Thus:

• premium P0 exactly meets the expected cost of the insurance cover in the first
year, so that at time 1 the insurer is neither in a credit nor in a debt position;

• premium P1 can be interpreted as the single premium for the residual duration of
the contract, provided that the insured is alive at time 1.

Conversely,
P0 > 1A′

x ⇒ P1 < 4A′
x+1 (4.4.8)

Hence:

• the insurer cashes at policy issue more than what is needed to meet the expected
cost in the first year, whereas at time 1 cashes less than what is needed to cover
the residual duration;

• at time 1, an amount is available (namely, an asset) to face the insufficiency of
P1; a corresponding debt (a liability) arises at the end of the first year.

The assets and liability originated by the premium arrangement defined by in-
equalities in (4.4.8) are the two aspects of the mathematical reserve of the insurance
contract.
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We note that, in the case of a single premium, the only cash-inflow (at the policy
issue) originates a similar situation, in terms of assets and liability.

We now move, still referring to the 5-year term insurance, to premiums arrange-
ments in which all the annual premiums are positive.

First, assume that the annual premiums are defined as follows:

Ph = 1A′
x+h; h = 0,1, . . . ,4 (4.4.9)

We note that each premium (which will be paid provided that the insurer will be
alive at the time of payment) fulfills the equivalence principle on a one-year basis.
A similar premium arrangement is very common in non-life insurance, as we will
see in Chap. 9. The annual premiums defined by (4.4.9) are commonly called the

natural premiums, and are denoted with P[N]
h .

Of course, the sequence of natural premiums also fulfills the equivalence princi-
ple over the whole policy duration. In fact, we have:

4

∑
h=0

hE ′
x P[N]

h =
4

∑
h=0

hE ′
x 1A′

x+h =
4

∑
h=0

h|1A′
x = 5A′

x (4.4.10)

The financing condition is also fulfilled. In particular, at each policy anniversary
there is neither credit nor debt.

We recall that 1A′
x+h = (1+ i′)−1 q′x+h. Hence, the natural premiums of the term

insurance are increasing if the annual probabilities of death are increasing, and this
usually happens for ages and durations involved in this type of cover.

To avoid a sequence of increasing premiums, an arrangement based on level pre-
miums can be applied. According to the equivalence principle, the annual premium
P must be the solution of the following equation:

P
4

∑
h=0

hE ′
x = 5A′

x (4.4.11)

(which generalizes Eq. (4.4.4)), and then we obtain

P = 5A′
x

ä′x:5�
(4.4.12)

Example 4.4.1. In Fig. 4.4.1 the natural premiums and the level premiums of a term
insurance are plotted. The pricing basis is TB1 = (0.02,LT1); we have assumed
x = 40, m = 5. Then, the annual level premium is P = 1.46. We note that, in the first
policy years the insurer cashes more than what is needed to meet the annual expected
costs (expressed by the natural premiums), whereas in the last years the amounts
cashed are lower than the expected costs. Thus, a reserving process is required,
aiming to “transfer” money from the initial years to the final ones.
�

Equation (4.4.12) can be written as follows:
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Fig. 4.4.1 Term insurance: natural premiums and annual level premiums

P =
∑4

h=0 hE ′
x 1A′

x+h

∑4
h=0 hE ′

x

(4.4.13)

Hence, the annual level premium P turns out to be the weighted arithmetic mean of

the natural premiums P[N]
h = 1A′

x+h; the weights are given by the hE ′
x, and thus are

proportional to the probability of being alive and paying the premium, and the time
from policy issue to time of payment.

4.4.2 Level premiums

We now refer to a generic life insurance contract, and start discussing level premium
arrangements.

According to the equivalence principle, we must have:

actuarial value of premiums = actuarial value of benefits (4.4.14)

Provided that the single premium Π is calculated according to the same principle,
we must then have:

actuarial value of premiums = Π (4.4.15)

Let s denote the duration of the premium payment. In a number of insurance
products, level premiums can be paid over the whole policy duration m, namely
s = m. On the contrary, in some products the payment period must be shortened,
so that s < m. As we will see, one reason for shortening the payment period is the
fulfilling of the financing condition. When s < m, the level premium will be denoted
by P(s), whereas s = m should be understood when just the symbol P is used. Some
examples follow. In all the examples, we assume a unitary amount insured.
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In a pure endowment insurance with duration m, we have

P(s) = mE ′
x

ä′x:s�
(4.4.16)

In a term insurance with duration m, we have

P(s) = mA′
x

ä′x:s�
(4.4.17)

In an endowment insurance with duration m, we have

P(s) =
A′

x,m�
ä′x:s�

(4.4.18)

Usually, in all these products we have s = m.
In a whole life insurance, the premium payment can, in principle, extend over the

whole policy duration, that is

P(ω − x) =
A′

x

ä′x
(4.4.19)

In practice, however, the premium payment is restricted to s years, so that x+s = 70
or 75, say. Then, we have:

P(s) =
A′

x

ä′x:s�
(4.4.20)

Example 4.4.2. Table 4.4.1 shows single premiums and level premiums with various
payment durations, for some insurance products; TB1 = (0.02,LT1), and the sum
insured is C = 1000 (or S = 1000) in all the cases.
�

4.4.3 Natural premiums

Consider a life insurance product, and

1. refer to the (h+1)-th year of contract, h = 0,1, . . . , namely the interval between
time h and h+1;

2. assume that the insured is alive at time h;
3. single-out the benefits that fall due in the (h+1)-th year;
4. calculate the actuarial value at time h of the benefits referred to in step 3; this

actuarial value is also called the expected annual cost (of the benefits).

The natural premiums of the contract are, by definition, the expected annual costs.
The technical basis adopted in step 4 is usually the pricing basis.
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Table 4.4.1 Single premium and annual level premiums for some insurance products

Insurance product x m Π s P(s)

Pure endowment 45 10 793.24
5 165.72

10 87.60

Term insurance 40 10 17.53
5 3.66

10 1.93

Endowment insurance 50 15 752.26
5 157.63

10 83.74
15 59.54

Whole life insurance 40 473.72
10 52.07
20 29.02
30 21.80

ω − x 17.65

Natural premiums provide, on the one hand, important technical information
about the time profile of the insurer’s expected costs. On the other, natural premi-
ums not necessarily constitute a practicable arrangement for the premium payment,
as we will see in what follows.

For example, the natural premiums of a m-year term insurance with C = 1 are
defined as follows:

P[N]
h = 1A′

x+h = (1+ i′)−1
1q′x+h; h = 0,1, . . . ,m−1 (4.4.21)

Hence, for ages and durations usually involved in this insurance product, the natural
premiums are increasing throughout the policy duration.

In a term insurance with sum assured Ch+1 in the case of death in year h+1, we
have:

P[N]
h = Ch+1 1A′

x+h = Ch+1 (1+ i′)−1
1q′x+h; h = 0,1, . . . ,m−1 (4.4.22)

We note that, if the Ch+1’s decrease as h increases (see, for example, the decreasing
term insurance defined in Sect. 4.3.4), the natural premiums may decrease.

In both the types of term insurance, natural premiums constitute a possible ar-
rangement for premium payment.

Example 4.4.3. Figures 4.4.2, 4.4.3 and 4.4.4 show the time profile of natural pre-
miums of term insurances. The pricing basis is TB1 = (0.02,LT1). In Fig. 4.4.2,
natural premiums and level premiums of a term insurance with C = 1000, x = 40,
m = 10 are compared. Fig. 4.4.3 shows the behavior of the natural premiums for
various ages at policy issue. We note that, the higher is the age the higher is the
increase in natural premiums; this is due to the fact that the annual probabilities of
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death increase at an increasing rate. Finally, Fig. 4.4.4 illustrates the behavior of
natural premiums in a decreasing term insurance, with Ch = m−h+1

m C (see (4.3.11)).
In panel (a), we see that, if the payment of level premiums is stated over the whole
policy duration, the financing condition is not fulfilled, and the insurer immediately
enters a credit position. Conversely, the condition is fulfilled if the premium pay-
ment period is properly shortened (s = 7), as displayed in panel (b).
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Fig. 4.4.2 Natural premiums and level
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Fig. 4.4.3 Natural premiums of a term
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Fig. 4.4.4 Natural premiums, level premiums, and shortened level premiums of a decreasing term
insurance

�

We now consider a pure endowment, with a unitary sum insured. As this insur-
ance products only provides a benefit in the case of survival at maturity (time m),
we have:
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P[N]
h = 0 (4.4.23a)

P[N]
m−1 = 1E ′

x+m−1 = (1+ i′)−1
1 p′x+m−1 (4.4.23b)

Obviously, natural premiums do not represent a reasonable arrangement of premium
payment for this insurance product.

A (standard) endowment insurance is built-up combining a pure endowment with
a term insurance, both with duration m. Then, referring to a unitary sum insured, we
find:

P[N]
h = 1A′

x+h = (1+ i′)−1
1q′x+h; h = 0,1, . . . ,m−2 (4.4.24a)

P[N]
m−1 = 1A′

x+m−1 + 1E ′
x+m−1

= (1+ i′)−1 (1q′x+m−1 + 1 p′x+m−1) = (1+ i′)−1 (4.4.24b)

Clearly, also in this case natural premiums do not represent a reasonable arrange-
ment of premium payment, because of the presence of the pure endowment compo-
nent.

4.4.4 Single premium, natural premiums and level premiums:
some relations

The single premium Π , according to the equivalence principle, is the actuarial value
(at the policy issue) of the benefits provided by an insurance contract (see (4.3.3)).
Assume a policy duration of m years (it is understood that what follows can be
applied to lifelong contracts also, by setting m = ω − x). Intuitively, the actuarial
value of the benefits can be expressed as the sum of the actuarial values (at the policy
issue) of the benefits falling due in the various policy years. Each of these actuarial

values can be expressed as hE ′
x P[N]

h , h = 0,1, . . . ,m− 1, since P[N]
h quantifies the

expected value at time h of the benefits pertaining to year h + 1, provided that the
insured is alive at that time.

Hence, we have:

Π =
m−1

∑
h=0

hE ′
x P[N]

h (4.4.25)

An example is provided by formula (4.4.10).
Assume that annual level premiums, P, are paid throughout the whole policy

duration. The equivalence principle requires that relation (4.4.15) is fulfilled. From
(4.4.25) we then obtain:

P äx:m� = Π (4.4.26)

and hence
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P =

m−1

∑
h=0

hE ′
x P[N]

h

m−1

∑
h=0

hE ′
x

(4.4.27)

It turns out that the level premium P is a weighted arithmetic mean of the natu-

ral premiums P[N]
h ’s, with the hE ′

x’s as the weights. An example is provided by the
annual level premium of a term insurance, as expressed by (4.4.13).

We stress that expression (4.4.27), and the related interpretation hold with the
proviso that the level premiums are paid as long as the policy is in-force. Thus, they
do not hold in the case of shortened level premiums, as, for example, in formula
(4.4.20).

The actuarial saving premium, or reserve premium, denoted as P[AS]
h , is defined

as follows:
P[AS]

h = P−P[N]
h (4.4.28)

(in the case of annual level premiums). Clearly, when P[AS]
h > 0 a share of the

premium P is accumulated (“reserved”) to meet future benefits, whereas, when

P[AS]
h < 0 an amount higher than the premium P is needed to meet benefits falling

due in the current year, and hence resources previously accumulated must be used.

We note that the pair (P[N]
h ,P[AS]

h ), for h = 0,1, . . . , constitutes a splitting of the
annual premium. A more important splitting will be discussed in Sect. 5.4.3.

4.4.5 Single recurrent premiums

Premium arrangements other than those consisting of either level premiums or nat-
ural premiums can be conceived in order to gain flexibility in the time profile of pre-
mium payment. An interesting example is provided by single recurrent premiums.
We describe ideas underlying single recurrent premiums and their implementation
referring to two examples, namely the pure endowment and the whole life insurance.

Refer to a pure endowment insurance with maturity at time m, and assume that, in
order to meet the benefit, a sequence of payments, i.e. the single recurrent premiums,
Π0,Π1, . . . ,Πm−1, is arranged. The premium Πh, paid at time h, funds the benefit
ΔSh deferred m−h years, which constitutes an increase in the “cumulated benefit”.

In formal terms, the link among premiums, benefits and cumulated benefits is
described by the following relations:
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Π0 = ΔS0 mE ′
x ; S1 = ΔS0

Π1 = ΔS1 m−1E ′
x+1 ; S2 = S1 +ΔS1

Π2 = ΔS2 m−2E ′
x+2 ; S3 = S2 +ΔS2 (4.4.29)

. . . . . .

Πm−1 = ΔSm−1 1E ′
x+m−1 ; Sm = Sm−1 +ΔSm−1

The amount Sm turns out to be the (total) sum insured, progressively financed by
the single recurrent premiums Πh’s. Each one of the premiums can be stated at the
time of payment. It follows that Sm is ultimately known at time m− 1 only, when
the last premium is paid.

As the total amount Sm consists, from a technical point of view, of m pure en-
dowments, the related accumulation process relies on both interest and mutuality,
so that Sm turns out to be greater than the result of a purely financial accumulation.

Example 4.4.4. Table 4.4.2 provides an example of pure endowment insurance fi-
nanced by a sequence of single recurrent premiums. Data are as follows: x = 50,
m = 10, TB1 = (0.02,LT1). The resulting accumulation process is then compared
to the financial accumulation of amounts equal to the single recurrent premiums.
According to this process, we have, for h = 0,1, . . . ,m−1:

ΔMh = Πh (1+ i′)m−h; Mh+1 = Mh +ΔMh

with M0 = 0.

Table 4.4.2 Pure endowment insurance and financial accumulation

h Πh ΔSh Sh+1 ΔMh Mh+1

0 100 128.98 128.98 121.90 121.90
1 100 126.02 255.00 119.51 241.41
2 100 123.09 378.08 117.17 358.57
3 100 120.17 498.25 114.87 473.44
4 100 117.27 615.53 112.62 586.06
5 120 137.26 752.79 132.49 718.55
6 120 133.81 886.59 129.89 848.44
7 120 130.36 1016.95 127.34 975.79
8 120 126.91 1143.86 124.85 1100.63
9 120 123.46 1267.32 122.40 1223.03

�

Refer to a whole life insurance, and assume that, in order to meet the benefit,
a sequence of payments (the single recurrent premiums), Π0,Π1, . . . ,Πh, . . . , is ar-
ranged. The premium Πh, paid at time h, funds the amount ΔCh which, from time h
onwards, constitutes a share of the cumulated sum assured. The following relations
describe the link among premium Πh, amount ΔCh, and amount Ch+1 which turns
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out to be the total sum assured at time h (payable in the case of death between h and
h+1).

Π0 = ΔC0 A′
x ; C1 = ΔC0

Π1 = ΔC1 A′
x+1 ; C2 = C1 +ΔC1

. . . . . . (4.4.30)

Πh = ΔCh A′
x+h ; Ch+1 = Ch +ΔCh

. . . . . .

Example 4.4.5. Table 4.4.3 provides an example of whole life insurance financed by
a sequence of s single recurrent premiums. Data are as follows: x = 50,
s = 25, TB1 = (0.02,LT1). Single recurrent premiums are assumed to be constant:
Πh = 100, for h = 0,1, . . . ,24. It is interesting to compare the resulting time profile
of the sum assured Ch to the (constant) amount C assured in a traditional whole life
insurance financed via annual level premiums, P(25) = 100, payable for 25 years:

C A′
50 = P(25)a′50:25�

We note that Ch+1 < C in the first 21 years, whereas later we have Ch+1 > C. For
example, if the insured dies in the 12-th year, according to the single recurrent pre-
mium arrangement, the benefit is C12 = 1932.25, whereas if she dies in the 23-
rd year, the benefit is C23 = 3546.20; of course, if the traditional level premium
arrangement has been adopted, in both the cases the benefit is C = 3202.60. We
can conclude that, initially, in the level premium arrangement, the same cumulated
amount of premiums has to meet a sum assured higher than that financed by single
recurrent premiums. Hence, mutuality plays a more important role, and the insurer
bears a higher mortality risk. Then, an inversion occurs, and the mortality risk pro-
gressively decreases.
�

In a whole life insurance financed via single recurrent premiums, if i′ = 0 then
we have A′

x+h = 1 for all h, and hence (see relations (4.4.30)):

ΔCh = Πh; h = 0,1, . . . (4.4.31)

Thus, the whole life insurance degenerates in a pure accumulation at zero interest
rate. In the case of death in the t-th year, the benefit paid is given by:

Ct =
t−1

∑
h=0

Πh (4.4.32)

Hence, no mortality risk is borne by the insurer.
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Table 4.4.3 Whole life insurance: single recurrent premiums and level premiums

h ΔCh Ch+1 C

0 176.26 176.26 3202.60
1 173.23 349.49 3202.60
2 170.28 519.77 3202.60
3 167.41 687.18 3202.60
4 164.62 851.80 3202.60
5 161.90 1013.70 3202.60

. . . . . . . . . . . .
10 149.44 1785.08 3202.60
11 147.17 1932.25 3202.60
12 144.96 2077.21 3202.60
13 142.83 2220.05 3202.60
14 140.77 2360.82 3202.60
15 138.78 2499.60 3202.60
. . . . . . . . . . . .
20 129.83 3166.00 3202.60
21 128.24 3294.24 3202.60
22 126.71 3420.96 3202.60
23 125.25 3546.20 3202.60
24 123.84 3670.05 3202.60
25 0.00 3670.05 3202.60
26 0.00 3670.05 3202.60
. . . . . . . . . . . .

4.4.6 Some concluding remarks

Each premium arrangement determines a specific inflow stream (namely, the se-
quence of premiums cashed by the insurer), which offsets the expected outflow
stream (the sequence of expected benefits). Specific implications, concerning the
finance of an insurance contract, can be found by comparing the time profile of the
two streams.

The following features of premium systems should be stressed.

1. In the case of a single premium, the inflow is clearly concentrated at the pol-
icy issue. Hence, an important share of the premium itself (possibly, the whole
premium) is to be reserved, whatever the type of insurance product.

2. A premium arrangement based on single recurrent premiums clearly leads to the
single premium situation, iterated as many times as many premiums are cashed
by the insurer. “Scaled” reserving processes then originate.

3. A situation, which clearly appears as the opposite to the single premium regime,
arises from the natural premium arrangement (when applicable). In this case,
each premium exactly funds the benefits expected to fall due in the relevant year.
No reserving process develops throughout the policy duration (but the need for
a one-year based reserving, which reflects the expected progressive consumption
of the premium in the mutuality mechanism).
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4. Level premiums must be arranged (as regards the duration of the premium
stream) so that the financing condition is fulfilled. In many insurance products,
level premiums payment can extend over the whole policy duration. In any case,
the premium stream must “anticipate” the expected benefits, and hence a reserv-
ing process follows.

To conclude, we stress that any reserving process implies an investment - disin-
vestment process, whose impact on the insurer’s finance obviously depends on the
magnitude of the amounts involved. Related consequences are:

• financial profit opportunities, thanks to a (positive) spread between the yield on
investments and the interest rate credited to insurance contracts;

• disinvestment risk, due to a sudden need for liquidity because of benefits falling
due at unexpected early dates, for example because of a mortality higher than
expected, or an unanticipated number of surrenders.

4.5 Loading for expenses

The operations involved by an insurance contract, by the management of a portfolio,
and by the management of the whole insurance company imply several types of
expenses.

Expenses constitute one of the ingredients in the premium calculation, as already
mentioned in Sect. 1.7.3 (see Fig. 1.7.4). To this purpose expense loadings must be
determined, and then expense-loaded premiums.

4.5.1 Premium components

Figure 4.5.1 illustrates the shift from the equivalence premium to the amount actu-
ally paid by the contractor, singling out the main components of this amount.

We start from the equivalence premium, only allowing for the benefits. If this
premium is calculated by adopting the first-order or pricing basis (as is common
in life insurance), then it already includes an implicit safety loading. Conversely,
when the equivalence premium relies on a second-order or scenario basis, a safety
loading must be explicitly added. The premium including the safety loading (either
implicit or explicit), but not allowing for expenses, is called the net premium (or
pure premium).

Expenses can be accounted for, and then included into the premium via an ap-
propriate loading, by adopting one of the two following approaches:

• a global (or forfeiture) expense loading, according to which the premium is sim-
ply increased by a percentage such that the resulting loading approximately meets
all the expenses attributed to the contract;
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Fig. 4.5.1 Premium components

• a rational expense loading, based on recognizing several types of expenses and
then determining the related loading components.

In what follows, we focus on the rational approach, whose greater complexity is
compensated by the possibility of an appropriate quantification of the various ex-
pense components.

The premium including the expense loading is called the expense-loaded pre-
mium (or the office premium, or the tariff premium, or the gross premium).

The amount actually paid by the contractor may also include taxes which, how-
ever, do not involve technical aspects, as taxes are simply cashed by the insurer and
then forwarded to tax authorities.

4.5.2 Expenses and loading for expenses

Expenses can be classified into three main groups.

1. Acquisition expenses. In this group all expenses connected with the issue of a
new policy are included, in particular:

a. agents’ commission;
b. medical examination (if any);
c. policy writing.

Acquisition expenses then constitute an initial cost to the insurer.
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2. Collection expenses. These expenses are charged at the beginning of every period
(every year, in particular) in which a periodic premium (for example, a level
premium) is to be collected.

3. General administration expenses. All other insurer’s expenses (not directly con-
nected with the policy) are included in this group, for example: wages, data pro-
cessing costs, investment costs, taxes, and so on. A share of these expenses is
attributed to each policy, for the whole policy duration.

As regards the loading of premiums, we will focus on two premium arrange-
ments, namely the single premium, and the level premiums.

• Single premium

1. Acquisition expenses are loaded on the single premium itself.
2. Of course, collection expenses do not concern this premium arrangement.
3. The expected present value of future administration expenses attributed to the

contract is loaded on the premium.

• Level premiums

1. Although acquisition expenses constitute an initial cost to the insurer, the
loading for these expenses is split into a sequence of annual amounts, each
one loaded on the related premium. Hence, acquisition expenses are progres-
sively recovered.

2. Collection expenses are loaded year by year on the relevant annual premium.
3. As administration expenses are attributed to the policy for the whole policy

duration, if premiums are payable for the same duration then each premium is
loaded with the annual share of expenses; conversely, if the premium payment
period is shorter, then a higher share is loaded on each premium.

4.5.3 The expense-loaded premiums

Let Π [T] and P[T] denote the single premium and the annual level premium (omitting
for brevity the duration of premium payment) respectively, loaded for expenses. Let
[A], [C] and [G] denote the three groups of expenses, namely acquisition, collection
and general administration expenses respectively.

For the single premium, we have:

Π [T] = Π +Θ [A] +Θ [G] (4.5.1)

where Θ [A], Θ [G] denote the two loading terms. The annual level premium is given
by the following expression:

P[T] = P+Λ [A] +Λ [C] +Λ [G] (4.5.2)

where Λ [A], Λ [C], and Λ [G] denote the three loading terms.
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We now address an insurance contract with sum insured C, duration m, either
single premium or annual level premiums payable for s years (s ≤ m). Arguments
similar to the following ones apply to life annuities.

The acquisition expenses are usually assumed proportional to the sum insured.
Denoting by α the corresponding rate, we have for the related loadings:

Θ [A] = α C (4.5.3a)

Λ [A] ä′x:s� = α C (4.5.3b)

in the case of single premium and level premiums, respectively.
As an alternative, the acquisition expenses can be assumed proportional to the

amount of the expense-loaded premium. The loading rate then depends on the num-
ber of level premiums. Denoting by δ (s) the corresponding rate, usually increasing
as s increases (for a given policy duration m), we have:

Θ [A] = δ (1)Π [T] (4.5.4a)

Λ [A] ä′x:s� = δ (s)P[T] (4.5.4b)

The collection expenses are usually assumed to be proportional to the expense-
loaded premium, at a rate we denote by β . Hence, the related loading is given by:

Λ [C] = β P[T] (4.5.5)

The annual general administration expenses are commonly expressed as a pro-
portion of the sum insured. Denoting by γ the corresponding rate, we have for the
related loadings:

Θ [G] = γ C ä′x:m� (4.5.6a)

Λ [G] äx:s� = γ C ä′x:m� (4.5.6b)

To assess the incidence of costs other than the expected present value of benefits,
it is interesting to determine the total expense loading rate. In the case of a single
premium, the total loading rate, θ , is given by:

θ =
Π [T] −Π

Π [T] =
Θ [A] +Θ [G]

Π [T] (4.5.7)

Conversely, in the case of annual level premiums, the total loading rate, λ , is given
by:

λ =
P[T] −P

P[T] =
Λ [A] +Λ [C] +Λ [G]

P[T] (4.5.8)

To illustrate the calculation of an expense-loaded annual level premium, we first
refer to a whole life insurance, with premiums payable for s years, sum assured C,
age at policy issue x, and loading rate α for acquisition expenses. From Eq. (4.4.20)
as regards the net premium, and Eqs. (4.5.3b), (4.5.5), and (4.5.6b) as regards the
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loadings, we obtain:

P[T] =

C
ä′x:s�

(
A′

x +α + γ ä′x
)

1−β
(4.5.9)

We now refer to an endowment insurance, with duration m years, and level premi-
ums payable for the whole policy duration. We assume the loading rate δ (s) for ac-
quisition expenses. From Eq. (4.4.18) as regards the net premium, and Eqs. (4.5.4b),
(4.5.5), and (4.5.6b) as regards the loadings (with s = m in all the equations), we
find:

P[T] =

C

(
A′

x,m�
ä′x:m�

+ γ

)

1−β − δ (m)
ä′x:m�

(4.5.10)

Example 4.5.1. Consider a whole life insurance. Data are as follows: C = 1000,
x = 50, s = 15. The pricing basis is TB1 = (0.02,LT1). Assume, as the loading
parameters: α = 0.02, β = 0.04, γ = 0.001. We find

P = 44.90

P[T] = 49.47

as the net premium and the expense-loaded premium, respectively. The total loading
rate is then

λ = 0.0922

Refer to an endowment insurance. Data are as follows: C = 1000, x = 50,
m = s = 15. The pricing basis is TB1 = (0.02,LT1). Assume, as the loading pa-
rameters: δ (15) = 0.55, β = 0.04, γ = 0.0015. We find

P = 59.54

P[T] = 66.60

as the net premium and the expense-loaded premium, respectively. The total loading
rate is then

λ = 0.1061

�
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4.6 References and suggestions for further reading

A number of actuarial textbooks deal with technical and financial aspects of life
insurance, and with pricing problems in particular. We quote the following ones:
[10], [20], [25], [26], [47], and [49].

The book [40] is specifically devoted to life annuities and pensions. Conversely,
a wide range of insurance products in the field of life (and health) insurance are
described in [7].

The framework of life insurance can be enlarged to include products in which
benefits depend not only on the lifetime but also, for example, on disability. For
technical aspects of disability annuities and related products (in the area of health
insurance) the reader can refer to [28].

Finally, we recall that the principles of Financial Mathematics (which underpin
the calculation of actuarial values) are presented in [11], [54], and in the first five
chapters of [37].





Chapter 5
Life insurance: reserving

5.1 Introduction

The insurer’s debt position, which is an obvious implication of the single premium
arrangement, must be realized also when other premium arrangements are adopted.
This need clearly emerged in Sect. 4.4.1. We recall that an asset accumulation -
decumulation process develops, throughout the policy duration, against the insurer’s
debt position. A technical tool for assessing the insurer’s debt is provided by the so-
called mathematical reserve.

The need for assessing the insurer’s position with respect to an insurance policy
emerges at any time during the policy duration. In particular, we can recognize:

• “ordinary” needs which emerge, for example, in relation to:

– the balance-sheet, which must display the total insurer’s debt towards the pol-
icyholders;

– the sharing of profits with the policyholders, which, in particular, can be re-
lated to the proportion of assets contributed by each policy;

• “extraordinary” needs, related for example to the interruption of periodic pre-
mium payment, and hence the need for assessing the policyholder’s credit and
then

– converting the policy into a “paid-up” one, namely a policy for which no fur-
ther premium payment is required;

– determining the amount to be paid by the insurer in the case of “surrender”.

5.2 General aspects

We refer to a generic insurance policy, and focus on benefits and net premiums only.
That is, we start disregarding expenses and related expense loadings. We assume that

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 245
DOI 10.1007/978-3-642-16029-5 5, c© Springer-Verlag Berlin Heidelberg 2011
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the policy term is m, but a generalization to lifelong policies is straightforward, by
setting m = ω − x (where ω denotes as usual the maximum attainable age).

Let t1, t2 denote two integer times (policy anniversaries), with 0 ≤ t1 < t2 ≤ m.
We define the following notation, which proves to be useful when dealing with the
definition of the mathematical reserve:

• Y (t1, t2) denotes the random present value at time t1 of the benefits which fall due
in the time-interval (t1, t2);

• X(t1, t2) denotes the random present value at time t1 of the premiums to be cashed
in the time-interval (t1, t2).

Remark The notation just defined generalizes the one we used in Chap. 4 to denote the random
present values of benefits and premiums. Indeed, Y = Y (0,m), X = X(0,m).

Then, we define:

• Ben(t1, t2) = E[Y (t1, t2)], i.e. the expected present value (or actuarial value) at
time t1 of the benefits which fall due in the time-interval (t1, t2);

• Prem(t1, t2) = E[X(t1, t2)], i.e. the expected present value (or actuarial value) at
time t1 of the premiums to be cashed in the time-interval (t1, t2).

Remark It is worth commenting in some detail which of the benefits and premiums paid at the
extremes of the time-interval (t1, t2), i.e. at times t1 and t2, are included in the quantities Y (t1, t2)
and Ben(t1, t2) (for benefits), X(t1, t2) and Prem(t1, t2) (for premiums).
In general terms, if an amount is paid at a given time t because it is due at the beginning of year
(t, t + 1), we say that it is paid at time t in advance. Conversely, if it is paid at time t because due
at the end of year (t −1, t), then we say that it is paid at time t in arrears. The rule we adopt when
defining the flows included in the quantities Y (t1, t2), Ben(t1, t2), X(t1, t2) and Prem(t1, t2) is the
following. Premiums and benefits paid at time t1 in advance are included, while benefits paid at
time t1 in arrears are excluded. Benefits paid at time t2 in arrears are included, while premiums
and benefits paid at time t2 in advance are excluded. Actually, the time-interval addressed by the
quantities Y (t1, t2), Ben(t1, t2), X(t1, t2) and Prem(t1, t2) runs from the beginning of year (t1, t1 +1)
to the end of year (t2−1, t2). Of course, all the flows falling due at a time t, t1 < t < t2, are included
in such quantities. The rule will clearly emerge in Example 5.2.1, as well as in the following
Sections.

We now assume that the actuarial values rely on the first-order basis, i.e. the
pricing basis TB1. The notations Ben′ and Prem′ reflect this hypothesis.

It is well known that the equivalence principle requires

Prem′(0,m) = Ben′(0,m) (5.2.1)

On the contrary, all the following situations may occur, at least in principle, when
intervals shorter than the whole policy duration are referred to:

Prem′(0, t) � Ben′(0, t) (5.2.2a)

Prem′(t,m) � Ben′(t,m) (5.2.2b)

(we recall that t is an integer time).
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Further, it is usual to find that

Prem′(t, t +1) �= Ben′(t, t +1) (5.2.3)

where the term on the left-hand side denotes, for example, the annual level premium,
whereas the term on the right-hand side denotes the natural premium.

Example 5.2.1. Consider a m-year term insurance, providing a unitary benefit (that
is, C = 1), with single premium Π , or annual level premiums P payable for the
whole policy duration. We have:

Ben′(0,m) = mA′
x

Prem′(0,m) =

{
Π in the case of single premium

Pä′x:m� in the case of annual level premiums

Further, for t = 1,2, . . . ,m−1, we have:

Ben′(t,m) = m−tA
′
x+t

Prem′(t,m) =

{
0 in the case of single premium

Pä′x+t:m−t� in the case of annual level premiums

Ben′(t, t +1) = 1A′
x+t = P[N]

t

Prem′(t, t +1) =

{
0 in the case of single premium

P in the case of annual level premiums

�

5.3 The policy reserve

5.3.1 Definition

Refer to the time-interval (t,m), with t = 0,1, . . . ,m; let Vt denote the quantity such
that:

Prem′(t,m)+Vt = Ben′(t,m) (5.3.1)

Clearly, from Eq. (5.2.1) we obtain

V0 = 0 (5.3.2)

Conversely, for t > 0 the amount Vt fulfils the equivalence principle given that only
“residual” benefits and premiums are referred to.
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We note that if Ben′(t,m) > Prem′(t,m), then the insurer is in a debt posi-
tion. Hence, the financing condition can be simply expressed by the inequality
Vt ≥ 0, which means no credit position. From Eq. (5.3.1) we also note that, if
Ben′(t,m) > Prem′(t,m), the amount Vt together with the future premiums exactly
meets the future benefits.

The quantity
Vt = Ben′(t,m)−Prem′(t,m) (5.3.3)

is called the prospective net reserve. The adjective “prospective” denotes that the
reserve refers to the “future” time interval, namely from time t onwards (the retro-
spective reserve will be shortly addressed in Sect. 5.3.6), whereas “net” recalls that
we are not allowing for expenses and related loadings. Of course, the reserve we
have defined is a “policy” reserve, as it refers to an insurance contract (the portfolio
reserve will be dealt with in Sect. 6.1). The expression mathematical reserve is also
used.

As already mentioned, the reserve, defined by (5.3.3), is assessed adopting the
pricing basis TB1. Hence, it can be considered a prudential valuation of the in-
surer’s debt. However, as the pricing basis leads to an implicit safety loading, the
“degree” of prudence cannot be easily determined. An explicit approach to a safe-
side assessment of the reserve will be presented in Sects. 6.1.2 and 6.1.3.

5.3.2 The policy reserve for some insurance products

The following examples are straightforward applications of formula (5.3.3), which
defines the reserve. If not otherwise stated, we assume unitary benefits. We first
consider insurance products financed by annual level premiums. It is understood
that, for each product, the premium P must rely on the appropriate formula (see
Sect. 4.4.2).

For a whole life insurance, with lifelong premiums, we find:

Vt = A′
x+t −Pä′x+t (5.3.4)

In the case of s-year temporary premiums, we have:

Vt =

{
A′

x+t −P(s) ä′x+t:s−t� if t < s

A′
x+t if t ≥ s

(5.3.5)

The reserve of a term insurance, with premiums payable for the whole policy
duration, is given by:

Vt = m−tA
′
x+t −Pä′x+t:m−t� (5.3.6)

For a pure endowment insurance, we have:

Vt = m−tE
′
x+t −Pä′x+t:m−t� (5.3.7)
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and for an endowment insurance:

Vt = A′
x+t,m−t� −Pä′x+t:m−t� (5.3.8)

We now address, for t > 0, insurance products financed by a single premium. For
a pure endowment insurance, we have:

Vt = m−tE
′
x+t (5.3.9)

whereas, for an immediate life annuity in advance, we find:

Vt = ä′x+t (5.3.10)

When a premium arrangement based on single recurrent premiums is adopted,
the reserve can be easily determined via iterated application of the single premium
reserve formula. For example, consider a pure endowment insurance, and assume
that, at time t, the amounts ΔS0,ΔS1, . . .ΔSt−1 turn out to be financed according
to the scheme presented in Sect. 4.4.5 (see relations (4.4.29)). The sum insured
cumulated up to time t is then St . Hence, the reserve is given by

Vt = m−tE
′
x+t

t−1

∑
h=0

ΔSh = St m−tE
′
x+t (5.3.11)

In a whole life insurance, the sum assured cumulated up to time t is Ct . Then, we
find:

Vt = A′
x+t

t−1

∑
h=0

ΔCh = Ct A′
x+t (5.3.12)

In particular, if i′ = 0 we have (see (4.4.32)):

Vt =
t−1

∑
h=0

Πh (5.3.13)

5.3.3 The time profile of the policy reserve

The policy reserve, Vt , is a function of time t. When analyzing its behavior against
time, we assume that the insured is alive at time t.

As we have so far assumed that the reserve is calculated by adopting the pricing
basis, the reserve itself at policy issue, namely at time t = 0, is equal to zero, what-
ever the premium arrangement (see (5.2.1) and (5.3.2)). However, in the case of a
single premium, Π , it is usual to focus on the reserve immediately after cashing the
premium itself, V0+ , hence setting:

V0+ = V0 +Π = Π (5.3.14)
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As regards the value of the reserve at maturity, i.e. at time m, for a term insurance
we clearly have:

Vm = 0 (5.3.15)

Conversely, for a pure endowment and an endowment insurance with a unitary
amount as the benefit in case of survival, we find:

Vm = 1 (5.3.16)

We now move to the time profile for t = 1,2, . . . (thus, restricting the analysis at
the policy anniversaries). Since we have chosen as mortality assumptions numerical
life tables (the input of the calculation procedures), although derived from an ana-
lytical model (the Heligman-Pollard law), the time profile of the reserve (the output)
can be analyzed only in numerical terms. Notwithstanding, some arguments emerg-
ing from the numerical inspection have a wide range of application. A number of
examples follow.

Example 5.3.1. The reserve of a single premium term insurance is plotted in Fig. 5.3.1,
whereas the case of annual level premium is referred to in Fig. 5.3.2. In both the
cases data are as follows: sum assured C = 1000, x = 40, m = 10; the pricing basis
is TB1 = (0.02,LT1).
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Fig. 5.3.2 Term insurance; annual level
premiums

In Fig. 5.3.3, the reserves corresponding to various ages at entry are plotted. The
other data are unchanged. Conversely, Fig. 5.3.4 displays the reserves related to
various policy durations, age x = 40.
�

The following features of the reserve of the term insurance should be pointed
out:

• the reserve is, in any case, very small if compared to the sum assured;
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Fig. 5.3.4 Term insurances, with various
durations; annual level premiums

• in the case of a single premium, the premium itself is progressively used accord-
ing to the mutuality mechanism, and hence the reserve decreases throughout the
policy duration;

• in the case of annual level premiums, the reserve initially grows, since the level
premium slightly exceeds the corresponding natural premium (see Sect. 4.4.3,
and Example 4.4.3 in particular), then it decreases, and is equal to zero at the
end, because the insurer has no obligation if the insured is alive at maturity;

• still in the case of annual level premiums, the reserve profile is higher when the
age at entry is higher; this can be explained in terms of variation of the natu-
ral premiums throughout the policy duration (again, see Sect. 4.4.3, and Exam-
ple 4.4.3).

Figure 5.3.5 explains the variation (either positive or negative) in the reserve
value, in the case of annual premiums.
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Fig. 5.3.5 Annual variations in the reserve of a term insurance (annual level premiums)
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Example 5.3.2. We refer to a decreasing term insurance (see Sect. 4.3.4). Data are
as follows: x = 40, m = 10, TB1 = (0.02,LT1). The sum assured is given by
Ch+1 = 10−h

10 1000. The reserve profile in the case of a single premium is plotted
in Fig. 5.3.6. Conversely, Fig. 5.3.7 displays the reserve in the case of annual level
premiums payable for the whole policy duration. The violation of the financing con-
dition is apparent. Shortening the premium payment period leads to the reserve pro-
files plotted in Figs. 5.3.8 and 5.3.9. In particular, the former shows an insufficient
shortening (s = 8), whereas the latter displays a feasible arrangement (s = 7).
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Fig. 5.3.6 Decreasing term insurance; single
premium
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Fig. 5.3.7 Decreasing term insurance; annual
level premiums
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Fig. 5.3.8 Decreasing term insurance; shortened
annual level premiums (s = 8)
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Fig. 5.3.9 Decreasing term insurance; shortened
annual level premiums (s = 7)
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Example 5.3.3. The reserve of a single premium pure endowment is plotted in
Fig. 5.3.10, whereas the case of annual level premium is referred to in Fig. 5.3.11.
In both the cases data are as follows: sum assured C = 1000, x = 40, m = 10,
TB1 = (0.02,LT1).

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

Policy anniversary

R
es

er
ve

 

Fig. 5.3.10 Pure endowment; single premium
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Fig. 5.3.11 Pure endowment; level premiums

�

The reserve of a pure endowment is increasing throughout the whole policy dura-
tion. Figure 5.3.12 shows the causes of annual increments in the reserve, in the case
of annual premiums. In particular, we recall that each individual reserve is annually
credited with a share of reserves released by the insureds who died in that year (see
also Case 4a in Sect. 1.7.4, and Fig. 1.7.7 in particular).
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Fig. 5.3.12 Annual variation in the reserve of a pure endowment (annual level premiums)
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Example 5.3.4. Figures 5.3.13 and 5.3.14 refer to an endowment insurance, with
single premium and annual level premiums, respectively. Data are as for the pure
endowment.
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Fig. 5.3.13 Endowment insurance; single
premium
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Fig. 5.3.14 Endowment insurance; annual level
premiums

�

The time profile of the reserve of an endowment insurance almost coincides with
that of a pure endowment. In fact, the difference between the two reserves is the
reserve of a term insurance (assuming that the same technical basis is adopted in the
three insurance products), and hence it is very small, as already noted. It is worth
noting, however, that the rationale underlying the annual variations in the reserve
of an endowment insurance is quite different. Indeed, the payment of death benefits
to insureds who die implies that shares of each individual reserve are annually sub-
tracted from the reserve itself. See Fig. 5.3.15, in which the mutuality effect works
in a negative sense with respect to insureds who are still alive.

Example 5.3.5. Figures 5.3.16 and 5.3.17 refer to a whole life insurance, with single
premium and annual level premiums payable for s = 20 years, respectively. Data are
as follows: C = 1000, x = 50, TB1 = (0.02,LT1).
�

The time profile of the reserve of a whole life insurance is increasing, in both the
case of single premium and annual level premiums, and tends to the sum assured
C. In the case of annual premiums, we note that, when all the premiums have been
paid, the behavior of the reserve coincides with that of the single premium reserve.

Example 5.3.6. The reserve of a single-premium immediate life annuity (in arrears)
is plotted in Fig. 5.3.18. Data are as follows: b = 100, x = 65, TB1 = (0.02,LT4).
�
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Fig. 5.3.15 Annual variation in the reserve of an endowment insurance (annual level premiums)
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Fig. 5.3.16 Whole life insurance; single
premium
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Fig. 5.3.17 Whole life insurance; temporary
annual level premiums

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60

Policy anniversary

R
es

er
ve

 

Fig. 5.3.18 Single-premium immediate life annuity
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The reserve of an immediate life annuity is decreasing throughout the whole pol-
icy duration. Figure 5.3.19 shows the causes of annual decrements in the reserve. We
note, in particular, that the mutuality mechanism works as in the pure endowment.
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Fig. 5.3.19 Annual variation in the reserve of an immediate life annuity (single premium)

5.3.4 Change in the technical basis

In some circumstances the reserve must be calculated by adopting a technical basis
(called the reserving basis, or valuation basis) other than the pricing basis used for
determining the premiums. Such a need can arise, for example, because:

• a “realistic” assessment of the insurer’s debt is required, in order to single out the
safety component included in the reserve;

• an important change in the financial or demographic scenario makes the reserve
(assessed according to the pricing basis) either no longer prudential, or con-
versely too high.

The former issue will be addressed in Sect. 6.1.3; how to allow for the consequences
of a change in the scenario is the topic of the present Section.

Assume that a significant change in the scenario is accounted for when assess-
ing the reserves. This change can be due, for example, to an important variation
observed in the mortality, or to different forecasts about the return on investments.
The consequent variation in the reserve (when positive) can constitute a compulsory
action, imposed by the supervisory authority.

Figure 5.3.20 sketches the consequences of a change in the scenario. First, the
new scenario is expressed by an updated second-order basis, TB2∗, which, in its
turn, suggests the adoption of a new first-order basis, TB1∗. This basis will be used
as a pricing basis, and hence adopted in pricing as well as reserving, for policies
written after the scenario change. Conversely, premiums of in-force policies cannot
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be changed, since policy conditions are guaranteed at the policy issue. Thus, for
these policies the basis TB1∗ is only used to update the reserves.

TB2

TB1

Premiums,
Reserves

change in
scenario

TB2*

TB1*

NEW POLICIES:
Premiums, Reserves

IN-FORCE POLICIES:
Reserves

Fig. 5.3.20 Shift to new technical bases because of a change in scenario

Several approaches to the reserve updating are available, at least in principle. We
focus on some approaches, referring to an endowment insurance with annual level
premiums payable for the whole policy duration. As usual, x denotes the insured’s
age at policy issue, m the duration, C the sum insured in both the cases of death and
survival. We assume that the shift in the technical basis occurs at time τ; the updated

reserve will be denoted with V [u]
t , for t ≥ τ . Further, we assume that the shift implies

an increase in the reserve; hence, V [u]
τ > Vτ .

The updated reserve is defined as the amount that, at time τ , together with the ac-
tuarial value of the future premiums, meets (according to the equivalence principle)
the actuarial value of the future benefits; both the actuarial values rely on the new
basis TB1∗. In formal terms:

V [u]
τ +Pä∗x+τ :m−τ� = C A∗

x+τ ,m−τ� (5.3.17)

In more general terms, the equivalence principle requires that the following con-
dition is fulfilled:

(Vτ +ΔVτ)+(P+ΔP) ä∗x+τ :m−τ� = C A∗
x+τ ,m−τ� (5.3.18)

Condition (5.3.18) is an equation in the two unknowns ΔVτ and ΔP. Particular so-
lutions of (5.3.18) suggest practicable approaches to the problem of the reserve up-
dating. It is understood that, whatever is the particular solution chosen, the insurer
is charged with the payment of the amounts ΔVτ and ΔP.

1. Set
ΔVτ = V [u]

τ −Vτ (5.3.19)
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and hence ΔP = 0; Eq. (5.3.18) reduces to (5.3.17). This approach implies an
immediate rise in the reserve (at time τ), and hence turns out to be the most
prudential. For all integer t, t ≥ τ , we then have:

V [u]
t = C A∗

x+t,m−t� −Pä∗x+t:m−t� (5.3.20)

2. Less prudential approaches consist in a lower rise, ΔVτ , in the reserve, followed
by premium integrations (“paid” by the insurer) which amortize the missing share

of the required increment in the reserve, namely the amount V [u]
τ −Vτ −ΔVτ . A

particular approach in this category can be of prominent practical interest. Let
P∗ denote the annual premium according to the pricing basis TB1∗, namely the
premium such that P∗ ä∗x:m� = C A∗

x,m�. Then, set

ΔP = P∗ −P (5.3.21)

From (5.3.18), it follows:

ΔVτ = C A∗
x+τ ,m−τ� −P∗ ä∗x+τ :m−τ� −Vτ (5.3.22)

It is worth noting that the resulting reserve, Vτ +ΔVτ , coincides with the reserve,
V ∗

τ = C A∗
x+τ ,m−τ� −P∗ ä∗x+τ :m−τ�, which will pertain to new policies issued ac-

cording to the basis TB1∗. Hence, the advantage of this particular approach con-
sists in a reserve accumulation process coinciding with that for the new policies.
For all integer t, t ≥ τ , we then have:

V ∗
t = C A∗

x+t,m−t� −P∗ä∗x+t:m−t� (5.3.23)

3. Set ΔVτ = 0; hence, from (5.3.18) we obtain:

ΔP =
C A∗

x+τ ,m−τ� −Pä∗x+τ :m−τ� −Vτ

ä∗x+τ :m−τ�
=

V [u]
τ −Vτ

ä∗x+τ :m−τ�
(5.3.24)

Thus, the whole required update in the reserve is amortized in m− τ years. For
all integer t, t ≥ τ , denoting with Ṽt the resulting reserve, we then have:

Ṽt = C A∗
x+t,m−t� − (P+ΔP) ä∗x+t:m−t� (5.3.25)

with ΔP given by (5.3.24). Clearly, this approach does not provide a prudential
solution.

The solutions we have described lead to the reserve profiles sketched in
Fig. 5.3.21(a) (for simplicity, the reserve profile is represented by a solid line, i.e.
disregarding the jumps corresponding to annual premiums).

Of course, other technical solutions are available, even outside the framework
designed by condition (5.3.18). We just mention the following one.

4. Set ΔVτ = 0; then, set
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Q =
V [u]

τ −Vτ
ä∗x+τ :r−τ�

(5.3.26)

with r < m. Hence, the premium integration, Q, amortizes the required in-
crease in the reserve in a period shorter than the residual policy duration (see
Fig. 5.3.21(b)).
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Fig. 5.3.21 Updating the reserve because of a shift in the technical basis

Example 5.3.7. Refer to an endowment insurance with annual level premiums payable
for the whole policy duration. Data are as follows: C = 1000, x = 50, m = 15,
TB1 = (0.03,LT1). The resulting annual premium is P = 55.13. At time τ = 8, be-
cause of a decrease in interest rates, the technical basis shifts to TB1∗ = (0.01,LT1).
The resulting annual premium is P∗ = 64.27. Table 5.3.1 displays the reserve Vt

which relies on the basis TB1, and the reserves V [u]
t , V ∗

t , and Ṽt , calculated accord-
ing to formulae (5.3.20), (5.3.23), and (5.3.25) respectively.
�

5.3.5 The reserve at fractional durations

The analysis of the time profile of the reserve has been so far restricted to the pol-
icy anniversaries, namely integer durations since the policy issue. The extension to
fractional durations is, however, of practical interest. For example, the need for cal-
culating the policy reserve (and the portfolio reserve, as well) at times other than the
policy anniversaries arises when assessing the items of the balance-sheet.
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Table 5.3.1 Updating the reserve because of a shift in the technical basis

t Vt
V [u]

t V ∗
t Ṽt

(1) (2) (3)

0 0.00
1 53.59
2 108.64
3 165.21
4 223.37
5 283.19
6 344.75
7 408.16
8 473.51 570.03 509.62 473.51
9 540.95 628.54 576.35 545.16

10 610.63 687.83 643.97 617.76
11 682.71 747.99 712.59 691.43
12 757.42 809.14 782.33 766.30
13 835.00 871.41 853.35 842.55
14 915.74 934.97 925.83 920.37
15 1000.00 1000.00 1000.00 1000.00

The calculation of the exact value of the policy reserve at all durations can be
carried out in a time-continuous setting. In such a setting, a mortality law must be
available, instead of a numerical life table. In the actuarial practice, however, it is
rather common to work in a time-discrete framework (as we are actually doing), and
to obtain approximations to the exact value of the reserve via interpolation proce-
dures, in particular by adopting linear interpolation formulae. Here we illustrate the
interpolation approach, focussing on some examples.

Consider an insurance policy, for example a term insurance, with premium ar-
rangement based on natural premiums. The reserve is, of course, equal to zero at all
the policy anniversaries, before cashing the premium which falls due at that time;
thus Vt = 0 for all integer t. Immediately after cashing the premium, the insurer’s
debt (and the corresponding asset) is clearly equal to the premium itself; hence,
denoting with Vt+ the reserve after cashing the premium, we have:

Vt+ = P[N]
t ; t = 0,1, . . . (5.3.27)

Then, the premium is used throughout the year according to the mutuality mecha-
nism and, again, we have Vt+1 = 0. At time t + r, with 0 < r < 1, we let:

Vt+r = (1− r)Vt+ = (1− r)P[N]
t (5.3.28)

The resulting time profile of the reserve is plotted in Fig. 5.3.22.
As the second example, we refer to an insurance product (e.g. an endowment

insurance) with annual level premiums P. After cashing the premium which falls
due at time t, the reserve increases from Vt to
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Fig. 5.3.22 Interpolated reserve profile in the case of natural premiums

Vt+ = Vt +P (5.3.29)

Then, the linear interpolation yields:

Vt+r = (1− r)Vt+ + rVt+1 = [(1− r)Vt + rVt+1]+ (1− r)P (5.3.30)

See Fig. 5.3.23. We note, in particular, the following aspects.

• Interpolating between Vt (instead of Vt+) and Vt+1 would cause an apparent
underestimation of the reserve at all times between t and t + 1 (again, see
Fig. 5.3.23).

• The “use” of the premium P depends on the specific insurance product addressed.
For example, if we consider an endowment insurance, the share of the premium
used to cover death benefits according to the mutuality mechanism is decreasing
throughout the policy duration (as we will see in Sect. 5.4.3); this fact determines
a time profile of the reserve like that plotted in Fig. 5.3.24.
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Fig. 5.3.23 Reserve interpolation in the case of annual level premiums



262 5 Life insurance: reserving

0 21 3

P

P

P

P
P

P

time 

re
se

rv
e 

m-2 m-1m-3 m

Fig. 5.3.24 Interpolated reserve profile in the case of annual level premiums: an example

As the third example, we consider an insurance product (for example, a term
insurance, or a pure endowment, or an endowment insurance), with a single pre-
mium Π . In this case, there is no jump in the reserve profile, but at the payment
of the single premium, when the reserve jumps from V0 = 0 to V0+ = Π . Then, the
interpolation procedure is as follows:

Vr = (1− r)V0+ + rV1 (5.3.31a)

Vt+r = (1− r)Vt + rVt+1 for t = 1,2, . . . (5.3.31b)

See Fig. 5.3.25.
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Fig. 5.3.25 Interpolated reserve profile in the case of single premium

Finally, we refer to single-premium life annuities, providing an annual benefit b.
The jumps in the reserve profile correspond to the annual payments of the benefit,
as illustrated in Fig. 5.3.26. For a life annuity in arrears (panel (a)), taking as usual
V0+ = Π , the interpolation is as follows:
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Vr = (1− r)V0+ + r (V1 +b) (5.3.32a)

Vt+r = (1− r)Vt + r (Vt+1 +b) for t = 1,2, . . . (5.3.32b)

where Vt = a′x+t . For a life annuity in advance (panel (b)), taking again V0+ = Π ,
the interpolation is as follows:

Vr = (1− r)(V0+ −b)+ rV1 (5.3.33a)

Vt+r = (1− r)(Vt −b)+ rVt+1 for t = 1,2, . . . (5.3.33b)

with Vt = ä′x+t .

0

b
b

1 2 time 

re
se

rv
e 

Π 
V1

V2

(a)

0

b

b
b

1 2 time 

re
se

rv
e 

Π 
V1

V2

(b)

Fig. 5.3.26 Interpolated reserve profile for life annuities

5.3.6 The retrospective reserve

The (prospective) policy reserve has been defined as the balancing term, Vt , which
transforms inequality (5.2.2b) into relation (5.3.1). Looking at inequality (5.2.2a),
and hence referring to the time interval (0, t), we can define the so-called retrospec-
tive reserve.

Let Bt denote the amount such that

Prem′(0, t) = Bt +Ben′(0, t) (5.3.34)

The amount Bt can be interpreted as the actuarial value (at the policy issue) of the
benefit that the insurer should pay at time t if the insured decides (at that time) to
abandon the contract, stopping the premium payment and renouncing all the benefits
which fall due after time t.

Clearly, this interpretation holds if Bt > 0, namely Prem′(0, t) > Ben′(0, t). Ac-
tually, this inequality should be verified, as we will see in what follows.
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The benefit, Wt , whose actuarial value at time t = 0 is given by Bt , is then defined
by the following relation:

Bt = Wt tE
′
x (5.3.35)

Hence, we find:

Wt =
1

tE ′
x

(
Prem′(0, t)−Ben′(0, t)

)
(5.3.36)

The quantity Wt is called the retrospective reserve. Note that the term 1
t E ′

x
, namely

the actuarial accumulation factor (see Sect. 4.2.8), plays the role of referring the
valuation at time t.

Remark The interpretation of Wt as the amount to be paid by the insurer in the case the policy-
holder abandons the contract, although interesting under a theoretical perspective, requires in prac-
tice various adjustments. For example, expenses should be accounted for, and penalties could be
applied in determining the amount paid by the insurer. We will return on these issues in Sect. 5.7.

The following examples are straightforward applications of formula (5.3.36),
which defines the retrospective reserve.

In insurance products which provide a death benefit (term insurance, whole life
insurance, endowment insurance), the insurer’s liability is given by the coverage of
the death risk over the time interval (0, t). Thus, assuming a unitary benefit, and
annual level premiums payable throughout the whole policy duration, we have, for
all these products:

Wt =
1

tE ′
x

(
Pä′x:t� − tA

′
x

)
(5.3.37)

where P denotes the annual premium related to the specific product addressed.
In a pure endowment with annual level premiums, we have:

Wt =
1

tE ′
x

P ä′x:t� (5.3.38)

as this product does not provide any benefit in the time interval (0, t) (of course, if
t < m, where m denotes the policy term).

In the case of a single premium (given, according to the equivalence principle,
by the actuarial value of the benefits), we have for an endowment insurance:

Wt =
1

tE ′
x
(A′

x,m� − tA
′
x) (5.3.39)

Replacing A′
x,m� with A′

x or mA′
x, we have the retrospective reserve for the whole life

insurance and the term insurance, respectively.
For a single-premium pure endowment, we have:

Wt =
1

tE ′
x

mE ′
x (5.3.40)
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Remark In spite of the adjective “retrospective”, the reserve we are dealing with cannot be
interpreted as an ex-post quantification of the “past” liabilities (namely, those preceding time t) of
the insurer and the insured. From (5.3.36), it is apparent that the calculation of the retrospective
reserve first relies on the valuation at time 0 of the benefits and premiums pertaining to the interval
(0, t) (and hence “future” with respect to time 0), and then on a valuation at time t via the actuarial
accumulation factor 1

t E ′
x
.

Let us go back to the reserve of the single-premium pure endowment (see
(5.3.40)). We note that, for this insurance product, the prospective reserve is given
by Vt = m−tE ′

x+t . Further, we have mE ′
x = tE ′

x m−tE ′
x+t (see (4.2.45)), and hence:

Wt = Vt (5.3.41)

thus, the prospective and the retrospective reserve coincide. Result (5.3.41) holds
under rather general conditions. This topic is beyond the scope of this Chapter. So,
we will simple provide a further example, and some final remarks as well.

We refer to a whole life insurance, with annual level premium P payable for the
whole policy duration. The single premium is, of course, given by A′

x. The following
relations hold:

A′
x = tA

′
x + tE

′
x A′

x+t (5.3.42a)

ä′x = ä′x:t� + tE
′
x ä′x+t (5.3.42b)

Pä′x = A′
x (5.3.42c)

The prospective reserve for this insurance product is given by (5.3.4). By using
relations (5.3.42), we find:

Vt =
A′

x − tA′
x

tE ′
x

−P
ä′x − ä′x:t�

tE ′
x

=
1

tE ′
x

(
Pa′x:t� − tA

′
x

)
= Wt (5.3.43)

that is, the coincidence between the prospective and the retrospective reserve.
Whenever relations similar to those expressed by formulae (5.3.42) hold, we have

the coincidence between the two reserves, provided that the same technical basis is
used for both the reserves. However, relations of this type do not hold, for example,
in relation to some insurance products which provide benefits depending on the life-
times of more than one individual. In those products, the reserve at time t depends
on which insureds are alive at that time, i.e. on the “status” of the insured group,
whereas the retrospective reserve, which first requires a valuation at time 0, can
only represent a weighted average of the “possible” prospective reserves at time t.

5.3.7 The actuarial accumulation process

To introduce some interesting relations between the reserving process and the pre-
mium flows, we will just refer to an example, provided by an m-year term insurance
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with annual level premiums payable for the whole policy duration. We assume a
unitary sum insured.

The natural premiums of the term insurance are expressed by (4.4.21), namely

P[N]
h = 1A′

x+h = (1+ i′)−1 q′x+h, for h = 0,1, . . . ,m−1. The reserve premiums, P[AS]
h ,

are defined by (4.4.28).
Consider the actuarial value at the policy issue of the reserve premiums pertain-

ing to the first t policy years. This value is given by

t−1

∑
h=0

P[AS]
h hE ′

x = P
t−1

∑
h=0

hE ′
x −

t−1

∑
h=0

1A′
x+h hE ′

x (5.3.44)

From the following relations

t−1

∑
h=0

hE ′
x = ä′x:t� (5.3.45a)

t−1

∑
h=0

1A′
x+h hE ′

x = tA
′
x (5.3.45b)

we then find that the actuarial value of the reserve premiums can be expressed as
follows:

Pä′x:t� − tA
′
x = tE

′
x Wt (5.3.46)

(see also (5.3.37)). Finally, we obtain:

Wt =
1

tE ′
x

t−1

∑
h=0

P[AS]
h hE ′

x =
t−1

∑
h=0

P[AS]
h

1

t−hE ′
x+h

(5.3.47)

Thus, the retrospective reserve is the result of the actuarial accumulation of the
reserve premiums pertaining to the policy years preceding the time of valuation of
the reserve itself. On the one hand, this interpretation can be useful in interpreting
the time profile of the reserve (see Sect. 5.3.3). On the other, a different splitting
of the annual premium allow us to interpret the policy reserve as the result of a
purely financial accumulation process. As we will see in Sect. 5.4, this alternative
splitting of the annual premiums is of paramount importance in interpreting the
intermediation role of a life insurer.

We just mention that, conversely, the prospective reserve at time t can be ex-
pressed as minus the actuarial value (at that time) of the future reserve premiums,
namely:

Vt = −
m−t−1

∑
h=0

P[AS]
t+h hE ′

x+t (5.3.48)
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5.4 Risk and savings

The first topic addressed in this Section relates to recursive procedures for the cal-
culation of the policy reserve. Nonetheless, the practical interest of the topic goes
well beyond computational aspects. In fact, the topic itself constitutes the starting
point for an in depth analysis of the role of a life insurance company. In particular,
technical aspects will emerge, concerning the life insurer as a player in both the
financial intermediation and the risk pooling process.

5.4.1 A (rather) general insurance product

We refer to an insurance product, with the following characteristics: term m, age at
policy issue x, sum insured in the case of death C, sum insured in the case of survival
at maturity S, annual level premiums, P, payable for the whole policy duration, and
hence given by:

P =
C mA′

x +S mE ′
x

ä′x:m�
(5.4.1)

For example,

• setting S = 0, C > 0, we have the term insurance, with constant sum assured;
• setting S > 0, C = 0, we find the pure endowment;
• setting S = C > 0, we have the (standard) endowment insurance;
• setting S > C > 0, we have the endowment insurance with additional survival

benefit.

A number of possible generalizations allow us to recognize other insurance prod-
ucts. For example,

• setting S = 0, C > 0, m = ω − x, we find the whole life insurance;
• setting S = 0, and replacing C with a sequence C1,C2, . . . ,Cm, we have the term

insurance with varying benefit, and, in particular, the decreasing term insurance;
• replacing P with a sequence P0,P1, . . . ,Pm−1, we can represent arrangements

based on variable premiums; in particular:

– with P0 = P1 = · · ·= Ps−1, Ps = Ps+1 = · · ·= Pm−1 = 0, we have arrangements
based on level premiums payable over a shortened period (s < m);

– setting P0 > 0, P1 = P2 = · · · = Pm−1 = 0, we represent the single premium
arrangement;

– the natural premium arrangement is obviously represented by setting

Ph = P[N]
h , for h = 0,1, . . . ,m−1.

Other generalizations allow us to represent various types of life annuities. Notwith-
standing, in what follows we refer to the insurance product defined at the beginning
of this Section.
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5.4.2 Recursive equations

The policy reserve, at time t, of the insurance product defined above is given by:

Vt = Ben′(t,m)−Prem′(t,m) = C m−tA
′
x+t +S m−tE

′
x+t −Pä′x+t:m−t� (5.4.2)

We can also write:

Vt = C 1A′
x+t −P+C 1|m−t−1A′

x+t +S m−tE
′
x+t −P 1|ä′x+t:m−t−1� (5.4.3)

and, after a little algebra, we get to the following expression:

Vt +P = C 1A′
x+t +Vt+1 1E ′

x+t (5.4.4)

or, in more explicit terms:

Vt +P = C (1+ i′)−1 q′x+t +Vt+1 (1+ i′)−1 p′x+t (5.4.5)

Recursive Eq. (5.4.5) is called the Fouret equation (1891). We note the following
features.

• Actuarial values in (5.4.5) are referred at time t, as both the financial and the
probabilistic evaluation are referred at that time (that is, the insured is assumed
to be alive at time t).

• Equation (5.4.5) describes an “equilibrium” situation in the time interval (t, t +1):
the assets available at time t (the reserve Vt , and the premium P just cashed) ex-
actly meet the liabilities which fall due at time t +1, namely:

– the sum assured C, in the case of death;
– the reserve Vt+1, which is needed either to continue the policy in the case of

survival (if t +1 < m), or to be paid as sum S at maturity (if t +1 = m)

(see Fig. 5.4.1, upper panel).
• The policy reserve can be calculated by an iterative application of (5.4.5):

starting from V0 = 0, the equation allows us to calculate V1,V2, . . . ,Vm (with
the “final” check Vm = S); conversely, starting from Vm = S, we can calculate
Vm−1,Vm−2, . . . ,V0 (with V0 = 0).

Alternative expressions of (5.4.5) are the following ones:

(Vt +P)(1+ i′) = C q′x+t +Vt+1 p′x+t (5.4.6)

Vt +P = (C−Vt+1)(1+ i′)−1 q′x+t +Vt+1 (1+ i′)−1 (5.4.7)

(Vt +P)(1+ i′) = (C−Vt+1)q′x+t +Vt+1 (5.4.8)

We note the following aspects.
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t t+1

Vt

P

Vt+1

C - Vt+1

ASSETS LIABILITIES

Vt+1

C
in case of death

in case of death

in case of survival
in both cases

t t+1

Vt

P

Vt+1

C

ASSETS LIABILITIES

in case of survival

in case of death

Fig. 5.4.1 Recursive equations: interpretations

• In Eq. (5.4.6) and Eq. (5.4.8) (called the Kanner equation, 1869), the financial
evaluation is referred to time t + 1 (whereas the probabilistic evaluation is still
referred to time t).

• In Eqs. (5.4.7) and (5.4.8), the reserve Vt+1 appears as a liability certain at time
t + 1 (that is, in both the cases of death and survival), whereas the death benefit
(if any) is split into two shares,

C = (C−Vt+1)+Vt+1 (5.4.9)

namely:

– the amount C −Vt+1, which is called the sum at risk (or the net amount at
risk), to stress that it is not yet available but funded (year by year) via the
mutuality mechanism;

– the amount Vt+1, which is not “at risk”, as the reserve has to be used anyhow
(sooner or later)

(see Fig. 5.4.1, lower panel).
• In the case of no death benefit (C = 0), or a death benefit smaller than the reserve

(C < Vt), the amount at risk is negative; in these cases, if the insured dies in
the year, the sum at risk (the whole reserve, in the case C = 0) is released for
mutuality, and thus contributes to financing the benefits pertaining to the policies
still in-force.

Remark 1 It is worth stressing that the term “risk” is used, in this context, according to its
traditional actuarial meaning, that is “risk of death”. Other risk causes (e.g. the investment risk) are
not involved.
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Remark 2 Recursive Eqs. (5.4.5) to (5.4.8) can be easily interpreted also referring to a portfolio
of policies. Let Nt denote the (given) number of policies in-force at time t, and Nt+1 the random
number of policies in-force at time t +1, namely the number of insureds still alive. Further, let Dt

denote the random number of insureds dying in the year; thus, Dt = Nt −Nt+1. Refer, for example,
to Eq. (5.4.6). We can write:

(Vt Nt +PNt)(1+ i′) = C Nt q′x+t +Vt+1 Nt p′x+t (5.4.10)

On the left-hand side of Eq. (5.4.10) we find the amount of resources (reserves and premiums)
pertaining to policies in-force at time t, cumulated to time t +1. As regards the right-hand side of
the equation, we first note that Nt p′x+t = E[Nt+1] is the expected number of policyholders alive at
time t +1, whereas Nt q′x+t = E[Dt ] is the expected number of policyholders dying in the year. The
interpretation of the right-hand side of Eq. (5.4.10) in terms of insurer’s expected obligations is
then straightforward.

5.4.3 Risk premium and savings premium

From Eq. (5.4.7), we obtain:

P = [(C−Vt+1)(1+ i′)−1 q′x+t ]+ [Vt+1 (1+ i′)−1 −Vt ] (5.4.11)

so that the two following components of the annual premium can be recognized:

P[R]
t = (C−Vt+1)(1+ i′)−1 q′x+t (5.4.12a)

P[S]
t = Vt+1 (1+ i′)−1 −Vt (5.4.12b)

The two components are called the risk premium and the savings premium, respec-
tively.

The savings premiums maintain the reserving process. In fact, from (5.4.12b) we
find:

Vt+1 = (Vt +P[S]
t )(1+ i′) (5.4.13)

and then:

Vt+1 = P[S]
0 (1+ i′)t+1 +P[S]

1 (1+ i′)t + · · ·+P[S]
t (1+ i′) (5.4.14)

It turns out that the policy reserve is the result of the financial accumulation of the
savings premiums. Conversely, the risk premium is the premium of a one-year term
insurance to cover the sum at risk.

We note that the two premium components are not necessarily both positive.
In particular, if the sum at risk is negative, the risk premium is negative. See the
following numerical examples for further details.

Example 5.4.1. Table 5.4.1 refers to a term insurance, with annual level premiums
(denoted by Pt , as in following examples other premium arrangements will be ad-
dressed), payable for the whole policy duration. In particular, the decomposition of
the annual premium into risk premium and savings premium is displayed. Further,
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the natural premiums and the time profiles of the reserve and the sum at risk are
shown. Data are as follows: C = 1000, x = 50, m = 10, TB1 = (0.02,LT1). It is
interesting to note that the risk premiums are very close to the natural premiums, as
the reserve is very small and hence the sum at risk almost coincides with the sum
assured.

Table 5.4.1 Term insurance (annual level premiums)

t Pt P[N]
t P[R]

t P[S]
t Vt C−Vt

0 5.40 3.31 3.31 2.09 0.00 —
1 5.40 3.68 3.66 1.74 2.14 997.86
2 5.40 4.08 4.05 1.35 3.95 996.05
3 5.40 4.52 4.49 0.91 5.40 994.60
4 5.40 5.01 4.98 0.42 6.44 993.56
5 5.40 5.56 5.52 −0.12 7.00 993.00
6 5.40 6.17 6.13 −0.73 7.01 992.99
7 5.40 6.84 6.80 −1.40 6.41 993.59
8 5.40 7.58 7.56 −2.16 5.11 994.89
9 5.40 8.41 8.41 −3.01 3.01 996.99

10 — — — — 0 1 000.00

Table 5.4.2 refers to a single-premium term insurance. Clearly, P0 = Π = C mA′
x.

Data are as above. Natural premiums coincide, of course, with those in Table 5.4.1;
in fact, natural premiums only depend on the benefit structure, while they are inde-
pendent of the specific premium arrangement. All the savings premiums, but the first
one, are negative, and represent the “use” of the reserve in the mutuality process.

Table 5.4.2 Term insurance (single premium)

t Pt P[N]
t P[R]

t P[S]
t Vt C−Vt

0 48.52 3.31 3.16 45.35 0.00 —
1 0.00 3.68 3.52 −3.52 46.26 953.74
2 0.00 4.08 3.91 −3.91 43.60 956.40
3 0.00 4.52 4.35 −4.35 40.48 959.52
4 0.00 5.01 4.85 −4.85 36.85 963.15
5 0.00 5.56 5.41 −5.41 32.64 967.36
6 0.00 6.17 6.03 −6.03 27.78 972.22
7 0.00 6.84 6.73 −6.73 22.19 977.81
8 0.00 7.58 7.52 −7.52 15.76 984.24
9 0.00 8.41 8.41 −8.41 8.41 991.59

10 — — — — 0.00 1000.00

�
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Example 5.4.2. A pure endowment is referred to in Table 5.4.3. Data are as follows:
S = 1000, x = 50, m = 10, TB1 = (0.02,LT1). As C = 0, all the risk premiums are

negative, and hence we find P[S]
t > P for all t. This means that the premium P is

insufficient to maintain the reserving process, which in fact needs for the contribu-
tions provided by the reserves of the policies terminating because of the insureds’
death.

Table 5.4.3 Pure endowment (annual level premiums)

t Pt P[N]
t P[R]

t P[S]
t Vt C−Vt

0 86.30 0.00 −0.29 86.60 0.00 —
1 86.30 0.00 −0.66 86.96 88.33 −88.33
2 86.30 0.00 −1.11 87.41 178.80 −178.80
3 86.30 0.00 −1.66 87.96 271.53 −271.53
4 86.30 0.00 −2.33 88.63 366.68 −366.68
5 86.30 0.00 −3.14 89.45 464.42 −464.42
6 86.30 0.00 −4.12 90.43 564.95 −564.95
7 86.30 0.00 −5.30 91.61 668.48 −668.48
8 86.30 0.00 −6.72 93.02 775.29 −775.29
9 86.30 971.98 −8.41 94.71 885.68 −885.68

10 — — — — 1000.00 −1000.00

�

Example 5.4.3. Table 5.4.4 refers to a (standard) endowment insurance. Data are
as follows: C = S = 1000, x = 50, m = 10, TB1 = (0.02,LT1). All the entries in
the Table can be obtained as the sum of the corresponding entries in Tables 5.4.1
and 5.4.3. We note that all the risk premiums and the savings premiums are pos-
itive. This suggests to look at the endowment insurance as the combination of an
m-year financial transaction and a sequence of one-year term insurances, as shown
in Table 5.4.5. The interpretation is as follows. An individual, instead of purchasing
a m-year endowment insurance with sum insured C, and hence paying the annual
premiums P, could in each year:

• invest the amount P[S]
t in a fund, managed by a financial institution, and annually

credited with the interest rate i′;
• pay the amount P[R]

t to an insurer to buy a one-year term insurance for a sum
assured such that the sum itself plus the balance of the fund is equal to C.

It is easy to check that, in both the case of survival and the case of death prior to
maturity, the amounts paid by the individual and the benefits obtained by the ben-
eficiaries coincide with the corresponding outflows and inflows of the endowment
insurance. It is worth stressing, however, that the “equivalence” between the endow-
ment insurance and the set of transactions described above relies on some important
assumptions that, at least to some extent, are rather unrealistic. In particular, the
financial transaction should guarantee a constant interest rate i′, as a (traditional)
endowment insurance does. As regards the one-year term insurances, the life table
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adopted for calculating the premiums could be changed throughout the m years,
thanks to mortality improvements in the population, and hence with an advantage to
the insured; on the contrary, if medical examinations are required, the death proba-
bilities could be raised because of worsened health conditions. In conclusion, while
the interpretation we have sketched is useful to understand the two-fold role of a life
insurance company, it should not be meant as aiming to prove analogies among the
results of different transactions.

Table 5.4.4 Endowment insurance (annual level premiums)

t Pt P[N]
t P[R]

t P[S]
t Vt C−Vt

0 91.71 3.31 3.01 88.69 0.00 —
1 91.71 3.68 3.00 88.70 90.46 909.54
2 91.71 4.08 2.95 88.76 182.75 817.25
3 91.71 4.52 2.83 88.87 276.94 723.06
4 91.71 5.01 2.65 89.05 373.12 626.88
5 91.71 5.56 2.38 89.32 471.42 528.58
6 91.71 6.17 2.00 89.70 571.96 428.04
7 91.71 6.84 1.50 90.20 674.90 325.10
8 91.71 7.58 0.84 90.86 780.40 219.60
9 91.71 980.39 0.00 91.71 888.69 111.31

10 — — — — 1000.00 0.00

Table 5.4.5 The endowment insurance as a combination of transactions

A m-year financial transaction A sequence of m one-year
Year term insurances

(t, t +1) Payment Result Payment Result
(at time t) (at time t +1) (at time t) (at time t +1)

(0,1) P[S]
0 V1 P[R]

0 C−V1

(1,2) P[S]
1 V2 P[R]

1 C−V2

(2,3) P[S]
2 V3 P[R]

2 C−V3

. . . . . . . . . . . . . . .

(m−2,m−1) P[S]
m−2 Vm−1 P[R]

m−2 C−Vm−1

(m−1,m) P[S]
m−1 = P Vm = C P[R]

m−1 = 0 C−Vm = 0

�

Example 5.4.4. Table 5.4.6 refers to a single-premium immediate life annuity (in
arrears). Data are as follows: b = 100, x = 65, TB1 = (0.02,LT4). The technical
structure of a life annuity requires a generalization of the recursive equations. We



274 5 Life insurance: reserving

generalize Eq. (5.4.7) as follows:

Vt +Pt = −Vt+1 (1+ i′)−1 q′x+t +Vt+1 (1+ i′)−1 +b(1+ i′)−1 p′x+t (5.4.15)

where V0 = 0, P0 = Π = a′x, and Pt = 0, for t = 1,2, . . . . From (5.4.15), after a little
algebra we obtain:

Pt = [(Vt+1 +b)(1+ i′)−1 −Vt ]+ [(−Vt+1 −b)(1+ i′)−1 q′x+t ] (5.4.16)

and then

P[R]
t = (−Vt+1 −b)(1+ i′)−1 q′x+t (5.4.17a)

P[S]
t = (Vt+1 +b)(1+ i′)−1 −Vt (5.4.17b)

Hence, P[R]
t < 0 for all t, and, for t = 1,2, . . . , as Pt = 0 then P[S]

t =−P[R]
t > 0. Thus,

reserves released by the annuitants dying in the various years maintain the reserves
of the surviving annuitants, according to the mutuality mechanism. As regards the
natural premiums, we have, for all t:

P[N]
t = b(1+ i′)−1 p′x+t (5.4.18)

From Eq. (5.4.15), after a little algebra, we also obtain:

b =
(
(Vt +Pt)(1+ i′)−Vt+1

)
+

(
−P[R]

t (1+ i′)
)

(5.4.19)

Equation (5.4.19) shows that part of the annual benefit is financed by the policy
reserve, whereas the remaining part is financed by a share of the reserves released,
namely via the mutuality effect. Table 5.4.6 shows that the mutuality effect becomes
more and more important as t increases, clearly because of an increasing mortality
among annuitants.
�

5.4.4 Life insurance products versus financial accumulation

Consider the whole life insurance, financed via single recurrent premiums, and as-
sume i′ = 0 (see Sect. 4.4.5). As already noted, according to this arrangement no
mortality risk is borne by the insurer. The formal proof is straightforward. In the case
of death in year t, the sum paid to the beneficiary is Ct = ∑t−1

h=0 Πh (see Eq. (4.4.32));
the reserve at time t is Vt = ∑t−1

h=0 Πh (see Eq. (5.3.13)). Thus, Ct = Vt , and hence the
sum at risk is equal to zero.

In general, any product in which the death benefit coincides with the policy re-
serve is just a financial accumulation product. In fact, from
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Table 5.4.6 Life annuity in arrears (single premium)

t Pt P[N]
t P[R]

t P[S]
t Vt

b = 100

(Vt +Pt)(1+ i′)−Vt+1 −P[R]
t (1+ i′)

0 1706.88 97.48 −9.81 1716.69 — 90.00 10.00
1 0.00 97.41 −10.72 10.72 1651.02 89.06 10.94
2 0.00 97.33 −11.70 11.70 1594.97 88.07 11.93
3 0.00 97.23 −12.76 12.76 1538.81 86.99 13.01
4 0.00 97.13 −13.89 13.89 1482.60 85.83 14.17
5 0.00 97.01 −15.11 15.11 1426.43 84.60 15.40

. . . . . . . . . . . . . . . . . . . . . . . .
10 0.00 96.16 −22.43 22.43 1149.01 77.12 22.88
11 0.00 95.92 −24.16 24.16 1094.87 75.36 24.64
12 0.00 95.65 −25.97 25.97 1041.41 73.51 26.49
13 0.00 95.35 −27.87 27.87 988.73 71.57 28.43
14 0.00 95.01 −29.85 29.85 936.93 69.56 30.44
15 0.00 94.63 −31.90 31.90 886.11 67.45 32.55
. . . . . . . . . . . . . . . . . . . . . . . .
20 0.00 91.93 −43.17 43.17 650.12 55.97 44.03
21 0.00 91.20 −45.57 45.57 607.16 53.52 46.48
22 0.00 90.37 −47.99 47.99 565.78 51.05 48.95
23 0.00 89.46 −50.43 50.43 526.04 48.56 51.44
24 0.00 88.45 −52.88 52.88 488.01 46.07 53.93
25 0.00 87.34 −55.32 55.32 451.70 43.57 56.43
. . . . . . . . . . . . . . . . . . . . . . . .

Ct = Vt (5.4.20)

it follows:
P[R]

t = 0 (5.4.21)

and hence
P[S]

t = P (5.4.22)

so that the reserve coincides with the accumulation of the premiums P (or Pt , or Πt ).
A financial accumulation product can be transformed into a “real” insurance

product via redefinition of the death benefit Ct , which can be expressed as a function
of the reserve Vt , such that the following inequality holds:

Ct > Vt (5.4.23)

(instead of (5.4.20)). This transformation can be mandatory because of regulation,
or can be useful for tax purposes, etc. Some examples follow; in the related figures,
the dashed line represents the policy reserve.

1. Choose the amount K, and set:

Ct = Vt +K (5.4.24)
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Fig. 5.4.5 Sum at risk with a lower bound

Thus, the sum at risk is K; see Fig. 5.4.2.
2. Choose the rate α , and set:

Ct = (1+α)Vt (5.4.25)

Thus, the sum at risk is α Vt ; see Fig. 5.4.3.
3. Choose the amounts K and C, and set:

Ct = min{Vt +K,C} (5.4.26)

Thus, the sum at risk is min{K,C−Vt}; see Fig. 5.4.4.
4. Choose the amounts K and C, and set:

Ct = max{Vt +K,C} (5.4.27)

Thus, the sum at risk is max{K,C−Vt}; see Fig. 5.4.5.

Remark We note that in case 3 above it may turn out Ct < Vt , namely if Vt increases above C.
Given the purposes of the policy design, it is not acceptable that Ct < Vt . Thus, the death benefit

Ct = max{min{Vt +K,C},Vt} (5.4.28)

should rather be considered instead of (5.4.26).



5.5 Expected profits: a further insight 277

5.5 Expected profits: a further insight

The approach to the profit assessment we have described in Sect. 4.3.8 simply relies
on a comparison between actuarial values of benefits, namely between the actuarial
value calculated by adopting the scenario basis, i.e. TB2, and the actuarial value
assumed as the single premium, hence calculated by adopting the prudential basis,
i.e. TB1.

A deeper analysis of expected profits requires further steps. In particular:

1. premium arrangements other than that based on a single premium must be al-
lowed for;

2. as life insurance contracts usually have a multi-year duration, it can be useful to
attribute a share of the (total) expected profit to each policy year; hence, annual
profits are defined, showing the profit emerging throughout the policy duration;

3. further elements, which can constitute sources of profit / loss should be taken
into account, and typically

• expenses and expense loadings;
• lapses, surrenders, and policy alterations.

Issues 1 and 2 are dealt with in the present Section; indeed, the mathematical
reserve provides a tool for a “natural” definition of expected annual profits. Con-
versely, topic 3 will be discussed in Chap. 6, in the framework of a life portfolio
analysis.

5.5.1 Expected annual profits

We refer to Eq. (5.4.6), which can also be written as follows:

(Vt +P)(1+ i′)−C q′x+t −Vt+1 p′x+t = 0 (5.5.1)

Equation (5.5.1) relates to policy year (t, t + 1), and expresses a balance between
resources (the reserve at the beginning of the year and the premium) and expected
obligations (the sum in the case of death and the reserve at the end of the year). The
balance relies on the adoption of the same technical basis, namely the first-order
basis TB1, in all the elements of Eq. (5.5.1), and this, in its turns, follows from the
assumptions adopted in defining the policy reserve (see Sect. 5.3.1).

Conversely, assume that:

• a realistic estimate of the yield from the investment of the amount Vt + P is ex-
pressed by the interest rate i′′;

• the mortality in the portfolio can be described in realistic terms by probabilities
q′′x+t .

Thus, the scenario basis TB2 can be introduced into Eq. (5.5.1). The shift to TB2
clearly results in a different meaning of some quantities. Actually, we obtain:
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(Vt +P)(1+ i′′)−C q′′x+t −Vt+1 p′′x+t = PLt+1 (5.5.2)

where PLt+1 ( >
< 0) denotes the expected annual profit / loss arising from the spread

between TB1 and TB2. We note that PLt+1 is referred to time t + 1, for a policy
assumed to be in-force at time t.

Remark Equation (5.5.2) can be easily interpreted also referring to a portfolio of policies. A
similar interpretation has been provided for Eq. (5.4.6) (see Remark 2 in Sect. 5.4.2). Let Nt denote
the (given) number of policies in-force at time t, and Nt+1 the random number of policies in-force
at time t +1, namely the number of insureds still alive. Then, we can write:

Nt Vt +Nt P+(Nt Vt +Nt P) i′′ −C Nt q′′x+t −Vt+1 Nt p′′x+t = Nt PLt+1 (5.5.3)

All quantities can be interpreted as in Eq. (5.4.10). In particular: Nt p′′x+t = E[Nt+1], Nt q′′x+t = E[Dt ].
Note, however, that the expected numbers are now calculated according to TB2. In Eq. (5.5.3)
we can recognize some of the (main) items of the Profit & Loss Statement (briefly P & L). In
general, the P & L Statement refers to a specific period (say, a year), and indicates how the profit
/ loss originates from income net of expenditure. As we are only addressing one generation of
policies, and we are disregarding expenses and related loadings as well as lapses and surrenders, the
resulting representation is extremely simplified (see Table 5.5.1). Further, an obvious adjustment
in the benefits is needed when referring to the last year of the policy duration. Note that the items
classified as “Expenditure” in the P & L Statement enter Eq. (5.5.3) as negative terms.

Table 5.5.1 Actuarial values as items of a P & L statement

P & L STATEMENT

Income
Premiums PNt

Income from investments (Vt Nt +PNt) i′′

Expenditure
Benefits paid C E[Dt ]
Change in liabilities Vt+1 E[Nt+1]−Vt Nt

Profit PLt+1

5.5.2 Splitting the annual profit

We now refer to Eq. (5.4.8), which can also be written as follows:

(Vt +P)(1+ i′)− (C−Vt+1)q′x+t −Vt+1 = 0 (5.5.4)

Adopting the scenario basis TB2, as in Eq. (5.5.2), we have:

(Vt +P)(1+ i′′)− (C−Vt+1)q′′x+t −Vt+1 = PLt+1 (5.5.5)
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Then, by subtracting (5.5.4) from (5.5.5), we obtain the so-called contribution
formula (proposed by S. Homans, 1863):

(Vt +P)(i′′ − i′)+(C−Vt+1)(q′x+t −q′′x+t) = PLt+1 (5.5.6)

which suggests the splitting of the expected annual profit into two terms:

PL
[fin]
t+1 = (Vt +P)(i′′ − i′) (5.5.7a)

PL
[mort]
t+1 = (C−Vt+1)(q′x+t −q′′x+t) (5.5.7b)

The quantity PL
[fin]
t+1 is the financial margin, namely the component of the ex-

pected annual profit originated by the spread between the interest rates, i′′ − i′.
Clearly, as Vt +P > 0, the financial margin is positive if and only if i′′ > i′.

The component PL
[mort]
t+1 is the mortality / longevity margin, which arises from the

spread between the mortality rates. We note that

• if C −Vt+1 > 0, the mortality / longevity margin is positive if and only if
q′x+t > q′′x+t ;

• if C −Vt+1 < 0, the mortality / longevity margin is positive if and only if
q′x+t < q′′x+t .

Thus, the sign of the sum at risk is the driving factor in the choice of the life table to
be adopted in the first-order basis, TB1, in order to obtain implicit safety loadings,
and hence positive expected profits. For pricing insurance products with a positive
sum at risk (for example: the term insurance, the whole life insurance, the endow-
ment insurance) a life table with a mortality higher than that actually expected in
the portfolio should be chosen. On the contrary, products with a negative sum at risk
(the pure endowment and the life annuities) require a mortality assumption lower
than the mortality actually expected.

Example 5.5.1. Table 5.5.2 refers to a term insurance. Policy data are as follows:
C = 1000, x = 40, m = 10; annual level premiums, P, are payable throughout
the whole policy duration. The pricing basis is TB1 = (0.02,LT1); we then find:
P = 1.93. Expected profits are calculated by adopting the second-order basis
TB2 = (0.03,LT2). We note that the poor financial content of the term insurance
implies very low financial profits, whereas more important contributions to the ex-
pected profits come from the mortality assumptions.

Table 5.5.3 refers to an endowment insurance. Policy data are as follows:
C = 1000, x = 50, m = 15. Annual level premiums, P, are payable throughout
the whole policy duration. The pricing basis is TB1 = (0.02,LT1); we then find:
P = 59.54. Expected profits are calculated by adopting the second-order basis
TB2 = (0.03,LT2). Unlike the term insurance, the endowment insurance has impor-
tant financial contents, so that the spread between interest rates originates significant
contributions to the expected profits. On the contrary, mortality profits are low, and
definitely decreasing as the sum at risk decreases. As we will see in Sect. 7.3, the
financial profit is shared with policyholders, through an adjustment of benefits.
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Table 5.5.2 Term insurance: expected profits

t Vt PLt PL
[fin]
t PL

[mort]
t

0 0.00 − − −
1 0.76 0.14 0.02 0.12
2 1.40 0.16 0.03 0.13
3 1.92 0.18 0.03 0.15
4 2.29 0.20 0.04 0.16
5 2.48 0.22 0.04 0.18
6 2.49 0.24 0.04 0.20
7 2.27 0.27 0.04 0.22
8 1.81 0.29 0.04 0.25
9 1.06 0.31 0.04 0.27

10 0.00 0.33 0.03 0.30

Table 5.5.3 Endowment insurance: expected profits

t Vt PLt PL
[fin]
t PL

[mort]
t

0 0.00 − − −
1 57.54 0.91 0.60 0.32
2 116.11 1.50 1.17 0.33
3 175.74 2.10 1.76 0.34
4 236.46 2.70 2.35 0.35
5 298.33 3.32 2.96 0.36
6 361.40 3.94 3.58 0.36
7 425.75 4.57 4.21 0.36
8 491.45 5.20 4.85 0.35
9 558.59 5.85 5.51 0.34

10 627.30 6.50 6.18 0.32
11 697.70 7.15 6.87 0.28
12 769.96 7.81 7.57 0.24
13 844.26 8.47 8.29 0.18
14 920.85 9.14 9.04 0.10
15 1000.00 9.80 9.80 0.00

�

5.5.3 The expected total profit

The sequence of expected profits / losses PL1,PL2, . . . ,PLm, which are originated
yearly by the policy, can be interpreted as a temporary life annuity. The expected
present value of this annuity, PL, according to the scenario basis TB2, is given by:

PL =
m−1

∑
t=0

PLt+1 (1+ i′′)−(t+1)
t p′′x (5.5.8)
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which can be interpreted as the expected value of the total profit / loss, expressed as
a present value at time 0.

It is possible to check that, assuming V0 = 0 and Vm = S, and plugging Eq. (5.5.2)
into (5.5.8), we find the following expression:

PL =
m−1

∑
t=0

P(1+ i′′)−t
t p′′x −

m−1

∑
t=0

C (1+ i′′)−(t+1)
t|1q′′x −S (1+ i′′)−m

m p′′x (5.5.9)

in which the policy reserve does not appear. We note that the result expressed by
(5.5.9) holds thanks to the use of the TB2 for discounting the expected annual prof-
its.

Equation (5.5.9) can also be written as follows:

PL =
m−2

∑
t=0

t p′′x (1+ i′′)−(t+1) [P(1+ i′′)−C q′′x+t

]
+

m−1 p′′x (1+ i′′)−m [
P(1+ i′′)−C q′′x+m−1 −S p′′x+m−1

]
(5.5.10)

The quantities in brackets, namely

CFt+1 = P(1+ i′′)−C q′′x+t ; t = 0,1, . . . ,m−2 (5.5.11a)

CFm = P(1+ i′′)−C q′′x+m−1 −S p′′x+m−1 (5.5.11b)

represent the expected annual cash-flows, referred to a policy in-force at time t or
m−1 respectively, each cash-flow being cumulated at the end of the relevant year.

Thus, the expected total profit is the expected present value of the life annuity
which consists of the expected annual cash-flows. In formal terms:

PL =
m−1

∑
t=0

CFt+1 (1+ i′′)−(t+1)
t p′′x (5.5.12)

Hence, the reserve profile affects the expected annual profits and then the emer-
gence of profit throughout time, i.e. the timing of the profit, while it does not affect
the total amount of the expected profit.

Example 5.5.2. We refer to the insurance products addressed in Example 5.5.1. We
find

• for the term insurance: PL = 1.93;
• for the endowment insurance: PL = 55.90.

�

As regards the effect of the reserve on the emerging of expected profits, the fol-
lowing example can help in understanding this aspect.

Example 5.5.3. Refer to an endowment insurance with annual premiums payable
for the whole policy duration. Data are as follows: C = 1000, x = 50, m = 15;
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TB1 = (0.02,LT1), TB2 = (0.03,LT2). Figure 5.5.1 displays the policy reserves
calculated with the interest rates 0, 0.02 (namely i′), and 0.04; possible negative
values have been replaced by 0.
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Fig. 5.5.1 Endowment insurance (annual level premiums)

Table 5.5.4 shows the annual profits corresponding to the three reserve profiles.
It clearly emerges that high reserve values (compared to those obtained using the
interest rate i′) imply a heavy expected loss in the first year, which is recovered by
positive expected profits in the following years. Conversely, low reserve values lead
to an accelerated emerging of expected profits, compensated by expected losses in
the following years.
�

Some results, which emerge from Example 5.5.3, can be generalized. In particu-
lar, it can be proved that

• a lower interest rate adopted in the reserve calculation implies higher reserve
values, and hence a “delay” in profit emerging;

• a higher interest rate adopted in the reserve calculation implies lower reserve
values, and hence an “acceleration” in profit emerging.

5.5.4 Cash-flows, profits, premium margins

By comparing Eqs. (5.5.11) to Eq. (5.5.2), we find (as Vm = S) the following rela-
tions:
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Table 5.5.4 Endowment insurance (annual level premiums)

t V (0.00)
t PL

(0.00)
t V (0.02)

t PL
(0.02)
t V (0.04)

t PL
(0.04)
t

0 0.00 — 0.00 — 0.00 —
1 198.08 −139.20 57.54 0.91 0.00 58.28
2 254.82 8.01 116.11 1.50 16.10 41.90
3 311.50 9.72 175.74 2.10 74.82 −0.37
4 368.13 11.42 236.46 2.70 135.75 −0.95
5 424.72 13.12 298.33 3.32 199.00 −1.55
6 481.32 14.82 361.40 3.94 264.71 −2.17
7 537.95 16.51 425.75 4.57 333.02 −2.83
8 594.66 18.21 491.45 5.20 404.11 −3.51
9 651.51 19.89 558.59 5.85 478.16 −4.24

10 708.55 21.58 627.30 6.50 555.39 −5.00
11 765.86 23.26 697.70 7.15 636.07 −5.81
12 823.54 24.95 769.96 7.81 720.48 −6.66
13 881.69 26.63 844.26 8.47 808.99 −7.58
14 940.46 28.31 920.85 9.14 902.00 −8.56
15 1000.00 30.00 1000.00 9.80 1000.00 −9.62

PLt+1 = CFt+1 +Vt (1+ i′′)−Vt+1 p′′x+t ; t = 0,1, . . . ,m−2 (5.5.13a)

PLm = CFm +Vm−1 (1+ i′′) (5.5.13b)

In respect of the annual profit / loss, the role of the policy reserve, and its change
in particular, then consists in attributing shares of premiums to policy years, so shift-
ing from “cash-based” valuations (the CF’s) to “pertinence-based” valuations (the
PL’s).

Example 5.5.4. Profit profile and cash-flow profile are compared in Tables 5.5.5 and
5.5.6, which refer to a term insurance and an endowment insurance respectively.
Policy data and technical bases TB1 and TB2 are as in Example 5.5.1.

Table 5.5.5 Term insurance (annual level premiums)

t PLt CFt (P−P′′)(1+ i′′)

1 0.14 0.90 0.23
2 0.16 0.78 0.23
3 0.18 0.65 0.23
4 0.20 0.51 0.23
5 0.22 0.35 0.23
6 0.24 0.17 0.23
7 0.27 −0.03 0.23
8 0.29 −0.25 0.23
9 0.31 −0.49 0.23

10 0.33 −0.76 0.23
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Table 5.5.6 Endowment insurance (annual level premiums)

t PLt CFt (P−P′′)(1+ i′′)

1 0.91 58.28 4.84
2 1.50 57.95 4.84
3 2.10 57.58 4.84
4 2.70 57.17 4.84
5 3.32 56.72 4.84
6 3.94 56.22 4.84
7 4.57 55.66 4.84
8 5.20 55.04 4.84
9 5.85 54.36 4.84

10 6.50 53.60 4.84
11 7.15 52.76 4.84
12 7.81 51.82 4.84
13 8.47 50.79 4.84
14 9.14 49.65 4.84
15 9.80 −938.67 4.84

�

Of course, different time profiles of the reserve lead to different premium at-
tributions and hence, as shown in Example 5.5.3, to different profit profiles. A very
particular reserve profile and the related profit profile will be presented in Sect. 5.5.5.

Moreover, specific profit profiles can be generated by adopting a different ap-
proach to profit assessment. An interesting approach is described in what follows.

Refer to Eq. (5.5.9), and set:

ä′′x:m� =
m−1

∑
t=0

(1+ i′′)−t
t p′′x (5.5.14)

mA′′
x =

m−1

∑
t=0

(1+ i′′)−(t+1)
t|1q′′x (5.5.15)

mE ′′
x = (1+ i′′)−m

m p′′x (5.5.16)

The expected total profit can be expressed as follows:

PL = Pä′′x:m� −C mA′′
x −S mE ′′

x (5.5.17)

Let P′′ denote the “second-order premium”, namely the annual level premium
calculated by adopting the scenario basis TB2, such that:

P′′ ä′′x:m� = C mA′′
x +S mE ′′

x (5.5.18)

The expected total profit / loss can then be expressed as the actuarial value of the
temporary life annuity whose items are the annual premium margins:
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PL = (P−P′′) ä′′x:m� (5.5.19)

The following aspects should be stressed.

• The result expressed by Eq. (5.5.19) is extremely intuitive: indeed, the expected
total profit / loss is due to the spread between the premium charged to the poli-
cyholder (P) and the premium fulfilling the equivalence principle under realistic
assumptions (P′′), which clearly leads to a zero expected profit.

• Equation (5.5.19) generalizes to the case of annual premiums the result expressed
by Eq. (4.3.22) for the single premium arrangement.

• According to Eq. (5.5.19), we could assume as the expected annual profit the
amount

PLt = (P−P′′)(1+ i′′); t = 1,2, . . . ,m (5.5.20)

so originating a flat profit profile. Note, however, that this can lead to a significant
acceleration in the emerging of profits (see Example 5.5.5).

Example 5.5.5. From tables 5.5.5 and 5.5.6, which refer to a term insurance and
an endowment insurance respectively, it clearly appears that, in both the insurance
products, the assumption (5.5.20) leads to a significant acceleration in the profit
profile.
�

5.5.5 Expected profits according to best-estimate reserving

Consider the expected present value of future benefits net of future premiums, ac-
cording to the scenario basis TB2, that is, in formal terms:

V [BE]
t = C m−tA

′′
x+t +S m−tE

′′
x+t −Pä′′x+t:m−t� (5.5.21)

The quantity V [BE]
t is usually called the best-estimate reserve.

In particular, we have:

V [BE]
0 = C mA′′

x +S mE ′′
x −Pä′′x:m� (5.5.22)

and hence (see Eqs. (5.5.18) and (5.5.19)):

V [BE]
0 = (P′′ −P) ä′′x:m� = −PL (5.5.23)

Thus, the quantity −V [BE]
0 = PL represents the “value” of the policy (at the time of

its issue), meant as the expected present value of profits / losses originated by the
policy itself throughout its duration.

Assume now, for the policy reserve Vt , the following values:

V0 = 0; Vt = V [BE]
t , for t = 1,2, . . . ,m−1; Vm = S (5.5.24)
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By using Eq. (5.5.2), with the reserves as defined by (5.5.24), after a little algebra
we obtain the following results:

PL1 = −V [BE]
0 (1+ i′′) (5.5.25a)

PLt = 0; t = 2, . . . ,m (5.5.25b)

Thus, the expected total profit / loss completely emerges in the first policy year.

Remark The particular profit profile originated by the best-estimate reserve witnesses the exis-
tence of two basic approaches to profit emerging. The Deferral & Matching approach is a tradi-
tional feature of actuarial models. The basic idea underlying this approach is that the total profit
arises progressively throughout time. The profit assessment procedure basically consists of two
steps:

• assessment of annual results (typically: cash-flows and profits);
• calculation of the total profit as the expected present value of annual results.

The Assets & Liabilities approach is a feature of financial models. The profit assessment procedure
basically consists of two steps:

• the total profit is given by the difference between the value of assets (e.g the single premium, or
the credit for future periodic premiums) and the value of liabilities (the insurer’s obligations);

• possible annual profits are only given by changes in the values of assets and liabilities.

5.6 Reserving for expenses

Equation (5.3.3) defines the “net reserve”, in which benefits and net premiums are
only involved. We can extend the definition, and thus define the “total reserve”, in
which expenses and loading for expenses are also included:

V [tot]
t = Ben′(t,m)+Exp′(t,m)−Prem′(t,m)−Load′(t,m) (5.6.1)

where Exp′(t,m) and Load′(t,m) represent the actuarial values at time t of future
expenses and expense loadings, respectively, calculated according to the first-order

basis. It turns out that V [tot]
t can be determined including the future expenses in the

insurer’s liabilities and allowing for the expense-loaded premiums instead of the net
premiums.

Of course, we also have
V [tot]

t = Vt +V [E]
t (5.6.2)

where V [E]
t = Exp′(t,m)−Load′(t,m) just allows for expenses and expense loadings.

Notwithstanding, it is much more useful to deal separately with the various ex-
pense components and the related loadings. First, we note that the need for reserv-
ing arises because of a time-mismatching between the insurer’s inflow and outflow
streams. So, as regards expenses and related loadings we can exclude premium col-
lection expenses, as these are supposed to occur at the same time the relevant loading
is cashed.
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Acquisition costs can also be excluded from further analysis in the case of a
single premium. Conversely, in the case of periodic premiums payable for s years,
we can define the (negative) acquisition cost reserve, which in fact represents the
insurer’s credit for the related loadings to be cashed in future years:

V [A]
t =

{
−Λ [A] ä′x+t:s−t� for t ≤ s−1

0 for t ≥ s
(5.6.3)

The quantity

V [Z]
t = Vt +V [A]

t (5.6.4)

is called the Zillmer reserve. In general, we have V [Z]
t ≤Vt , and in particular, in the

first policy years, we may find V [Z]
t < 0. We note that the Zillmer reserve implies

a “clearing” between insurer’s credit and debt, and, (also) for this reason, in many
countries zillmerization is not allowed when assessing the balance-sheet portfolio
reserve.

General administration expenses do not originate any reserve if the premiums are
payable for the whole policy duration, that is if s = m. On the contrary, if s < m the
reserve for general administration expenses is defined as follows:

V [G]
t =

{
γ C ä′x+t:m−t� −Λ [G] ä′x+t:s−t� for t ≤ s−1

γ C ä′x+t:m−t� for t ≥ s
(5.6.5)

In the case of a single premium we have:

V [G]
t = γ C ä′x+t:m−t� (5.6.6)

In some countries (in particular in Continental Europe), it is usual to define the
following reserve:

V [I]
t = Vt +V [G]

t (5.6.7)

which is called in Germany the Inventardeckungscapital.

It is easy to prove that the reserve, V [tot]
t , allowing for all the expenses and the

related loadings, as well as for benefits and net premiums, can be expressed as fol-
lows:

V [tot]
t = Vt +V [A]

t +V [G]
t (5.6.8)

Example 5.6.1. We refer to the insurance products and the related data considered
in Example 4.5.1. Tables 5.6.1 and 5.6.2 display the various reserves allowing for
expenses and related loadings.
�
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5.7 Surrender values and paid-up values

As mentioned in Sect. 4.1.2, the calculation of surrender values and paid-up values
should account for the policyholder’s credit at the time of the contract alteration. The
net policyholder’s credit (that is, the amount which allows for benefits, expenses and

expense-loaded premiums) is given by the reserve V [tot]
t , defined by (5.6.8). As this

reserve coincides in many cases with the Zillmer reserve V [Z]
t (see, for instance,

Table 5.6.2 in Example 5.6.1), we just focus on the Zillmer reserve.
The surrender value, denoted as Rt , can be determined as follows:

Rt = ϕ(t)V [Z]
t (5.7.1)

Table 5.6.1 Whole life insurance (level premiums; s = 15)

t Vt V [A]
t V [G]

t V [Z]
t V [I]

t V [tot]
t

0 0.00 0.00 . 0.00 . .
1 42.57 −18.85 0. .72 . .
2 85.79 −17.68 1 .11 87. .
3 129.69 −16.49 . 113.20 132. .
4 174.28 −15.27 3. .01 177. .
5 219.57 −14.03 4. .54 223. .

. . . . . . . . . . . . . . . . . . . . .
12 559.31 −4.60 10. .71 570. .
13 611.76 −3.11 11. .64 623. .
14 665.46 −1.58 13. .88 678. .
15 720.56 0.00 14.25 720.56 734.81 734.81
16 730.68 0.00 13.74 730.68 744.42 744.42
. . . . . . . . . . . . . . . . . . . . .
24 807.47 0.00 9.82 807.47 817.29 817.29
25 816.33 0.00 9.37 816.33 825.70 825.70
. . . . . . . . . . . . . . . . . . . . .

Table 5.6.2 Endowment insurance (level premiums; s = m = 15)

t Vt V [A]
t V [G]

t V [Z]
t V [I]

t V [tot]
t

0 0.00 0 0.00
1 57.54 −34.52 0 23.02 57.54 23.02
2 116.11 −32.38 0 83.73 116.11 83.73
3 175.74 −30.19 0 145.54 175.74 145.54
4 236.46 −27.97 0 208.49 236.46 208.49
5 298.33 −25.70 0 272.63 298.33 272.63

. . . . . . . . . . . . . . . . . . . . .
12 769.96 −8.43 0 761.53 769.96 761.53
13 844.26 −5.70 0 838.56 844.26 838.56
14 920.85 −2.90 0 917.95 920.85 917.95
15 1000.00 0.00 0 1000.00 1000.00 1000.00

0 00 0 00 0 00
76 23 43 33 24 48
111.55 68 34 69 66

2 35 04 115 55
17 159 45 162 18
02 205 59 209 56

74 554 05 565 45
86 608 62 620 50
02 663 49 676 90

0.00 0.00 0.00



5.7 Surrender values and paid-up values 289

Note that the function ϕ(t) (0 ≤ ϕ(t) ≤ 1, and usually equal to 0 for t = 1,2 only),
aims at penalizing the surrendering policyholders. Commonly, the penalty decreases
as t increases, and to this purpose the function should be increasing. The penalty can
be justified as follows:

• from a legal point of view, the policyholder breaks the contract;
• from an economic point of view, the insurer can recover, via the penalty, future

profits expected from the contract.

Other formulae are also commonly adopted in insurance practice. For endow-
ment insurance products, with maturity at time m and annual level premiums for
s = m years, the so-called proportional rule is frequently adopted. If C denotes the
sum insured, we have:

Rt =
t
m

C (1+ i∗)−(m−t) (5.7.2)

Thus, a share of the sum insured, proportional to the number of annual premiums
already paid, is discounted at a rate i∗, higher than the interest rate in the technical
basis. Formula (5.7.2) can be justified looking at the time profile of the policy re-
serve in an endowment insurance, which is very close to a linear profile (see, for
example, Fig. 5.3.14). The discounting rate i∗ can be used as a parameter to allow
for both zillmerisation and penalty.

To illustrate the reduction of the sum insured when converting an insurance con-
tract into a paid-up one, we refer to a m-year pure endowment, with sum insured S
and annual level premiums payable for the whole policy duration.

Assume that the policyholder asks for the reduction at time t, namely after pay-

ing the annual premiums at times 0,1, . . . , t−1. A share of the Zillmer reserve, V [Z]
t ,

is then used (as a “single” premium) to finance the paid-up contract, namely the re-
duced benefit at maturity, S[red], and the general administration expenses (quantified
as results from (4.5.6a)) for the residual duration.

In formal terms, S[red] is the solution of the following equation:

ϕ̄(t)V [Z]
t = S[red]

(
m−tE

′
x+t + γ ä′x+t:m−t�

)
(5.7.3)

The function ϕ̄(t) (0 < ϕ̄(t) ≤ 1) determines a penalty charged to the policyholder
when shifting to the paid-up contract, and can be justified similarly to the surrender
penalty (see above). However, as the contract goes on, we usually have ϕ̄(t)≥ ϕ(t).

Formula (5.7.3) relies on the equivalence principle, and hence leads to a result
consistent with this actuarial calculation principle. Nonetheless, other (approximate)
formulae are often adopted in insurance practice. For example, according to the
proportional rule, in an endowment insurance with maturity at time m and annual
level premiums for s = m years, the amount S[red] can be determined as follows:

S[red] =
t
m

S (5.7.4)
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5.8 References and suggestions for further reading

All the actuarial textbooks on life insurance deal with the calculation of reserves.
Hence, the reader can refer to [10], [20], [25], [26], [47], and [49].

The traditional approach to the profit assessment at the policy level is proposed
by [47], whereas [26] places special emphasis on mortality profits.



Chapter 6
Reserves and profits in a life insurance portfolio

6.1 The portfolio reserve

When shifting from individual reserves to the portfolio reserve, various specific
problems arise, although many basic ideas about the individual reserving process
keep their validity.

In particular, as in the individual case, the portfolio reserve can be looked at under
two different perspectives:

• an amount which quantifies the expected insurer’s liability for future benefits, net
of future premiums;

• assets, provided by the accumulation of (part of) the premiums, facing the liabil-
ity mentioned above.

The current reserve of an in-force portfolio can be calculated as the sum of the
individual policy reserves. In particular, when referring to a portfolio which consists
of a generation of identical policies (as assumed for simplicity in the following), the
portfolio reserve is determined by the individual reserve and the size of the portfolio
itself. When focussing on the evolution of a portfolio, its estimated size must be
taken into account.

Further, the portfolio riskiness (due to random fluctuations in mortality, in in-
terest rates, and so on) can be of interest, and hence the portfolio reserve could be
assessed explicitly allowing for risks (rather than simply relying on a generic safety
loading).

In this Section we address the following topics:

• the evaluation of future portfolio reserves, starting from the individual (net pre-
mium) reserve, as defined in Sect. 5.3, thus using the same technical basis, that
is, the first-order basis (Sect. 6.1.1);

• the definition of the portfolio reserve by adopting a different approach to the as-
sessment of the insurer’s obligations, namely allowing for the riskiness inherent
in the liability, although, for simplicity, we will only focus on the mortality risk
(Sects. 6.1.2 to 6.1.5).

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 291
DOI 10.1007/978-3-642-16029-5 6, c© Springer-Verlag Berlin Heidelberg 2011
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6.1.1 Future portfolio reserves

We refer to the insurance product we have addressed while describing the risk and
savings components of the life insurance business (for the relevant notation, and the
expression of the annual level premium, see Sect. 5.4.1). We disregard expenses and
related loadings.

We focus on a portfolio initially consisting of N0 “identical” policies (with N0

a given number). At (future) time t, the individual reserve is equal to Vt for each
policy still in-force. Assume that the portfolio is closed with respect to new policies
(namely, it is a “generation” of policies), and let Nt denote the random number of
policies in-force at time t. Hence, the portfolio reserve at time t is represented by

the random amount V [P]
t defined as follows:

V [P]
t = Nt Vt ; t = 1,2, . . . (6.1.1)

Future portfolio reserves can be assessed by assuming a sequence, n1,n2, . . . , of
outcomes of the random numbers N1,N2, . . . . For any given sequence, the estimated
portfolio reserve is given by:

V̂ [P]
t = ntVt ; t = 1,2, . . . (6.1.2)

In particular, assume that the only cause of exit is the insured’s death. Then, we
can set, for example:

nt = E[Nt ] = N0 t p′′x ; t = 1,2, . . . (6.1.3)

where t p′′x denotes the probability of an insured age x being alive at age x + t, ac-
cording to a second-order basis, namely a realistic basis. In this case, we obtain:

V̂ [P]
t = E[V [P]

t ] = E[Nt ]Vt ; t = 1,2, . . . (6.1.4)

Thus, V̂ [P]
t is the expected portfolio reserve (according to information available at

time 0).

Example 6.1.1. Refer to an endowment insurance. Data are as follows:
S = C = 1000, x = 50, m = 15, TB1 = (0.02,LT1). The initial portfolio size is
N0 = 1000. Table 6.1.1 shows the expected numbers of policies in-force and the ex-
pected portfolio reserve, according to probabilities t p′′x derived from life tables LT2
and LT3 respectively.
�
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Table 6.1.1 The expected portfolio reserve

LT2 LT3

t Vt E[Nt ] E[V [P]
t ] E[Nt ] E[V [P]

t ]

0 0.00 1000.00 0.00 1000.00 0.00
1 57.54 996.96 57368.75 997.29 57388.07
2 116.11 993.59 115366.58 994.30 115448.58
3 175.74 989.87 173955.34 990.98 174151.18
4 236.46 985.76 233091.59 987.32 233461.39
5 298.33 981.22 292726.25 983.27 293340.38
6 361.40 976.20 352804.19 978.81 353744.67
7 425.75 970.67 413263.88 973.87 414625.97
8 491.45 964.57 474036.92 968.43 475930.96
9 558.59 957.85 535047.83 962.42 537601.18

10 627.30 950.45 596213.64 955.80 599572.90
11 697.70 942.31 657443.73 948.52 661777.20
12 769.96 933.35 718639.69 940.50 724140.06
13 844.26 923.52 779695.29 931.68 786582.62
14 920.85 912.74 840496.65 921.99 849021.63
15 1000.00 900.92 900922.57 911.37 911370.10

6.1.2 Safe-side reserve versus best-estimate reserve

The traditional approach to reserving (in most countries of Continental Europe) re-
lies on the adoption of the first-order basis in discounting future benefits and pre-
miums (see Sect. 5.3.1). Hence, the (individual) reserve constitutes a prudential (or
“safe-side”) evaluation of the insurer’s liability. However, the “degree” of prudence
cannot be easily determined. We also recall that, in the case of significant changes
in the scenario, a consequent shift to a new reserving basis is required, as described
in Sect. 5.3.4.

A different approach to reserving, which explicitly allows for risks and for a
chosen prudence target, can be defined. In what follows, we refer to a term insurance
(namely, with S = 0), with annual level premiums P payable throughout the whole
policy duration, and, in particular:

• we disregard expenses and expense loadings;
• we focus on the mortality risk only, thus disregarding investment risks, lapses,

and so on.

Although these assumptions lead to a very simplified setting, many important fea-
tures of the different approach to reserving can be captured.

The (traditional) prospective reserve at time t, for the insurance product we are
dealing with, is given by:

Vt = C m−tA
′
x+t −Pä′x+t:m−t� (6.1.5)
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If we assume, for discounting future benefits and future premiums, the second-
order (or realistic) basis, we obtain the “best estimate” assessment of the policy
reserve, shortly the (individual) best-estimate reserve (or central-estimate reserve):

V [BE]
t = C m−tA

′′
x+t −Pä′′x+t:m−t� (6.1.6)

(see also Sect. 5.5.5).
As the first-order basis relies on a mortality higher than that included in the

second-order basis, we have:

m−tA
′′
x+t < m−tA

′
x+t (6.1.7a)

a′′x+t:m−t� > a′x+t:m−t� (6.1.7b)

and hence
V [BE]

t < Vt (6.1.8)

The difference Vt −V [BE]
t represents the safety margin implied by the adoption of

the first-order basis in the assessment of the policy reserve Vt . In particular, adverse
fluctuations in mortality can be faced thanks to this margin.

6.1.3 The risk margin

Moving from a single policy to a portfolio, in particular a generation of “identical”
policies, we assume that, at time t, the portfolio consists of Nt policies (with Nt a
given number). The traditional reserve is then given by Nt Vt (see Sect. 6.1.1), and

the best-estimate reserve by Nt V [BE]
t .

As the safety margin aims at facing the portfolio riskiness, it can also be denoted
as the risk margin. Thus, the risk margin at the portfolio level, RMt , is given by:

RMt = Nt (Vt −V [BE]
t ) (6.1.9)

However, a sound approach to the management of the insurer’s risks requires an
appropriate quantification of the relevant impact on portfolio results. This means
that, rather than starting from a generic prudential assessment of the reserve and
then finding the resulting risk margin according to (6.1.9), the risk margin should be
determined depending on the insurer’s risk profile, quantified by a convenient risk
measure.

We refer to the following random quantities, all defined for the portfolio:

• Nt+h, namely the random number of policies still in-force at time t + h; then,
for h = 0,1, . . . ,m− t −1, Dt+h = Nt+h −Nt+h+1 denotes the random number of
insureds dying between time t +h and t +h+1;

• Y [P](t,m), defined as the random present value at time t of future benefits, that is
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Y [P](t,m) = C
m−t−1

∑
h=0

(1+ i′′)−(h+1)Dt+h (6.1.10)

• X [P](t,m), defined as the random present value at time t of future premiums, that
is

X [P](t,m) = P
m−t−1

∑
h=0

(1+ i′′)−hNt+h (6.1.11)

• Z[P](t,m), defined as the random present value at time t of the portfolio result
over the residual portfolio duration (see below for the formal definition).

To define Z[P](t,m), we note what follows. It can be shown, with a little algebra,
that, if we calculate the expected values of Y [P](t,m) and X [P](t,m) according to the
second-order basis, we obtain:

E[Y [P](t,m)]−E[X [P](t,m)] = Nt

[
C m−tA

′′
x+t −Pä′′x+t:m−t�

]
= Nt V [BE]

t (6.1.12)

namely, the best-estimate portfolio reserve. We assume that an amount of assets

equal to Nt V [BE]
t is available at time t, so that the reserve plus the future premiums

meet the future benefits. Hence, we define the random present value of the portfolio
result as follows:

Z[P](t,m) = Nt V [BE]
t +X [P](t,m)−Y [P](t,m) (6.1.13)

From (6.1.12), we find that, according to the realistic basis, E[Z[P](t,m)] = 0.

If only the amount Nt V [BE]
t is available to meet future benefits net of future pre-

miums, the probability of a negative result is very high. Thus, a further amount
should be available. Appropriate risk measures can help in determining this amount.
Of course, risk measures should rely on the probability distribution of Z[P](t,m),
which can be estimated via stochastic simulation (see Sect. 3.10.3). Once the func-
tion ΦZ[P](t,m), defined as

ΦZ[P](t,m)(z) = P[Z[P](t,m) ≤ z] (6.1.14)

has been constructed, we can assume, for example, the VaR at a given confidence
level as the risk measure (see Sect. 1.5.4). Thus, if 1−α denotes the confidence
level, we can set:

RMt = −VaRα (6.1.15)

If we assume that the amount RMt “belongs” to the portfolio (and, actually, it
should be financed, at least to some extent, by the safety loadings embedded in the
premiums already cashed), the random present value of the portfolio result can be
redefined as follows:

Z[P][RM](t,m) = Z[P](t,m)+RMt = Nt V [BE]
t +RMt +X [P](t,m)−Y [P](t,m) (6.1.16)
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Figure 6.1.1 shows a graph of the probability distribution of Z[P](t,m) (assumed
to be continuous, for simplicity), whereas Fig. 6.1.2 refers to the distribution of
Z[P][RM](t,m).

α 

VaRα E[Z
[P]

(t,m)]

0

Fig. 6.1.1 The prob. distribution of Z[P](t,m)

0

E[Z
[P][RM]

(t,m)] = RMt

α 

Fig. 6.1.2 The prob. distribution of Z[P][RM](t,m)

Example 6.1.2. We refer to a portfolio of 10-year term insurances, with C = 1000
and annual premium P = 1.93 payable for the whole policy duration. Age at entry
is x = 40. The first-order basis is TB1 = (0.02,LT1), whereas the realistic basis
is TB2 = (0.03,LT2). Table 6.1.2 shows the safe-side reserve, the best-estimate
reserve, and the reserve including the risk margin at time t = 3, for three portfolio
sizes. The following aspects should be stressed:

• the lower is α , the higher is the risk margin;
• for any given α , the risk margin depends on the portfolio size: small portfo-

lios require a risk margin very high in relative terms, as can be seen comparing

N3 V [BE]
3 +RM3 to N3 V [BE]

3 (which is obviously proportional to the portfolio size).

Table 6.1.2 Safe-side reserve, best-estimate reserve and reserve including risk margin

N3 N3 V3 N3 V [BE]
3

V [P]
3 = N3 V [BE]

3 +RM3

α = 0.25 α = 0.10 α = 0.05

100 192.00 29.03 550.05 1418.41 2173.86
1000 1920.05 290.32 2282.10 4382.54 5835.17

10000 19200.45 2903.22 7295.59 13519.05 17494.89

�

Remark Various approaches to the assessment of the risk margin can be proposed, and have
been actually adopted in the insurance technique. Although approaches based on appropriate risk
measures (like the VaR and the TailVaR) are rigorous, other procedures can simplify the assessment
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of the risk margin. This is the case, for example, of the calculation procedure proposed within the
project “Solvency 2”. See also Sect. 6.1.5.

6.1.4 The portfolio liability and beyond

Assume that the portfolio reserve, V [P]
t , is calculated as the best-estimate reserve plus

the risk margin. Further, assume that the risk margin is given by the VaR at a stated
confidence level, as described in Sect. 6.1.3; clearly, it depends on the portfolio size
Nt . In formal terms, we have:

V [P]
t = Nt V [BE]

t +RMt(Nt) (6.1.17)

for t = 0,1,2, . . . .
As in Sect. 6.1.1, refer to a portfolio initially consisting of N0 “identical” poli-

cies (with N0 a given number). At (future) time t, the portfolio reserve, defined by
(6.1.17), is a random amount, as the portfolio size Nt is a random number. For any
given sequence n1,n2, . . . of numbers of policies in-force, we obtain the estimated
future portfolio reserve:

V̂ [P]
t = nt V [BE]

t +RMt(nt) (6.1.18)

Example 6.1.3. We refer to the portfolio described in Example 6.1.2. We assume
that the portfolio initially consists of N0 = 1000 policies; we set nt = E[Nt ], for
t = 1,2, . . . ,10, according to the life table LT2. We assume α = 0.25. Table 6.1.3

shows the best-estimate reserve and the portfolio reserve V̂ [P]
t including the risk

margin. Note that the negative values of V [BE]
1 and V [BE]

2 have been replaced by 0.

Table 6.1.3 Best-estimate reserve and reserve including risk margin

t nt V [BE]
t nt V [BE]

t V̂ [P]
t

0 1000.00 0.00 0.00 0.00
1 998.91 0.00 0.00 1235.15
2 997.71 0.00 0.00 1801.19
3 996.38 0.29 289.27 2269.33
4 994.90 0.81 801.55 2068.91
5 993.27 1.18 1169.16 1816.03
6 991.47 1.38 1370.71 1641.64
7 989.47 1.40 1382.41 1566.16
8 987.26 1.19 1177.86 1732.03
9 984.82 0.74 727.85 1258.37

10 982.11 0.00 0.00 0.00

�
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Portfolio liabilities are counterbalanced by assets. If the assets have to be as-
sessed at their market value, assumed as the “true” or “fair” value, also the related
liabilities should be assessed, for consistency, at market value. Thus, the so-called
mark-to-market approach to liability assessment should be adopted. However, a
problem arises: is a (reliable) market value of liabilities available ?

As insurer’s liabilities are only traded in markets which cannot provide a reliable
fair value (for example, the reinsurance market), the application of the mark-to-
market approach is restricted to liabilities which can be perfectly hedged by assets
traded on appropriate markets. This is the case, in particular, of the liabilities related
to unit-linked insurance products (see Chap. 7).

Conversely, Eqs. (6.1.17) and (6.1.18) implement the so-called mark-to-model
approach to the assessment of the portfolio liabilities. This approach relies on an ac-
tuarial model whose output should provide a reasonably fair value of the liabilities.

More assets than those just backing the fair value of the liabilities are usually
needed to face risks. To this purpose, shareholders’ capital must be allocated and
assigned to the portfolio. The amount to be allocated to a portfolio (and, more in
general, to a life insurance business) is determined according to a stated solvency
target. Thus, the total amount of assets backing the insurer’s liabilities (assessed in
terms of fair value) and the shareholders’ capital must fulfill the adequacy require-
ment, as stated by the supervisory authorities, or by the company management, if
the latter results in an amount higher than that required by the authorities.

The shareholders’ capital needed to fulfill the adequacy requirement can be called
the required capital, whereas the (possibly) remaining shareholders’ capital consti-
tutes the excess capital (see Fig. 6.1.3).

BEST 
ESTIMATE 
RESERVE 

RISK 
MARGIN 

FAIR VALUE OF 
LIABILITIES 

MARKET 
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OF 
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OF 
ASSETS 

 
ADEQUACY 

REQUIREMENT 

SHAREHOLDERS’ 
CAPITAL 

SHAREHOLDERS’ 
CAPITAL REQUIRED 

CAPITAL 

EXCESS 
CAPITAL 

Fig. 6.1.3 Assets, liabilities and shareholders’ capital (1)

6.1.5 Risk margin: the “Cost of Capital” approach

We describe an approach to the calculation of the risk margin, which constitutes a
practicable alternative to the VaR approach.
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We define the target capital at time t, TCt , as the amount of assets net of lia-
bilities, which is required (in particular, by the supervisory authority) for solvency
purposes; assets are assessed at their market value, liabilities at their best-estimate
value. We assume that the target capital consists of two components, namely the risk
margin, RMt , and the solvency capital requirement , SCRt (see Fig. 6.1.4). Thus:

TCt = RMt +SCRt (6.1.19)

Hence, the adequacy requirement defined in Sect. 6.1.4 is fulfilled by: (1) the
best-estimate reserve, (2) the risk margin, and (3) the solvency capital requirement.
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EXCESS 
CAPITAL 

Fig. 6.1.4 Assets, liabilities and shareholders’ capital (2)

Further, we assume that SCRt can be determined (at least approximately) by
adopting a given formula. The risk margin, RMt , is then defined as the cost of the
solvency capital which is required for the run-off of the portfolio in the case of
insurer’s default at the end of the current year. Hence:

• the risk margin makes possible the run-off of the portfolio after default;
• without risk margin, no other insurer would be available to be charged with the

portfolio itself;
• the risk margin “belongs” to the policyholders, because in the case of default

it must be transferred together with the portfolio; thus, it is not a part of the
shareholders’ capital.

To illustrate the procedure for calculating the target capital, we refer to a portfolio
of identical policies, with total duration m years. We denote by ρ the risk discount
rate; of course, ρ > rf, where rf is the risk-free rate. We assume that:

• ρ is the return required on the shareholders’ capital;
• the capital allocated to the portfolio is invested at the risk-free rate.

Hence, the spread ρ − rf represents the cost of capital not covered by the investment
yield.

The risk margin at time t is formally defined as follows:
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RMt = (ρ−rf)
(

ŜCRt+1(1+ rf)−1 + ŜCRt+2(1+ rf)−2 + · · ·+ ŜCRm−1(1+ rf)−m+t+1
)

(6.1.20)
where ŜCRt+h denotes an estimate, at time t, of the solvency capital requirement
at time t + h. Such an estimate should be based on the projection of the quantities
involved in the calculation of the solvency capital requirement at time t (or in the
approximation adopted).

Finally, the target capital at time t is given by Eq. (6.1.19).

6.2 The total profit

The assessment of expected profits constitutes one of the most important topics in
life insurance mathematics.

A first insight into the assessment of expected profits has been provided in
Sect. 4.3.8, just comparing actuarial values of benefits at the policy issue, calculated
by adopting a pricing basis and a scenario basis, respectively. A further insight has
been given in Sect. 5.5. By using recurrent equations of the policy reserve, expected
annual profits have been defined. Then, the expected total profit has been defined,
in terms of either the expected annual profits or the expected annual cash-flows.

Several items must still be added in order to get to a more complete setting. In
particular, we have to account for the insurer’s expenses and the related premium
loadings, as well as policyholders’ lapses and surrenders.

Moreover, by referring to a portfolio of policies, and allowing for the portfo-
lio reserve, we can define a more natural framework, closer to the valuation needs
which emerge in the insurance practice. Although this extended framework makes
it possible to perform risk analysis, for brevity we will deal with expected values
only.

We focus on the insurance product we have addressed while describing the risk
and savings components of the life insurance business (for the relevant notation,
and the expression of the net annual level premium, see Sect. 5.4.1). To start, we
disregard expenses and related loadings, as well as lapses and surrenders. These
items will be included into the model in Sect. 6.4.

6.2.1 The life fund

We refer to a portfolio of “identical” policies, issued at time t = 0. The only causes
of exit are the death of the insured and the maturity. We assume that the portfolio
consists of a generation of policies, hence closed to new entries.

We define the following quantities:

• N0, the (given) initial number of policies in the portfolio;
• Nt , the random number of policies in the portfolio at time t, t = 1,2, . . . ,m;
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• Dt = Nt −Nt+1, the random number of insureds dying between time t and t +1;

• F [P]
t , the amount of the portfolio fund (or life fund) at time t, t = 0,1, . . . ,m.

We assume
F [P]

0 = 0 (6.2.1)

Then, according to information available at time 0, the behavior of the portfolio fund
is described by the following recursive relations:

(F [P]
t +PNt)(1+ i′′)−C Dt = F [P]

t+1; t = 0,1, . . . ,m−2 (6.2.2a)

(F [P]
m−1 +PNm−1)(1+ i′′)−C Dm−1 −SNm = F [P]

m (6.2.2b)

where i′′ denotes the (realistic) estimated yield from the fund investment.
We note that:

• the only cause of randomness we are allowing for is the mortality in the portfolio;
random yields could be introduced into the model, but this would result in a much
higher complexity;

• the random amount F [P]
t (if positive) represents the portfolio assets cumulated up

to time t, excluding allocations of shareholders’ capital, and release of profits as
well;

• the random amount F [P]
t might take negative values, for example because of an

unexpected high mortality; in this case, money should be borrowed to reinstate
the fund;

• the assumption F [P]
0 = 0 is rather unrealistic (although it makes some interpre-

tations much easier); an initial allocation of assets to the portfolio lowers, of

course, the probability of negative values for F [P]
t (see, for example, Sect. 2.7.3);

• the final value of the fund, F [P]
m , is net of the benefits paid to the insureds alive at

maturity (see Eq. (6.2.2b)); hence, it represents the random total profit cumulated
at the end of the portfolio duration.

Remark The adjective “total” is herein used to denote the profit related to the whole duration of
the portfolio.

6.2.2 The expected life fund and the expected total profit

To simplify the notation, we denote the expected values as follows: N̄t = E[Nt ],
F̄ [P]

t = E[F [P]
t ], and so on.

The calculation of expected values of the life fund relies on mortality assump-
tions. To this purpose, we adopt a realistic life table, which constitutes, together with
the interest rate i′′, the scenario basis, namely TB2.

We note that (according to information available at time 0)
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N̄t = N0 t p′′x (6.2.3)

D̄t = N0 t|1q′′x (6.2.4)

with t p′′x and t|1q′′x taken from the realistic life table. Given assumption (6.2.1) and
recursive relations (6.2.2), we find:

(F̄ [P]
t +P N̄t)(1+ i′′)−C D̄t = F̄ [P]

t+1; t = 0,1, . . . ,m−2 (6.2.5a)

(F̄ [P]
m−1 +P N̄m−1)(1+ i′′)−C D̄m−1 −SN̄m = F̄ [P]

m (6.2.5b)

The amount F̄ [P]
m is the expected total profit, cumulated at the end of the portfolio

duration. Indeed, at time m the portfolio is no longer uncumbered with any obliga-
tion.

Remark It is worth noting that the relationships among the random quantities (F [P]
t , Nt , Dt ) are

linear (see Eqs. (6.2.2)). Hence, the same linear relations link the relevant expected values (see
Eqs. (6.2.5)). This feature also regards future developments, and allows us to express relationships
directly in terms of expected values.

By solving Eqs. (6.2.5), we obtain the following explicit expression for the ex-
pected life fund:

F̄ [P]
t+1 =

t

∑
h=0

(
P N̄h(1+ i′′)−C D̄h

)
(1+ i′′)t−h; t = 0,1, . . . ,m−2 (6.2.6a)

F̄ [P]
m =

m−1

∑
h=0

(
P N̄h(1+ i′′)−C D̄h

)
(1+ i′′)m−(h+1)−SN̄m (6.2.6b)

The following quantities

CF
[P]
h+1 = P N̄h(1+ i′′)−C D̄h; h = 0,1, . . . ,m−2 (6.2.7a)

CF
[P]
m = P N̄m−1(1+ i′′)−C D̄m−1 −SN̄m (6.2.7b)

are the values, at the end of the relevant year, of the expected annual cash-flows.

Thus, the expected fund F̄ [P]
t+1 is the accumulated value of all the expected annual

cash-flows up to time t + 1. In particular, F̄ [P]
m , namely the expected value of the

total profit cumulated at maturity, is the accumulated value of all the expected annual
cash-flows.

Example 6.2.1. Table 6.2.1 refers to a portfolio of term insurance policies; according
to the notation defined in Sect. 5.4.1, we then have S = 0, C > 0. Data are as follows:
N0 = 10000, C = 1000, x = 40, m = 10. Annual level premiums, P, are payable
throughout the whole policy duration. The pricing basis is TB1 = (0.02,LT1). We
then find: P = 1.93. Expected values are calculated by adopting the scenario basis
TB2 = (0.03,LT2).

We note that the expected annual cash-flows cannot be interpreted as expected
annual profits. Although the premium inflow is, in the first years, higher than the
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Table 6.2.1 The life fund in a term insurance portfolio

t F̄ [P]
t N̄t P N̄t C D̄t CF

[P]
t+1

0 0.00 10000.00 19265.25 10879.26 8963.95
1 8963.95 9989.12 19244.29 12035.23 7786.38
2 17019.25 9977.09 19221.10 13316.31 6481.43
3 24011.26 9963.77 19195.45 14735.32 5036.00
4 29767.59 9949.03 19167.06 16306.38 3435.69
5 34096.31 9932.73 19135.65 18045.01 1664.71
6 36783.91 9914.68 19100.88 19968.17 −294.26
7 37593.17 9894.71 19062.41 22094.41 −2460.13
8 36260.84 9872.62 19019.85 24443.96 −4853.51
9 32495.15 9848.18 18972.76 27038.79 −7496.85

10 25973.16 9821.14

benefit outflow, a share of this difference must be reserved to meet the benefit out-
flow in the last years, when premiums are no longer sufficient.

Table 6.2.2 refers to a portfolio of (standard) endowment insurances; according
to the notation defined in Sect. 5.4.1, we then have S = C. Data are as follows:
N0 = 10000, C = 1000, x = 50, m = 15. Annual level premiums, P, are payable
throughout the whole policy duration. The pricing basis is TB1 = (0.02,LT1). We
then find: P = 59.54. Expected values are calculated by adopting the scenario basis
TB2 = (0.03,LT2).

Table 6.2.2 The life fund in an endowment insurance portfolio

t F̄ [P]
t N̄t P N̄t C D̄t CF

[P]
t+1

0 0.00 10000.00 593576.97 30447.33 582804.13
1 582804.13 9969.55 593576.97 33663.70 577720.57
2 1178008.83 9935.89 591572.66 37208.60 572111.24
3 1785460.33 9898.68 589357.30 41112.36 565925.66
4 2404949.80 9857.57 586909.51 45407.36 559109.43
5 3036207.73 9812.16 584206.01 50128.03 551604.16
6 3678898.12 9762.03 581221.43 55310.67 543347.41
7 4332612.47 9706.72 577928.29 60993.35 534272.79
8 4996863.64 9645.73 574296.81 67215.59 524310.13
9 5671079.68 9578.51 570294.86 81441.57 501422.98

10 6354597.82 9504.50 561038.96 98315.09 474064.76
13 8452858.09 9235.21 549855.02 107842.36 458508.31
14 9164952.14 9127.37 543434.19 9127368.69 −8567631.47
15 872269.24 9009.23

It is apparent that, also in this case, the expected cash-flows cannot be interpreted
as expected annual profits. Indeed, a significant share of the difference between
each annual premium inflow and death benefit outflow must be reserved to meet the
survival benefit outflow at maturity.
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�

6.2.3 The total profit: an alternative interpretation

Let PL
[P]

denote the present value at time 0 of the expected total profit (or loss), that
is

PL
[P] = F̄ [P]

m (1+ i′′)−m (6.2.8)

From (6.2.6b) we obtain:

PL
[P] =

m−1

∑
h=0

PN̄h (1+ i′′)−h −
m−1

∑
h=0

C D̄h (1+ i′′)−(h+1)−SN̄m (1+ i′′)−m (6.2.9)

Let P′′ denote the second-order premium, namely the premium such that, at the
policy level, we have

P′′ ä′′x:m� = C mA′′
x +S mE ′′

x (6.2.10)

that is:

m−1

∑
h=0

P′′
h p′′x (1+ i′′)−h =

m−1

∑
h=0

C h|1q′′x (1+ i′′)−(h+1) +S m p′′x (1+ i′′)−m (6.2.11)

At the portfolio level, Eq. (6.2.11) yields:

m−1

∑
h=0

P′′ N̄h (1+ i′′)−h =
m−1

∑
h=0

C D̄h (1+ i′′)−(h+1) +SN̄m (1+ i′′)−m (6.2.12)

Looking at Eq. (6.2.9), we finally obtain the following relations:

PL
[P] =

m−1

∑
h=0

(P−P′′)N̄h (1+ i′′)−h (6.2.13)

F̄ [P]
m =

m−1

∑
h=0

(P−P′′) N̄h (1+ i′′)m−h (6.2.14)

The quantity (P−P′′) N̄h represents the expected annual premium margin at the
portfolio level. Thus, the expected total profit cumulated at maturity, which coin-

cides with the expected life fund F̄ [P]
m , originates from the expected premium mar-

gins, as is rather intuitive.

Remark We note that a result quite similar to that expressed by Eq. (6.2.13) has been obtained at
the policy level; see Eq. (5.5.19).

Example 6.2.2. We refer to a term insurance portfolio and an endowment insurance
portfolio. Data are as in Example 6.2.1. Table 6.2.3 shows level premiums, second-
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order level premiums, and premium margins for the two insurance products. Ta-
ble 6.2.4 shows the consequent expected premium margins in the two portfolios.

Table 6.2.3 Individual premium margins

Insurance product P P′′ P−P′′

Term insurance 1.93 1.71 0.22
Endowment insurance 59.54 54.84 4.70

Table 6.2.4 Expected premium margins in the portfolio

t
(P−P′′) N̄t

Term insurance Endowment insurance

0 2213.33 47009.59
1 2210.92 46866.46
2 2208.26 46708.21
3 2205.31 46533.29
4 2202.05 46340.03
5 2198.44 46126.57
6 2194.45 45890.92
7 2190.03 45630.91
8 2185.14 45344.18
9 2179.73 45028.20

10 44680.25
11 44297.39
12 43876.53
13 43414.35
14 42907.39

�

6.3 Expected annual profits

The model so far developed provides a synthetic information on the portfolio ex-

pected profit, that is, the expected total profit cumulated at maturity, F̄ [P]
m , and its

present value, PL
[P]

. More detailed results can be achieved by introducing new el-
ements into the model. In particular, the sequence of annual profits, namely the
timing of the profit, is of great interest under both a theoretical perspective (as seen
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in Sect. 5.5) and a practical perspective as well. To this purpose, the portfolio reserve
must be accounted for.

6.3.1 The expected surplus and the expected annual profits

The portfolio reserve at a future time t is the random amount V [P]
t = Nt Vt (see

Sect. 6.1). Conversely, the estimated portfolio reserve is given by V̂ [P]
t = nt Vt , where

nt is the estimated number of policies in the portfolio at that time. In particular, the

expected portfolio reserve is given by V̂ [P]
t = E[V [P]

t ] = N0 t p′′x Vt (thus, in this case:
nt = N0 t p′′x ).

As seen in Sect. 6.2.1, the random amount F [P]
t represents (if positive) the port-

folio assets at time t. Conversely, the portfolio liability is expressed by the reserve

V [P]
t . Hence, the difference F [P]

t −V [P]
t represents the (random) cumulated surplus at

time t, as we have excluded capital allocations to the portfolio. This difference also
represents the Net Asset Value (NAV) pertaining to the portfolio itself.

To describe the evolution of the cumulated surplus, in terms of expected values,

we refer to Eq. (6.2.5a). Then, we subtract V̂ [P]
t+1 in both the left-hand side and the

right-hand side of the equation, and add and subtract V̂ [P]
t (1 + i′′) in the left-hand

side. Obvious adjustments are required for Eq. (6.2.5b). We obtain:

(F̄ [P]
t −V̂ [P]

t )(1+ i′′)+(V̂ [P]
t +PN̄t)(1+ i′′)−C D̄t −V̂ [P]

t+1 = F̄ [P]
t+1 −V̂ [P]

t+1; t = 0,1, . . . ,m−2
(6.3.1a)

(F̄ [P]
m−1 −V̂ [P]

m−1)(1+ i′′)+(V̂ [P]
m−1 +PN̄m−1)(1+ i′′)−C D̄m−1 −SN̄m = F̄ [P]

m (6.3.1b)

with F̄ [P]
0 = 0 (see assumption (6.2.1)), and, of course, V̂ [P]

0 = 0. Further, note that

we set V̂ [P]
m = 0, as we have assumed that the life fund at time m is net of the outflow

for maturity benefits.

Let PL
[P]
t+1 denote the expected annual variation in the cumulated surplus, namely

the annual contribution to the cumulated surplus, which clearly represents the ex-
pected annual profit (or loss):

PL
[P]
t+1 = (F̄ [P]

t+1 −V̂ [P]
t+1)− (F̄ [P]

t −V̂ [P]
t ) (6.3.2)

From Eqs. (6.3.1), we obtain the following expressions:

PL
[P]
t+1 = (F̄ [P]

t −V̂ [P]
t )i′′ +(V̂ [P]

t +PN̄t)(1+ i′′)−C D̄t −V̂ [P]
t+1; t = 0,1, . . . ,m−2

(6.3.3a)

PL
[P]
m = (F̄ [P]

m−1 −V̂ [P]
m−1)i

′′ +(V̂ [P]
m−1 +PN̄m−1)(1+ i′′)−C D̄m−1 −SN̄m (6.3.3b)
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Looking at Eqs. (6.3.3), two components of the annual profit can be singled out.
The quantity

PL
[P][NAV]
t+1 = (F̄ [P]

t −V̂ [P]
t )i′′ (6.3.4)

represents the interest on the NAV. Conversely, the component

PL
[P][I]
t+1 = (V̂ [P]

t +PN̄t)(1+ i′′)−C D̄t −V̂ [P]
t+1; t = 0,1, . . . ,m−2 (6.3.5a)

PL
[P][I]
m = (V̂ [P]

m−1 +PN̄m−1)(1+ i′′)−C D̄m−1 −SN̄m (6.3.5b)

represents the industrial profit.
By using Eqs. (6.2.7), we obtain the following expression

PL
[P][I]
t+1 = CF

[P]
t+1 +V̂ [P]

t (1+ i′′)−V̂ [P]
t+1; t = 0,1, . . . ,m−1 (6.3.6)

(with V̂ [P]
0 = V̂ [P]

m = 0) which shows that the industrial profits arise from the port-
folio cash-flows adjusted by accounting for the variation in the portfolio reserve,

V̂ [P]
t −V̂ [P]

t+1, and the interest on the reserve at the beginning of the year, V̂ [P]
t i′′.

Remark We note that a relation between annual profits and annual cashflows, quite similar to that
expressed by Eq. (6.3.6), holds at policy level as shown by Eqs. (5.5.13).

Example 6.3.1. Tables 6.3.1 and 6.3.2 show the expected portfolio reserve, the NAV,
the expected annual profits, and the related components, in a term insurance and in
an endowment insurance portfolio, respectively. Data are as in Example 6.2.1. It is
interesting to compare the expected annual profits with the expected annual cash-
flows (see Tables 6.2.1 and 6.2.2): the role of the portfolio reserve (and, in particular,
of the variation in the portfolio reserve) clearly appears.

Table 6.3.1 Expected portfolio reserve and expected profits in a term insurance portfolio

t V̂ [P]
t F̄ [P]

t −V̂ [P]
t PL

[P]
t PL

[P][NAV]
t PL

[P][I]
t

0 0.00 0.00 − − −
1 7585.09 1378.85 1378.85 0.00 1378.85
2 14016.80 3002.45 1623.59 41.37 1582.23
3 19130.89 4880.37 1877.92 90.07 1787.85
4 22745.28 7022.31 2141.94 146.41 1995.53
5 24658.24 9438.07 2415.77 210.67 2205.10
6 24646.35 12137.56 2699.48 283.14 2416.34
7 22462.43 15130.74 2993.18 364.13 2629.05
8 17833.19 18427.65 3296.92 453.92 2843.00
9 10456.74 22038.41 3610.76 552.83 3057.93

10 0.00 25973.16 3934.75 661.15 3273.59

�
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Table 6.3.2 Expected portfolio reserve and expected profits in an endowment insurance portfolio

t V̂ [P]
t F̄ [P]

t −V̂ [P]
t PL

[P]
t PL

[P][NAV]
t PL

[P][I]
t

0 0.00 0.00 − − −
1 573687.47 9116.66 9116.66 0.00 9116.66
2 1153665.85 24342.98 15226.32 273.50 14952.82
3 1739553.40 45906.93 21563.95 730.29 20833.66
4 2330915.86 74033.94 28127.01 1377.21 26749.80
5 2927262.45 108945.28 34911.34 2221.02 32690.32
6 3528041.94 150856.18 41910.90 3268.36 38642.54
7 4132638.76 199973.72 49117.54 4525.69 44591.85
8 4740369.25 256494.39 56520.68 5999.21 50521.46
9 5350478.29 320601.39 64106.99 7694.83 56412.16

10 5962136.36 392461.46 71860.07 9618.04 62242.03
11 6574437.28 472221.46 79760.00 11773.84 67986.15
12 7186396.87 560004.42 87782.96 14166.64 73616.32
13 7796952.88 655905.21 95900.79 16800.13 79100.66
15 0.00 872269.24 112283.58 22799.57 89484.01

Remark The rationale underlying the definition of the expected annual profits we have just
proposed is quite different from that underpinning the profit assessment within the framework
presented in Sect. 5.5. We note that, according to Eq. (5.5.2), interest originate from the reserve
and the annual premium only, whereas, according to the life fund logic, the investment of both the
cumulated surplus and the (portfolio) reserve plus the annual premiums is accounted for (see, for
example, Eqs. (6.3.3), (6.3.4), and (6.3.5)). Indeed, the logic underlying Eq. (5.5.2) does not allow
for any profit accumulation. The two approaches can be considered as particular implementations
of a more general model for profit assessment. The approach leading to (5.5.2) is based on the so-
called profits-released assumption, whereas the approach involving the life fund analysis is based
on the profits-retained assumption. Nonetheless, thanks to the splitting of the annual profit into the
industrial profit and the interest on the NAV, we can easily recognize in the industrial component
(see Eqs. (6.3.5)) the logic underlying (5.5.2).

6.3.2 The role of the portfolio reserve

By solving Eqs. (6.3.1), we obtain the following explicit expressions for the ex-
pected cumulated surplus:

F̄ [P]
t+1 −V̂ [P]

t+1 =
t

∑
h=0

(
(V̂ [P]

h +P N̄h)(1+ i′′)−C D̄h −V̂ [P]
h+1

)
(1+ i′′)t−h; t = 0,1, . . . ,m−2

(6.3.7a)

F̄ [P]
m =

m−1

∑
h=0

(
(V̂ [P]

h +P N̄h)(1+ i′′)−C D̄h −V̂ [P]
h+1

)
(1+ i′′)m−(h+1) −SN̄m (6.3.7b)

From Eqs. (6.3.5) it follows that (6.3.7b) can also be written as follows:
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F̄ [P]
m =

m−1

∑
h=0

PL
[P][I]
h+1 (1+ i′′)m−(h+1) (6.3.8)

which expresses the cumulated surplus as the accumulated value of the industrial
profits. Further, we have:

PL
[P] =

m−1

∑
h=0

PL
[P][I]
h+1 (1+ i′′)−(h+1) (6.3.9)

It is possible to prove that, assuming V̂ [P]
0 = V̂ [P]

m = 0, Eq. (6.3.7b) yields:

F̄ [P]
m =

m−1

∑
h=0

(
P N̄h(1+ i′′)−C D̄h

)
(1+ i′′)m−(h+1)−SN̄m (6.3.10)

which coincides with (6.2.6b). Indeed, all the other reserve values annul each other.
According to (6.3.10), the expected profit cumulated at maturity coincides with

the accumulated value of the expected annual cash-flows. Hence, the reserve profile
does not affect the amount of the total profit, while it does affect the annual industrial
profits (see Eqs. (6.3.5)), and then the timing of the total profit.

Example 6.3.2. We refer to an endowment insurance portfolio. Data are as in Exam-
ple 6.2.1. Table 6.3.3 shows the timing of the industrial profits, originated by three
reserve profiles. The profiles correspond to different interest rates in the reserving
basis, namely 0.00, 0.02 (which coincides with the interest rate in the pricing ba-
sis TB1), and 0.04. Possible negative reserve values have been replaced with 0. We
note that an interest rate lower than that in the pricing basis implies a profit de-
lay, whereas a higher interest rate implies a profit acceleration. These results can be
compared to those displayed in Table 5.5.4 of Example 5.5.3.

Table 6.3.4 shows the profit timing originated by two reserve profiles: the best-
estimate reserve and the best-estimate reserve plus the risk margin. The risk margin
has been calculated as described in Sect. 6.1.5; in particular:

• we have assumed ρ = 0.08, rf = 0.02;
• SCRt has been set equal to 10% of the best-estimate reserve;

Again, possible negative reserve values have been replaced with 0.
�

The reserve profile based on the best-estimate reserve implies a very particular
timing of the industrial profits, as shown in Table 6.3.4 (and as already seen at policy
level; see in particular Eqs. (5.5.25)). A formal proof of this specific profit profile,
with reference to a portfolio, follows.

The policy best-estimate reserve of an endowment insurance is defined by
Eq. (5.5.21). At the portfolio level, we assume:

V̂ [P][BE]
t = E[Nt ]V

[BE]
t (6.3.11)
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Table 6.3.3 Expected profits according to various reserving profiles

t V̂ [P](0.00)
t PL

[P][I](0.00)
t V̂ [P](0.02)

t PL
[P][I](0.02)
t V̂ [P](0.04)

t PL
[P][I](0.04)
t

0 0.00 − 0.00 − 0.00 −
1 1974761.61 −1391957.48 573687.47 9116.66 0.00 582804.13
2 2531909.48 79815.55 1153665.85 14952.82 159977.92 417742.65
3 3083449.20 96528.81 1739553.40 20833.66 740608.75 −3720.25
4 3628830.21 113048.12 2330915.86 26749.80 1338135.16 −9382.49
5 4167452.93 129351.62 2927262.45 32690.32 1952629.86 −15241.21
6 4698665.52 145415.16 3528041.94 38642.54 2584119.24 −21306.33
7 5221760.78 161212.11 4132638.76 44591.85 3232579.39 −27589.16
8 5735973.20 176713.19 4740369.25 50521.46 3897932.22 −34102.66
9 6240476.31 191886.22 5350478.29 56412.16 4580042.06 −40861.75

10 6734380.40 206695.95 5962136.36 62242.03 5278712.75 −47883.67
11 7216730.95 221103.84 6574437.28 67986.15 5993685.54 −55188.44
12 7686507.78 235067.89 7186396.87 73616.32 6724638.22 −62799.32
13 8142625.36 248542.42 7796952.88 79100.66 7471185.57 −70743.43
14 8583934.49 261477.94 8404966.48 84403.30 8232881.85 −79052.41
15 0.00 273821.06 0.00 89484.01 0.00 −87763.16

F̄ [P](0.00)
15 = 872269.24 F̄ [P](0.02)

15 = 872269.24 F̄ [P](0.04)
15 = 872269.24

PL
[P](0.00) = 559876.43 PL

[P](0.02) = 559876.43 PL
[P](0.04) = 559876.43

Table 6.3.4 Expected profits according to various reserving profiles

t V̂ [P][BE]
t PL

[P][I][BE]
t V̂ [P][BE]

t +RMt PL
[P][I][BE+RM]
t

0 0.00 − 0.00 −
1 6131.41 576672.72 266864.82 315939.31
2 584035.92 0.00 852553.45 37.89
3 1173668.24 0.00 1446631.95 3609.34
4 1774803.95 0.00 2048703.30 7253.27
5 2387157.50 0.00 2658305.54 10968.29
6 3010376.38 0.00 3274906.24 14752.63
7 3644035.08 0.00 3897896.70 18604.13
8 4287628.93 0.00 4526586.26 22520.14
9 4940567.92 0.00 5160196.43 26497.55

10 5602170.71 0.00 5797855.36 30532.71
11 6271658.81 0.00 6438592.59 34621.41
12 6948151.37 0.00 7081334.30 38758.85
13 7630660.67 0.00 7724899.52 42939.58
14 8318088.80 0.00 8367997.34 47157.48
15 9009225.74 0.00 9009225.74 51405.79

F̄ [P][BE]
15 = 872269.24 F̄ [P][BE+RM]

15 = 872269.24

PL
[P][BE] = 559876.43 PL

[P][BE+RM] = 559876.43

with E[Nt ] = N0 t p′′x , that is, calculated by adopting the second-order basis TB2.
We then find:
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V̂ [P][BE]
t = N0 t p′′x (C m−tA

′′
x+t +S m−tE

′′
x+t −Pä′′x+t:m−t�)

= N0 t p′′x
m−t−1

∑
h=0

(
C h|1q′′x+t −P h p′′x+t (1+ i′′)

)
(1+ i′′)−(h+1) +S m−t p′′x+t (1+ i′′)−(m−t)

=
m−t−1

∑
h=0

(
C D̄t+h −PN̄t+h (1+ i′′)

)
(1+ i′′)−(h+1) +SN̄m (1+ i′′)−(m−t) (6.3.12)

and finally we have:

V̂ [P][BE]
t = −

m−t−1

∑
h=0

CF
[P]
t+h+1 (1+ i′′)−(h+1) (6.3.13)

From Eq. (6.3.13), we immediately obtain the following recursive expression:

V̂ [P][BE]
t+1 = V̂ [P][BE]

t (1+ i′′)+CF
[P]
t+1 (6.3.14)

In particular, Eq. (6.3.13) yields:

V̂ [P][BE]
0 = −

m−1

∑
h=0

CF
[P]
h+1 (1+ i′′)−(h+1) = −F̄ [P]

m (1+ i′′)−m = −PL
[P]

(6.3.15)

Assume that, for the portfolio reserve, the following profile is chosen:

V̂ [P]
0 = 0; (6.3.16a)

V̂ [P]
t = V̂ [P][BE]

t ; t = 1,2, . . . ,m−1 (6.3.16b)

V̂ [P]
m = 0 (6.3.16c)

It follows that the industrial profits (see Eq. (6.3.6)) are given by:

PL
[P][I][BE]
1 = −V̂ [P][BE]

1 +CF
[P]
1 =

m−1

∑
h=0

CF
[P]
h+1 (1+ i′′)−h = PL

[P](1+ i′′) (6.3.17a)

PL
[P][I][BE]
t+1 = V̂ [P][BE]

t (1+ i′′)−V̂ [P][BE]
t+1 +CF

[P]
t+1 = 0; t = 1,2, . . . ,m−1 (6.3.17b)

Thus, the expected profit entirely emerges in the first year, while the annual profits
are identically equal to zero in all the following years.

Remark The result expressed by Eqs. (6.3.17) holds provided that the scenario assumed at time 0
(namely, the technical basis TB2) keeps its validity throughout the whole duration of the portfolio.
Conversely, if changes in the scenario suggest, at some point, the shift to a different technical basis,
the profit profile will change, and hence profit will emerge at the time of the shift.
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6.4 Expected annual profits: a more general setting

Further elements must be added to our model, in order to build-up a more realis-
tic framework for profit assessment. To this purpose, we allow for the following
elements:

• expenses and related loadings;
• lapses and surrenders.

As regards the expense loadings, we refer to the loading structure described in
Sect. 4.5.3. We assume that a realistic estimate of expenses can be expressed by
the same structure, although expense parameters possibly differ from those used in
calculating the premium loading. Let EXt denote the expense at time t related to a
generic policy. Referring to policies with annual premiums payable throughout the
whole policy duration m, and assuming that expenses are charged at the beginning
of each year, we have:

EX0 = α ′′C +β ′′ P[T] + γ ′′C (6.4.1a)

EXt = β ′′ P[T] + γ ′′C; t = 1,2 . . . ,m−1 (6.4.1b)

where α ′′, β ′′, and γ ′′ denote the realistic estimation of the expense parameters.
Note that the term α ′′C in Eq. (6.4.1a) should be replaced by δ ′′(m)P[T] when the
acquisition costs are expressed in terms of the annual premium.

The random number of in-force policies, Nt , must be redefined because of the
presence of lapses / surrenders. We assume that lapses / surrenders occur at the end
of the generic policy year, before paying the premium due for the following year.
Let At denote the number of policyholders who abandon the contract at time t. Then,
we have:

Nt+1 = Nt −Dt −At+1 (6.4.2)

Let wt denote the probability of abandoning the contract at time t, conditional on
belonging to the portfolio at that time. Hence, the expected values can be calculated
as follows:

N̄t = N0 t p′′x
t

∏
h=1

(1−wh) (6.4.3)

D̄t = N̄t 1q′′x+t (6.4.4)

Āt+1 = N̄t(1− 1q′′x+t)wt+1 (6.4.5)

Let Rt denote the surrender value at time t (see Sect. 5.7). The behavior of the
portfolio fund, F [P]

t , in terms of expected values, is described by the following re-
cursive equations:
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(F̄ [P]
t +P[T] N̄t −EXt N̄t)(1+ i′′)−C D̄t −Rt+1 Āt+1 = F̄ [P]

t+1; t = 0,1, . . . ,m−2
(6.4.6a)

(F̄ [P]
m−1 +P[T] N̄m−1 −EXm−1 N̄m−1)(1+ i′′)−C D̄m−1 −SN̄m = F̄ [P]

m (6.4.6b)

which generalize Eqs. (6.2.5). In Eq. (6.4.6b), it is assumed, as is reasonable, that
Am = 0.

The expected annual profits and the related components can be determined by

generalizing Eqs. (6.3.3), (6.3.4), and (6.3.5). The estimated portfolio reserve, V̂ [P]
t ,

can either allow for the expenses and the related premium loadings or not. As we
have proved (see Sect. 6.3.2), the time profile of the reserve does not affect the total
profit, whereas it does affect the annual profits (see Example 6.4.1).

The expected annual profits are then expressed by the following equations:

PL
[P]
t+1 = (F̄ [P]

t −V̂ [P]
t )i′′ +(V̂ [P]

t +P[T] N̄t −EXt N̄t)(1+ i′′)−C D̄t −Rt+1 Āt+1 −V̂ [P]
t+1;

t = 0,1, . . . ,m−2 (6.4.7a)

PL
[P]
m = (F̄ [P]

m−1 −V̂ [P]
m−1)i

′′ +(V̂ [P]
m−1 +P[T] N̄m−1 −EXt N̄m−1)(1+ i′′)−C D̄m−1 −SN̄m (6.4.7b)

The interest on the NAV is given by

PL
[P][NAV]
t+1 = (F̄ [P]

t −V̂ [P]
t )i′′ (6.4.8)

whereas the industrial component of the annual profit is expressed as follows:

PL
[P][I]
t+1 = (V̂ [P]

t +P[T] N̄t −EXt N̄t)(1+ i′′)−C D̄t −Rt+1 Āt+1 −V̂ [P]
t+1;

t = 0,1, . . . ,m−2 (6.4.9a)

PL
[P][I]
m = (V̂ [P]

m−1 +P[T] N̄m−1 −EXt N̄m−1)(1+ i′′)−C D̄m−1 −SN̄m (6.4.9b)

In particular, as V̂ [P]
0 = 0, we have:

PL
[P][I]
1 = (P[T] N̄0 −EX0 N̄0)(1+ i′′)−C D̄0 −R1 Ā1 −V̂ [P]

1 (6.4.10)

We note what follows:

• the first year expenses, EX0, include the acquisition costs (see Eq. (6.4.1a)), and
hence are usually much higher than the expenses in the following years;

• the acquisition costs, in the case of periodic premiums, are progressively amor-
tized throughout the premium payment period (see Eqs. (4.5.3b) and (4.5.4b));

• it follows that, the higher is the reserve V̂ [P]
1 , the lower (and possibly negative) is

the first year industrial profit; in particular, this happens if V̂ [P]
1 is set equal to the

net premium reserve, rather than the Zillmer reserve (see Sect. 5.6).
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Remark As already seen at policy level (see the Remark in Sect. 5.5.1), the equations which
define the expected annual profits contain the (main) items of the industrial Profit & Loss Statement
(briefly P & L). Table 6.4.1 displays the items of Eqs. (6.4.9) according to a P & L format. An
obvious adjustment in the benefits is needed when referring to the last year of the policy duration.

Table 6.4.1 Actuarial values as items of a P & L statement

INDUSTRIAL P & L STATEMENT

Income
Premiums P[T] N̄t

Income from investments (V̂ [P]
t +P[T] N̄t −EXt N̄t) i′′

Expenditure
Benefits paid C D̄t +Rt+1 Āt+1
Portfolio expenses EXt N̄t

Change in liabilities V̂ [P]
t+1 −V̂ [P]

t

Profit (or Loss) PL
[P][I]
t+1

Example 6.4.1. We refer to an endowment insurance portfolio. Data are as in Ex-
ample 6.2.1, namely: N0 = 10000, S = C = 1000, x = 50, m = 15. Annual level
premiums, P[T], are payable throughout the whole policy duration. The pricing basis
is TB1 = (0.02,LT1). We then find: P = 59.54. We assume the following expense
loading parameters (see Sect. 4.5.3): δ (15) = 0.55, β = 0.04, γ = 0.0015. Hence,
P[T] = 66.60. Surrender values are given by:

Rt =

{
0; t = 1,2

0.90V [Z]
t ; t ≥ 3

(6.4.11)

The scenario basis is TB2 = (0.03,LT2). As regards surrenders and expenses, we
consider the two following cases.

1. Expense realistic expectation: δ ′′ = δ , β ′′ = β , γ ′′ = γ;
surrender probabilities: wt = 0; t = 1,2, . . . ,15.

2. Expense realistic expectation: δ ′′ = 0.58, β ′′ = 0.04, γ ′′ = 0.0018;
surrender probabilities: see Table 6.4.2.

Tables 6.4.3 and 6.4.4 show the expected profits in case 1 and 2, respectively. It is
worth noting that, in both cases, the Zillmer reserve leads to a “smoother” annual
profit profile, whereas the net premium reserve causes a heavy loss in the first year
(as we can argue from Eq. (6.4.10)). Indeed, according to the net premium reserve,
the acquisition costs are charged to the first year result, disregarding the progressive
amortization. Conversely, this fact does not affect the amount of the total profit,
which is independent of the reserve profile.
�
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Table 6.4.2 Probability of surrender

t wt t wt t wt t wt t wt

1 0.05 4 0.03 7 0.03 10 wt 13 0.03
2 0.02 5 0.03 8 0.03 11 wt 14 0.00
3 0.06 6 0.03 9 0.03 12 wt 15 0.00

Table 6.4.3 Expected profits - Case 1

t
Net premium reserve Zillmer reserve

V̂ [P]
t PL

[P]
t PL

[P][NAV]
t PL

[P][I]
t V̂ [P]

t PL
[P]
t PL

[P][NAV]
t PL

[P][I]
t

0 0.00 − − − 0.00 − − −
1 573687.47 −338323.21 0.00 −338323.21 229504.95 5859.32 0.00 5859.32
2 1153665.85 34574.46 −10149.70 44724.16 831961.82 12095.97 175.78 11920.19
3 1739553.40 41392.01 −9112.46 50504.47 1440674.18 18567.20 538.66 18028.55
4 2330915.86 48438.80 −7870.70 56309.51 2055205.00 25270.44 1095.67 24174.77
5 2927262.45 55709.71 −6417.54 62127.25 2675059.85 32201.45 1853.79 30347.66
6 3528041.94 63197.63 −4746.25 67943.87 3299682.92 39354.06 2819.83 36534.22
7 4132638.76 70893.17 −2850.32 73743.49 3928452.98 46719.92 4000.45 42719.47
8 4740369.25 78784.41 −723.52 79507.93 4560679.68 54288.20 5402.05 48886.15
9 5350478.29 86856.50 1640.01 85216.49 5195599.99 62045.24 7030.70 55014.54

10 5962136.36 95091.34 4245.70 90845.64 5832375.25 69974.16 8892.05 61082.10
11 6574437.28 103467.17 7098.45 96368.73 6470088.83 78054.50 10991.28 67063.22
12 7186396.87 111958.15 10202.46 101755.69 7107744.78 86261.79 13332.91 72928.88
13 7796952.88 120533.88 13561.20 106972.68 7744267.65 94567.03 15920.77 78646.26
14 8404966.48 129158.95 17177.22 111981.73 8378503.97 102936.24 18757.78 84178.46
15 0.00 137792.39 21051.99 116740.40 0.00 111329.87 21845.87 89484.01

F̄ [P]
15 = 839525.38 F̄ [P]

15 = 839525.38

PL
[P] = 538859.40 PL

[P] = 538859.40

Table 6.4.4 Expected profits - Case 2

t
Net premium reserve Zillmer reserve

V̂ [P]
t PL

[P]
t PL

[P][NAV]
t PL

[P][I]
t V̂ [P]

t PL
[P]
t PL

[P][NAV]
t PL

[P][I]
t

0 0.00 − − − 0.00 − − −
1 545003.10 −333308.95 0.00 −333308.95 218029.70 −6335.55 0.00 6335.55
2 1074062.91 51481.77 −9999.27 61481.04 774556.45 24014.83 −190.07 24204.89
3 1522352.77 60449.50 −8454.82 68904.32 1260791.60 22504.21 530.38 21973.84
4 1978681.38 52594.93 −6641.33 59236.26 1744634.34 25080.81 1205.50 23875.30
5 2410364.18 58324.96 −5063.48 63388.44 2202695.71 31946.39 1957.93 29988.46
6 2817905.84 63928.11 −3313.73 67241.84 2635511.68 38653.80 2916.32 35737.48
7 3201783.16 69400.72 −1395.89 70796.61 3043589.18 45200.54 4075.93 41124.61
8 3562446.72 74738.22 686.13 74052.09 3427407.77 51583.20 5431.95 46151.25
9 3900322.75 79935.10 2928.28 77006.82 3787421.56 57797.33 6979.45 50817.88

10 4215815.33 84984.82 5326.33 79658.49 4124061.49 63837.47 8713.37 55124.10
11 4509308.99 89879.85 7875.88 82003.98 4437737.94 69697.06 10628.49 59068.57
12 4781171.70 94611.56 10572.27 84039.29 4728843.79 75368.42 12719.40 62649.02
13 5031758.48 99170.21 13410.62 85759.60 4997758.10 80842.69 14980.46 65862.23
14 5424139.66 86811.44 16385.72 70425.72 5407062.09 69888.63 17405.74 52482.89
15 0.00 92508.29 18990.07 73518.22 0.00 75430.72 19502.39 55928.33

F̄ [P]
15 = 725510.54 F̄ [P]

15 = 725510.54

PL
[P] = 465677.61 PL

[P] = 465677.61
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6.5 References and suggestions for further reading

Best-estimate reserves and risk margins constitute recent issues in the actuarial
framework. The interested reader should then refer to recent literature addressing
risk management and solvency in the insurance business: for example, [21] and
[50]; see also [42].

Expected profits in the life insurance business are dealt with, under different
perspectives, in various textbooks. For example, [17] presents an interesting scheme
for assessing profits arising from one generation of policies.

We recall that the traditional approach to the profit assessment at the policy level
is described by [47], whereas [26] places special emphasis on mortality profits.

Assessment of profits in a profit-testing framework is dealt with by [20]. A mod-
ern approach to profits (not restricted to life insurance) is proposed in Chap. 16 of
[4].

Effects of solvency regulation on the emergence of profit are discussed in Chap.
9 of [9]. A thorough analysis of expected profits in the context of evaluation proce-
dures for life insurance portfolios is provided by [42].



Chapter 7
Finance in life insurance: linking benefits to the
investment performance

7.1 Introduction

The life insurance products described in the previous chapters are characterized by
fixed benefits (and premiums), i.e. the amount of benefits and premiums is stated at
issue.

Remark It is worth stressing that the expression “fixed benefits” should not be meant as “constant
benefits” but, as specified above, as benefits whose amount is definitively assigned at policy issue.
If the amount of benefits varies in time but in a way specified at issue, we still refer to such an ar-
rangement as with fixed benefits. The same terminology applies to premiums; a rating arrangement
based on natural premiums, for example, is considered to be with fixed premiums, as their amount
is univocally defined at policy issue.

In this Chapter we examine life insurance products whose benefit amount de-
pends either on the return on investments, market interest rates, stock-market in-
dexes, or other financial index. The purpose is to provide a return on the investment
of the policyholder which is higher than the usual technical interest rate, and in any
case in line with the prevailing market rates for the class of assets backing the re-
serve. We recall that since the technical interest rate is guaranteed for the whole
(long) duration of the contract, it must be set at a low level, to avoid major risks for
the insurer. Clearly, insurance products for which there is an interest in realizing a
linking to a financial index are those with a large savings component, i.e. those with
a large reserve (and then, a large investment) in respect of the insured amount, such
as endowments, whole life assurances, life annuities.

As we are going to describe in this Chapter, the linking of benefits to the in-
vestment performance can be realized in different ways. Basically, what makes the
difference is how financial risk is shared between the insurer and the policyholder.
In this respect, the following classes of life insurance products can be identified:

• policies with embedded financial guarantees (participating, with-profit and uni-
versal life policies);

• policies without financial guarantees (unit-linked and universal life policies);

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 317
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• policies with explicit financial guarantees (unit-linked and universal life policies
with minimum guarantees, index-linked policies, variable annuities).

To better understand the technical features of the life insurance policies with
benefits linked to the investment performance, it is interesting to investigate how the
various mechanisms that we are going to examine were introduced. As mentioned
above, the products we refer to are those with a large reserve in respect of the insured
amount, i.e. those whose underlying purpose is not only the insurance protection,
but also savings.

The idea behind policy designs with a linking to the investment performance is
to share investment profits, and possibly losses, between the insurer and the policy-
holder. The idea of sharing profits with the policyholders is not new in life insurance.
There is a tradition in the UK and German markets which dates back to the Nineteen
century, and which in earlier times concerned industrial or balance-sheet profits. In
UK, in particular, the traditional product realizing the linking of benefits to profits
is the with-profit policy, under which in each year the benefit amount is increased
by the so-called bonus.

Apart from these examples, life insurance products have been characterized by
fixed benefits until the Sixties of the last century. At that time, some important in-
novations were introduced. In UK, the early forms of unit-linked policies were de-
signed, under which the return on investments is not guaranteed; the assets backing
the reserve can then be selected out of classes of securities riskier (and, on average,
more rewarding) than the traditional ones (typically, government or high-quality
bonds). Conversely, in the US a form of flexibility was introduced into the premi-
ums, whose amount could be chosen (possibly within a given band) year by year by
the policyholder.

Many innovations were introduced in the Seventies, in contrast to the dramatic
decrease of the volume of the lines of business with a large savings component, due
to the high inflation rates. It is worth noting that the long duration of life policies
and the nature of the insurer’s liability (which concerns the amount of the benefit,
and not its real value) expose the policyholder to inflation risk. When the inflation
rate is low and interest rates are positive in real terms, the risk is not perceived;
vice versa, when the inflation rate is very high (as it was during the Seventies) the
depreciation of the insured amount is too strong to make the product attractive in
respect of alternative investment solutions. The life insurance industry reacted to
the negative underwriting trends by linking benefits to the inflation rate or to the
return on investment. Due to the limited availability of inflation-linked securities,
most of the insurers focused on the linking to the investment returns, developing the
so-called participating policies.

Participating policies have gained large market shares during the Eighties, in
particular in continental Europe. At the same time, new products were developed;
in the UK, in particular, the business of unit-linked policies, with and without fi-
nancial guarantees, reached a large importance. In the US market, Universal Life
policies were introduced, which are characterized by many options available to the
policyholder in regard of the amount of premiums, possible withdrawals, selection
of the asset mix, as well as by the detailed information provided to the policyholder
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about the costs charged by the insurer. During the Nineties, the innovations pro-
duced by financial engineering have supported the design of index-linked policies,
which are single premium contracts whose return is linked to stock-market indexes.
Nowadays, insurers are increasingly addressing variable annuity policies which,
first developed in the US, offer savings opportunities during the working life of an
individual, and then private pension solutions after her retirement.

In the following sections, we describe the technical features of the policies men-
tioned above.

7.2 Adjusting benefits

In this Section we illustrate what requirement must be satisfied when the benefit
amount, first defined at policy issue following the pricing model for fixed benefits
(see Chap. 4), is adjusted during the policy duration. This description is useful to
understand how we can realize a linking of benefits to some index, as we discuss
in Sect. 7.3. The actuarial structure defined below (see, in particular, Sect. 7.2.1)
extends the basic actuarial model defined in the previous chapters.

7.2.1 The general case

Refer to a life insurance policy whose current duration is t years. With reference to
the policy anniversary t, we denote by t− the time just before premium payment.
At time t−, the reserve Vt− has to be available, so to realize the actuarial balance
between future benefits and future premiums:

Vt− = Ben′(t−,m)−Prem′(t−,m) (7.2.1)

(see (5.3.3)). To avoid any misunderstanding, we point out that (similarly to as-
sumptions in (5.3.3)), the actuarial value Ben′(t−,m) does not include the benefit
due at the end of year (t −1, t), while the actuarial value Prem′(t−,m) includes the
premium due at time t for year (t, t + 1) (see Sect. 7.2.2 for examples). The nota-
tion t− only recalls that the quantities referred to are considered prior to possible
adjustments occurring at time t. From (7.2.1) we obtain the balance condition

Vt− +Prem′(t−,m) = Ben′(t−,m) (7.2.2)

(see also (5.3.1)), where Ben′(t−,m) represents the gross liability of the insurer at
time t− (the net liability corresponding to the difference Ben′(t−,m)−Prem′(t−,m)).
Equation (7.2.2) shows us that such a liability is funded by the current assets, whose
value is Vt− , joint to the assets to be purchased with future premiums, whose current
actuarial value is Prem′(t−,m).
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Assume now that at time t− the benefit amount is adjusted, so that the value of

benefits increases at the rate j[B]
t . The technical basis is not changed. To maintain

the actuarial balance between assets (current and future) and (gross) liabilities, the

quantity in the left-hand side of (7.2.2) must also be increased at the rate j[B]
t . Thus,

the new balance condition is expressed as follows

(Vt− +Prem′(t−,m))(1+ j[B]
t ) = Ben′(t−,m)(1+ j[B]

t ) (7.2.3)

Equation (7.2.3) does not require that both the reserve and the future premi-

ums are increased at the rate j[B]
t (for example, this would not be possible if

Prem′(t−,m) = 0, i.e. if the policy is paid-up); what is required is that their total

value is increased at the rate j[B]
t . Different rates of adjustment of the reserve and

the future premiums, respectively denoted by j[V]
t and j[Π]

t , can be adopted, provided
that the following balance condition is satisfied

Vt− (1+ j[V]
t )+Prem′(t−,m)(1+ j[Π]

t ) = Ben′(t−,m)(1+ j[B]
t ) (7.2.4)

Since (7.2.2) must be fulfilled, (7.2.4) requires

Vt− j[V]
t +Prem′(t−,m) j[Π]

t = Ben′(t−,m) j[B]
t (7.2.5)

(as we obtain by subtracting (7.2.2) from (7.2.4)). Equation (7.2.5) expresses that
the adjustments of the reserve and premiums must be on actuarial balance with the
benefit adjustment.

Equation (7.2.5) admits an infinite number of solutions, as it has three unknowns

(namely, the three rates of adjustment j[V]
t , j[Π]

t , j[B]
t ). The amount Vt− j[V]

t , the so-
called reserve jump, or simply reserve adjustment, is funded by the insurer, so to
share profits with the policyholder. To keep control of the relevant cost charged to

the insurer, in common practice first the value for j[V]
t is selected, according to policy

conditions (see Sect. 7.2.3 and 7.3 for some examples). Then, still according to

policy conditions, a value for the rate j[Π]
t is chosen. Finally, the rate j[B]

t is calculated

so that (7.2.5) is satisfied. It is then interesting to obtain an expression for j[B]
t from

(7.2.5). We find

j[B]
t =

j[V]
t Vt− + j[Π]

t Prem′(t−,m)
Ben′(t−,m)

(7.2.6)

and, replacing Ben′(t−,m) according to (7.2.2),

j[B]
t =

j[V]
t Vt− + j[Π]

t Prem′(t−,m)
Vt− +Prem′(t−,m)

(7.2.7)

Equation (7.2.7) shows us that the rate of adjustment of the benefit, j[B]
t , is a

weighted average of the rate of adjustment of the reserve, j[V]
t , and the rate of ad-

justment of premiums, j[Π]
t . The weights, respectively Vt− and Prem′(t−,m), change
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in time; in particular, since we are addressing insurance covers characterized by a
significant savings component (such as endowments or whole life assurances), we
should expect that the weight of level premiums decreases in time, while the weight
of the reserve increases. This means that when t is small (in particular, close to time

0), we should expect that j[B]
t is closer to j[Π]

t than to j[V]
t ; vice versa, when t is high,

and in particular close to the maturity m, we should expect that j[B]
t is closer to j[V]

t

than to j[Π]
t . Of course, whenever Prem′(t−,m) = 0, such as for example in the case

of single premium, or paid-up policy, or if t = m, then j[B]
t = j[V]

t (see also examples
in Sect.7.2.2).

Some remarks are useful to conclude this Section. We first note that the reserve
to be set up at time t, after the benefit adjustment but before the premium payment,
is

Vt = Vt− (1+ j[V]
t ) (7.2.8)

From (7.2.4) we obtain the relevant expression in terms of actuarial value of future
benefits and premiums, namely

Vt = Ben′(t−,m)(1+ j[B]
t )−Prem′(t−,m)(1+ j[Π]

t ) (7.2.9)

If we let

Ben′(t,m) = Ben′(t−,m)(1+ j[B]
t ) (7.2.10)

Prem′(t,m) = Prem′(t−,m)(1+ j[Π]
t ) (7.2.11)

we can also write
Vt = Ben′(t,m)−Prem′(t,m) (7.2.12)

which shows us that Vt is a prospective reserve (see (5.3.3)), as it is desirable, given
that the adjustment has not been motivated by the need of revising the logic for
the calculation of the reserve. Note that the reserve Vt is assessed considering the
updated benefit and premium amounts, while the technical basis is unchanged.

From the notation used above, it should be clear that the adjustment only involves

benefits, net premiums and the net reserve. However, if j[Π]
t > 0, what is actually

adjusted is the expense-loaded premium; this way, also the expense loading would
be adjusted, which is not strictly required by the model. However, the adjustment of
the expense loading could compensate the insurer for inflationary effects affecting
administration expenses. Anyhow, we point out that if the contract is designed so

that j[Π]
t > 0, then in principle the loading set at issue for administration expenses

should be lower than what applied to contracts designed so that j[Π]
t = 0.

In the presentation above, we have excluded from the reserve at time t− the bene-
fit due at the end of year (t −1, t). In particular, this means that the reserve Vt− is set
up just for those policies whose insured is still alive at time t. From a technical point
of view, it would be possible to include in Vt− also the benefit due at time t, in which
case Vt− would be meant as the reserve set up at time t− for all the policies in-force
at the beginning of the year, i.e. at time t −1. From a formal point of view, we can
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still adopt the model presented above. The weights in (7.2.7) would be different, as
the reserve would be higher than what considered above. In the following, we make
reference only to the first interpretation (i.e., Vt− does not include the benefit due
at time t, unless it is the maturity benefit at time t = m), as this is the prevailing
approach in actuarial practice.

7.2.2 Addressing specific insurance products

In this Section, we show how the model for the adjustment of benefits described in
Sect. 7.2.1 applies to specific insurance covers.

We first refer to a standard endowment insurance, issued at time 0, with maturity
m, benefit C and annual level premium P. We assume that P has been calculated
according to (4.4.18) with s = m. The policy is designed so that at each policy
anniversary it is possible to adjust the benefits, following (7.2.7). We then need to
extend the notation for benefits and premiums.

The premium to be paid at time t, after the adjustment at that time, is denoted by
Pt . We set P0 = P, while

Pt = Pt−1 (1+ j[Π]
t ) (7.2.13)

The death benefit payable at time t +1 is denoted by Ct+1; in particular, C1 = C,
while

Ct+1 = Ct (1+ j[B]
t ) (7.2.14)

Note that, following the more common practice, we are assuming that the adjust-
ment is applied at time t just to policies in-force at that time.

For the survival benefit (payable at maturity), we denote by St the amount defined
at time t. In particular, S0 = C is the amount defined at issue, while

St = St−1 (1+ j[B]
t ) (7.2.15)

is the amount defined at time t. Then, we simply have St = Ct+1 for t = 0,1, . . . ,m−
1, as it is reasonable given that we are addressing a standard endowment insurance.
At time m, it is possible to make a final adjustment for in-force policies, so that

Sm = Sm−1 (1+ j[B]
m ), i.e. Sm = Cm (1+ j[B]

m ).

Remark As we have commented after (7.2.14), we are assuming that the death benefit due in year
(t −1, t) is the benefit last adjusted at the beginning of the year, i.e. at time t −1. When assessing
the premium according to (4.4.18), we assume that the death benefit is paid at the end of the year of
death; thus, at time t it would be possible to adjust the benefit before payment, as it occurs at time

m for the maturity benefit. However, as we have already pointed out, the rate j[B]
t in (7.2.7) refers

to a policy in-force at time t−, thus excluding an adjustment of the death benefit due at time t.
This is annoying in particular at maturity, when the in-force policies receive a higher amount than
the policies reporting a death in the last year. However, in practice the death benefit is paid upon
death; in the last year, in particular, the death benefit is thus paid on average before maturity. We
further note that in practice insurers are willing to adjust the death benefit at the time of payment,
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in proportion to the time spent by the policy in the portfolio in the year of death. For the sake of
brevity, we disregard this possibility and we continue to refer to benefits assessed as in (7.2.14).

For the reserve, we have (see (7.2.1) and (7.2.12))

Vt− = Ct A′
x+t,m−t� −Pt−1 ä′x+t:m−t� (7.2.16)

Vt = Ct+1 A′
x+t,m−t� −Pt ä′x+t:m−t� (7.2.17)

for t = 1,2, . . . ,m−1, while for t = m we have

Vm− = Sm−1 (7.2.18)

Vm = Sm (7.2.19)

(clearly, for t = 0 we have V0 = 0, while V0− is not defined, given that at time 0− the
policy does not yet exist).

We note that, thanks to (7.2.7), the rate of the adjustment of the benefit j[B]
t is an

intermediate value between j[V]
t and j[Π]

t for t = 1,2, . . . ,m−1; at time m, since no

premium remains to be paid, we simply have j[B]
m = j[V]

m .

Example 7.2.1. Refer to a standard endowment insurance, issued at age x = 50,
with maturity m = 15 and benefit C = 1000. Adopting the technical basis TB1 =
(0.02,LT1), we find P = 59.54. Table 7.2.1 quotes the development in time of the

benefits if in each year the reserve is adjusted at the rate j[V]
t = 0.03, while the pre-

mium remains unchanged. Note that in each year 0 < j[B]
t ≤ 0.03, and in particular

j[B]
m = 0.03, given that j[B]

t is the weighted average of j[V]
t and j[Π]

t ; note also that

j[B]
t is increasing in time, due to the increasing weight of the reserve.

Table 7.2.1 Adjusting the benefits of an endowment insurance; j[Π]
t = 0

t j[V]
t j[Π]

t j[B]
t Pt Ct St Vt− Vt

0 59.54 1 000.00 0.00
1 3% 0% 0.225% 59.54 1 000.00 1 002.25 57.54 59.27
2 3% 0% 0.452% 59.54 1 002.25 1 006.78 117.87 121.41
3 3% 0% 0.678% 59.54 1 006.78 1 013.61 181.13 186.57
4 3% 0% 0.903% 59.54 1 013.61 1 022.76 247.49 254.92
5 3% 0% 1.126% 59.54 1 022.76 1 034.28 317.14 326.65
6 3% 0% 1.345% 59.54 1 034.28 1 048.19 390.26 401.97
7 3% 0% 1.559% 59.54 1 048.19 1 064.53 467.08 481.10
8 3% 0% 1.766% 59.54 1 064.53 1 083.33 547.84 564.28
9 3% 0% 1.968% 59.54 1 083.33 1 104.65 632.81 651.79

10 3% 0% 2.161% 59.54 1 104.65 1 128.52 722.28 743.95
11 3% 0% 2.347% 59.54 1 128.52 1 155.00 816.59 841.09
12 3% 0% 2.523% 59.54 1 155.00 1 184.14 916.12 943.60
13 3% 0% 2.691% 59.54 1 184.14 1 216.01 1 021.30 1 051.94
14 3% 0% 2.850% 59.54 1 216.01 1 250.67 1 132.63 1 166.61
15 3% 0% 3.000% 1 250.67 1 288.19 1 250.67 1 288.19
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Table 7.2.2 quotes the rate of adjustment of premiums that would be required
in each year to obtain the same benefit adjustment plotted in Table 7.2.1, but

setting j[V]
t = 0. Since j[B]

t is the weighted average of j[V]
t and j[Π]

t , it turns out

0 ≤ j[B]
t < j[Π]

t , with j[Π]
t increasing in time due to the decreasing weight of future

premiums. Clearly, this arrangement cannot be applied recursively, but could be of
some interest if applied once during the policy duration (see Sect. 7.2.3). Note that,

contrarily to the example in Table 7.2.2, j[B]
m = 0, as the policy is paid-up at time m

and the reserve is not adjusted.

Table 7.2.2 Adjusting the benefits of an endowment insurance; j[V]
t = 0

t j[V]
t j[Π]

t j[B]
t Pt Ct St Vt− Vt

0 59.54 1 000.00 0.00
1 0% 0.243% 0.225% 59.68 1 000.00 1 002.25 57.54 57.54
2 0% 0.531% 0.452% 60.00 1 002.25 1 006.78 116.25 116.25
3 0% 0.870% 0.678% 60.52 1 006.78 1 013.61 176.32 176.32
4 0% 1.272% 0.903% 61.29 1 013.61 1 022.76 238.01 238.01
5 0% 1.751% 1.126% 62.37 1 022.76 1 034.28 301.60 301.60
6 0% 2.327% 1.345% 63.82 1 034.28 1 048.19 367.46 367.46
7 0% 3.026% 1.559% 65.75 1 048.19 1 064.53 436.05 436.05
8 0% 3.890% 1.766% 68.31 1 064.53 1 083.33 507.95 507.95
9 0% 4.983% 1.968% 71.71 1 083.33 1 104.65 583.92 583.92

10 0% 6.417% 2.161% 76.31 1 104.65 1 128.52 664.97 664.97
11 0% 8.405% 2.347% 82.72 1 128.52 1 155.00 752.53 752.53
12 0% 11.430% 2.523% 92.18 1 155.00 1 184.14 848.73 848.73
13 0% 16.892% 2.691% 107.75 1 184.14 1 216.01 957.07 957.07
14 0% 31.535% 2.850% 141.73 1 216.01 1 250.67 1 084.42 1 084.42
15 0% 0.000% 1 250.67 1 250.67 1 250.67 1 250.67

Tables 7.2.3 and 7.2.4 assume, respectively, j[Π]
t = j[V]

t and j[Π]
t = 0.5 j[V]

t . In the

former case, we find trivially j[B]
t = j[V]

t ; in the latter, j[Π]
t < j[B]

t ≤ j[V]
t , with j[B]

t
increasing in time. In both cases, the amount of the benefit is at any time higher
than in the example of Table 7.2.1, and this is due to the higher premiums. If the
cost of the update of the reserve is charged to the insurer, as it is usually the case,

and the policyholder refers to j[B]
t to get an idea of the size of the profit distributed

by the insurer, then arrangements in Tables 7.2.3 and 7.2.4 seem more appealing

than arrangement in Table 7.2.1; we stress, however, that j[B]
t is also the result of

the adjustment of premiums. In order to understand the size of the profit distributed

by the insurer, reference should be made to j[V]
t only; see also Sect. 7.2.4 for further

analyses in this regard.
�

We now refer to a whole life insurance, issued at time 0, with benefit C and
annual level premiums P payable for s years, assessed according to (4.4.20). Equa-
tions (7.2.13) and (7.2.14), describing respectively the adjusted premium and the
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Table 7.2.3 Adjusting the benefits of an endowment insurance; j[Π]
t = j[V]

t

t j[V]
t j[Π]

t j[B]
t Pt Ct St Vt− Vt

0 59.54 1 000.00 0.00
1 3% 3% 3% 61.33 1 000.00 1 030.00 57.54 59.27
2 3% 3% 3% 63.16 1 030.00 1 060.90 119.59 123.18
3 3% 3% 3% 65.06 1 060.90 1 092.73 186.44 192.03
4 3% 3% 3% 67.01 1 092.73 1 125.51 258.39 266.14
5 3% 3% 3% 69.02 1 125.51 1 159.27 335.77 345.85
6 3% 3% 3% 71.09 1 159.27 1 194.05 418.97 431.54
7 3% 3% 3% 73.23 1 194.05 1 229.87 508.37 523.62
8 3% 3% 3% 75.42 1 229.87 1 266.77 604.42 622.55
9 3% 3% 3% 77.68 1 266.77 1 304.77 707.61 728.84

10 3% 3% 3% 80.02 1 304.77 1 343.92 818.48 843.03
11 3% 3% 3% 82.42 1 343.92 1 384.23 937.65 965.78
12 3% 3% 3% 84.89 1 384.23 1 425.76 1 065.80 1 097.77
13 3% 3% 3% 87.43 1 425.76 1 468.53 1 203.72 1 239.83
14 3% 3% 3% 90.06 1 468.53 1 512.59 1 352.30 1 392.87
15 3% 3% 1 512.59 1 557.97 1 512.59 1 557.97

Table 7.2.4 Adjusting the benefits of an endowment insurance; j[Π]
t = 0.5 j[V]

t

t j[V]
t j[Π]

t j[B]
t Pt Ct St Vt− Vt

0 59.54 1 000.00 0.00
1 3% 1.5% 1.613% 60.43 1 000.00 1 016.13 57.54 59.27
2 3% 1.5% 1.724% 61.34 1 016.13 1 033.65 118.73 122.29
3 3% 1.5% 1.835% 62.26 1 033.65 1 052.62 183.77 189.28
4 3% 1.5% 1.944% 63.19 1 052.62 1 073.08 252.89 260.47
5 3% 1.5% 2.052% 64.14 1 073.08 1 095.11 326.32 336.11
6 3% 1.5% 2.158% 65.10 1 095.11 1 118.74 404.34 416.47
7 3% 1.5% 2.262% 66.08 1 118.74 1 144.04 487.23 501.85
8 3% 1.5% 2.363% 67.07 1 144.04 1 171.07 575.32 592.58
9 3% 1.5% 2.462% 68.08 1 171.07 1 199.91 668.95 689.02

10 3% 1.5% 2.558% 69.10 1 199.91 1 230.60 768.54 791.60
11 3% 1.5% 2.652% 70.13 1 230.60 1 263.24 874.52 900.76
12 3% 1.5% 2.743% 71.19 1 263.24 1 297.90 987.40 1 017.02
13 3% 1.5% 2.832% 72.25 1 297.90 1 334.65 1 107.75 1 140.98
14 3% 1.5% 2.917% 73.34 1 334.65 1 373.58 1 236.23 1 273.31
15 3% 3.000% 1 373.58 1 414.79 1 373.58 1 414.79

adjusted benefits, apply also to this case (the former, clearly, for t = 1,2, . . . ,s− 1,
and with P0 = P(s)). For the reserve, we have

Vt− = Ct A′
x+t −Pt−1 äx+t:s−t� (7.2.20)

Vt = Ct+1 A′
x+t −Pt äx+t:s−t� (7.2.21)

for t = 1,2, . . . ,s−1, and
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Vt− = Ct A′
x+t (7.2.22)

Vt = Ct+1 A′
x+t (7.2.23)

for t = s,s + 1, . . . . The rate of adjustment of the benefit, j[B]
t , is an average of the

rates of adjustment of the reserve and premiums as long as there remain premiums
to be paid, i.e. for t = 1,2, . . . ,s− 1; conversely, for t = s,s + 1, . . . , it turns out

j[B]
t = j[V]

t , as the policy is paid-up.

Example 7.2.2. We consider a whole life assurance, issued for a person age x = 50,
with annual level premiums payable for s = 15 years, benefit C = 1000. Adopting
the technical basis TB1 = (0.02,LT1), we find P = 44.90. Table 7.2.5 quotes the
development in time of the benefits if in each year the reserve is adjusted at the rate

j[V]
t = 0.03, while the premium remains unchanged. Note that for t = 1,2, . . . ,14 we

find 0 < j[B]
t < 0.03, given that j[B]

t is the weighted average of j[V]
t and j[Π]

t ; note

also that j[B]
t is increasing in time, due to the increasing weight of the reserve. For

t = 15,16, . . . , we find j[B]
t = j[V]

t , as the policy is paid-up.

Table 7.2.5 Adjusting the benefits of a whole life insurance; j[Π]
t = 0

t j[V]
t j[Π]

t j[B]
t Pt Ct Vt− Vt

0 44.90 0.00
1 3% 0% 0.221% 44.90 1 000.00 42.57 43.84
2 3% 0% 0.444% 44.90 1 002.21 87.09 89.70
3 3% 0% 0.667% 44.90 1 006.66 133.67 137.68
4 3% 0% 0.889% 44.90 1 013.37 182.40 187.87
5 3% 0% 1.109% 44.90 1 022.38 233.40 240.40
6 3% 0% 1.325% 44.90 1 033.72 286.77 295.38
7 3% 0% 1.538% 44.90 1 047.42 342.65 352.93
8 3% 0% 1.745% 44.90 1 063.53 401.17 413.21
9 3% 0% 1.946% 44.90 1 082.09 462.48 476.35

10 3% 0% 2.141% 44.90 1 103.15 526.74 542.54
11 3% 0% 2.328% 44.90 1 126.76 594.13 611.95
12 3% 0% 2.508% 44.90 1 152.99 664.85 684.79
13 3% 0% 2.680% 44.90 1 181.90 739.11 761.29
14 3% 0% 2.844% 44.90 1 213.58 817.18 841.69
15 3% 3.000% 1 248.09 899.32 926.30
16 3% 3.000% 1 285.53 939.32 967.50
17 3% 3.000% 1 324.09 980.79 1 010.22
18 3% 3.000% 1 363.82 1 023.78 1 054.49
19 3% 3.000% 1 404.73 1 068.30 1 100.35
20 3% 3.000% 1 446.87 1 114.40 1 147.83
. . . . . . . . . . . . . . . . . .

�
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Refer now to an immediate life annuity in arrears, issued at age x, with initial

amount for the annual benefit b. We still denote by j[B]
t the rate of adjustment of the

benefit at time t. Since the policy is funded with a single premium, from (7.2.7) we

find j[B]
t = j[V]

t at any time t, t = 1,2, . . . The benefit adjusted at time t is then

bt = bt−1 (1+ j[V]
t ) (7.2.24)

with b0 = b. According to assumptions underlying (7.2.7), the benefit paid at time t
has been last adjusted at time t −1; thus, for the reserve we find

Vt− = bt−1 a′x+t (7.2.25)

Vt = bt a′x+t (7.2.26)

We note that since the benefit at time t is paid to in-force policies, it would be
reasonable to adjust the benefit right before payment (so that bt would be the benefit
paid at time t), similarly to what happens for the maturity benefit of endowment
policies. The choice of one solution or the other also depends on the frequency of
payment of the benefit, which is here assumed annual, but can be monthly or other
(in this latter case, it is reasonable to apply the adjustment at time t to benefits which
will be paid after that time).

We do not give a numerical example on the adjustment of the annuity benefits,

as we would simply find j[B]
t = j[V]

t at any time t.

7.2.3 Implementing solutions

As noted in Sect. 7.2.1, Eq. (7.2.5) admits an infinite number of solutions (unless

Prem′(t−,m) = 0, in which case we simply find j[B]
t = j[V]

t ). Table 7.2.6 summarizes
the logic commonly followed to select particular solutions; some of these solutions
have already been considered in the numerical examples of Sect. 7.2.2, as we recall
below.

Table 7.2.6 Solutions for the adjustment of benefits

Solution j[V]
t j[Π]

t j[B]
t

I > 0 0 > 0
II 0 > 0 > 0
III > 0 > 0 > 0
IV > 0 < 0 0

Solution I (considered in Table 7.2.1 for the endowment insurance and in Ta-
ble 7.2.5 for the whole life assurance), is usually adopted when the insurer wants
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to share financial profits with the policyholder; actually, the cost of updating the re-

serve is charged to the insurer. As already pointed out, first j[V]
t is chosen, according

to the financial profit gained by the insurer; then j[B]
t is calculated through (7.2.7). It

turns out: 0 < j[B]
t ≤ j[V]

t (see also remarks in this respect in Sects. 7.2.1 and 7.2.2).
From an actuarial point of view, we note that (7.2.5) reduces to:

Vt− j[V]
t = Ben′(t−,m) j[B]

t (7.2.27)

which shows us that the increase of the cost of benefits, namely the right-hand side
of (7.2.27), is immediately funded with an increase of the reserve (see left-hand side
of (7.2.27)). The arrangement is also referred to as an adjustment of benefits with
constant premiums, given that premiums remain unchanged.

Solution II (considered in Table 7.2.2 for the endowment insurance) is never ap-
plied recursively. Actually, the cost of adjusting the benefits is fully charged to the

policyholder and it turns out 0 ≤ j[B]
t < j[Π]

t , with j[Π]
t much larger than j[B]

t when
t is close to the maximum duration of premium payment. Such a solution finds
application when an insurability guarantee (or benefit increase option) has been
underwritten within policy conditions; according to this guarantee, the policyholder
may apply for an increase of the benefit amount in face of some specific events (typ-
ically concerning her household, such as the birth of a child), without being adopted
a reinforced technical basis. Without the guarantee, should a benefit increase be
required by the policyholder, a revision of the premium rate could be applied, to
prevent adverse selection. Equation (7.2.5) shows us that

Prem′(t−,m) j[Π]
t = Ben′(t−,m) j[B]

t (7.2.28)

which means that the increase of the cost of benefits (quantity in the right-hand
side of (7.2.28)) is amortized over the residual duration of premium payment (see
left-hand side of (7.2.28)).

In solution III (considered in Tables 7.2.3 and 7.2.4 for the endowment insur-
ance), the increase of the cost of benefits (right-hand side of (7.2.5)) is partially
funded immediately, through the adjustment of the reserve, and partially amortized
over the residual duration of premium payment, through the adjustment of premi-
ums (see left-hand side of (7.2.5)). The adjustment of the reserve is charged to the
insurer, which this way shares profits with the policyholder, while the adjustment

of premiums is charged to the policyholder. First, the insurer selects j[V]
t consis-

tently with the realized financial profit; then, j[Π]
t is set according to policy condi-

tions. Usually, j[Π]
t is a proportion of j[V]

t , namely j[Π]
t = γt j[V]

t with 0 ≤ γt ≤ 1. If

j[Π]
t = j[V]

t (i.e., γt = 1) for all t, then j[B]
t = j[Π]

t = j[V]
t for all t and the solution is

referred to as the adjustment scheme with three identical rates. If j[Π]
t < j[V]

t (i.e.,

γt < 1), then j[Π]
t < j[B]

t ≤ j[V]
t . Finally, if j[Π]

t = 0 (i.e., γt = 0) for all t, we find
again the case of constant premiums (i.e., solution I). When γt > 0, usually the poli-

cyholder may apply for setting j[Π]
t = 0 from a given time t ′ onwards (so that γt > 0
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for t = 1,2, . . . , t ′ −1, while γt = 0 for t = t ′, t ′ +1, . . . ,s−1); this policy condition
is called stabilization of premiums.

In solution IV, the adjustment of the reserve results in a premium reduction; ac-
tually, (7.2.5) reduces to

Vt− j[V]
t = Prem′(t−,m)(− j[Π]

t ) (7.2.29)

The arrangement, which is not very common, can be of interest when the policy-
holder is not the beneficiary, e.g. in group insurance (in which the policyholder is
the employer and the beneficiaries are the employees or their estate); in this case,
the only way to let the policyholder participate directly to the profit of the insurer is
through a premium reduction. Some triggers are required to avoid that the premium
becomes too low.

As we have mentioned several times, the cost of the reserve adjustment is charged
to the insurer, and is covered through financial profits. To avoid major risks, it

is then important that the insurer plays a direct control on j[V]
t , i.e. that such a

rate is chosen depending on the investment yield gt gained by the insurer in year
(t −1, t). We recall that when calculating the premium and the reserve, some inter-
est (namely, those based on the technical interest rate i′) is computed in advance, as

all future flows are discounted with the rate i′. Then, the rate j[V]
t should depend on

the difference between the yield on investments in year (t − 1, t) and the technical
interest rate, i.e.

j[V]
t = F(gt − i′) (7.2.30)

where F(·) is a given function (some examples are examined in detail in Sect. 7.3).
We stress that only an appropriate choice of (7.2.30) avoids that the cost charged to
the insurer is higher than the financial profit actually gained.

On the other hand, the policyholder may have some specific expectations in re-
gard of the benefit adjustment. For example, the policyholder may be interested into
recovering the depreciation of the benefit amount due to inflation. If we denote by
st the observed inflation rate in year (t −1, t), the target of the policyholder is then

j[B]
t ≥ st (7.2.31)

Given the relation linking the rates j[B]
t , j[V]

t and j[Π]
t , to reach target (7.2.31),

while keeping j[Π]
t ≤ j[V]

t (as is reasonable, for commercial reasons), we need

1. j[V]
t ≥ st ;

2. possibly, j[Π]
t > 0 (but j[Π]

t ≤ j[V]
t ).

If the inflation rate is low, constraints (7.2.30) and (7.2.31) can be easily fulfilled
simultaneously, as it is likely that condition 1 above is realized. Conversely, if the
inflation rate is high, it can be difficult to meet (7.2.31), because in this case it is hard
to realize condition 1. We note that when the inflation rate is low, constraint (7.2.31)
loses importance. Indeed, in this case the policyholder’s expectation is addressed to
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the return on investment, which is expected to be as high as possible, and in any
case in line with the prevailing market rates.

Table 7.2.7 summarizes several arrangements which have been adopted in the
market, or which have been investigated by insurers; some of these arrangements
are no longer applied, or are not feasible in practice, as we comment below in more
detail. To simplify the presentation, in Table 7.2.7 we assume that the technical
interest rate is i′ = 0; the case of a positive technical interest rate, i.e. i′ > 0, is
discussed in Sect. 7.3. If i′ = 0, no interest is computed in advance, so that the
difference gt − i′ in (7.2.30) simply reduces to gt , i.e. the realized investment yield.

The notation j[B]
t = ϕ( j[V]

t , j[Π]
t ), which we use in Table 7.2.7, expresses that j[B]

t is

the weighted average of j[V]
t and j[Π]

t , as defined by (7.2.7); when it is clear, we write

explicitly the value of such an average. Finally, the notation j[Π]
t = ψ( j[V]

t , j[B]
t ) is

used to express that, once j[V]
t and j[B]

t have been chosen, j[Π]
t must be set so to fulfill

the balance condition (7.2.5).

Table 7.2.7 Particular solutions for the adjustment of benefits

Model j[V]
t j[Π]

t j[B]
t Remarks

1a st st st

1b h(st) h(st) h(st) 0 ≤ h(st) < st

1c h(st) φ(st) ϕ(h(st),φ(st)) 0 ≤ φ(st) < h(st) < st

2a ηt gt ηt gt ηt gt 0 < ηt < 1
2b ηt gt γt ηt gt ϕ(ηt gt ,γt ηt gt) 0 < ηt < 1, 0 ≤ γt ≤ 1

3a ηt gt ψ(ηt gt ,st) st 0 < ηt < 1
3b ηt gt ψ(ηt gt ,α st) α st 0 < ηt < 1, 0 < α < 1

4a ηt gt st ϕ(ηt gt ,st) 0 < ηt < 1
4b ηt gt min{ηt gt ,st} ϕ(ηt gt ,min{ηt gt ,st}) 0 < ηt < 1
4c ηt gt max{ηt gt ,st} ϕ(ηt gt ,max{ηt gt ,st}) 0 < ηt < 1

Models 1a–1c realize a linking to inflation; we refer to the relevant policy design
as inflation-linked policies. Model 1a, in particular, aims at recovering completely
the depreciation of the benefit amount. For what stated above, the insurer could be
willing to offer this arrangement if appropriate assets are available, i.e. inflation-
linked securities whose return with certainty is not smaller than the inflation rate
(as, in this case, the insurer would report gt = st). Inflation-linked securities may
be available, but usually just offering a partial indexation. For this reason, arrange-
ment 1a has not been introduced in the market. Conversely, models 1b and 1c have
been adopted. The function h(st) is first chosen, according to the indexation of the
available assets. For example,

h(st) =

⎧⎪⎨
⎪⎩

s′ if α st < s′

α st if s′ ≤ α st < s′′

s′′ if α st ≥ s′′
(7.2.32)
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where s′, s′′ and α are given values (clearly, 0 ≤ s′ < s′′, while 0 < α ≤ 1). In
model 1b, the same value is chosen for the rate of the adjustment of the reserve
and premiums, and then of the benefit. In model 1c, premiums are increased at a
lower rate than the reserve (so to reduce the direct cost to the policyholder), but
this results in a lower increase of the benefit, given that because of (7.2.7) we find

φ(st) < j[B]
t ≤ h(st).

Arrangements 2a and 2b are typical of the participating policies. The aim, in this
case, is to acknowledge to the policyholder a return on the reserve in line with the
investment yield realized by the insurer. The assets are selected by the insurer, and
they typically consist of bonds. The quantity ηt represents a participating propor-
tion: the yield ηt gt is assigned to the policyholder, while (1−ηt)gt represents the

financial profit of the insurer. In model 2a, the same value is set for j[V]
t and j[Π]

t ,

and then for j[B]
t . If the investment performance of the insurer is very good, this can

result in a strong premium increase. In model 2b, then, premiums are allowed to

increase at a lower rate than the reserve, clearly with j[Π]
t < j[B]

t ≤ j[V]
t . If γt = 0

for all t, we find the case of the participating policies with constant premiums; as
already mentioned, in some policy designs γt > 0 up to some time (chosen by the
policyholder), after which γt = 0 (stabilization of premiums).

Arrangements 3a and 3b are fitted simultaneously to constraint (7.2.30) and
(7.2.31): the reserve is increased depending on the realized investment yield, while
the benefit is indexed to inflation. The rate of adjustment of the premium is assessed
consistently, so to realize the actuarial balance (7.2.5). The resulting premium in-
crease may be too high; thus, in model 3b just a partial indexation of the benefit is

realized. We note that if α st < rt , then j[Π]
t < j[B]

t ≤ j[V]
t ; vice versa, if α st > rt ,

then j[Π]
t > j[B]

t ≥ j[V]
t

Similarly to arrangements 3a and 3b, arrangements 4a–4c represent mixed solu-
tions in respect of inflation-linked and participating policies. In particular, model 4a
assumes that the policyholder may afford an indexation of premiums (thanks to a
presumable revaluation of her normal income based on the inflation rate). The main
aim of model 4b is to prevent major increases of the premiums, while not disregard-
ing the need for an indexation of the benefit amount. In solution 4c, the aim is to get
the maximum possible increase of the benefit, taking as benchmarks the investment
yield paid by the insurer and the inflation rate.

Inflation-linked policies were designed during the Seventies, in a period of high
inflation. They have not gained importance in the market, in particular because of
the unavailability of appropriate securities in many markets. Since the Eighties, a
major role has been played by participating policies, to which we devote Sect. 7.3.

7.2.4 The yield to maturity for the policyholder

As we have stated previously, the purpose of the adjustment model examined so far
is to provide a return on the investment of the policyholder which is higher than the
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technical interest rate. This is why the cost of updating the reserve is paid by the
insurer. In this Section, we take the point of view of the policyholder and we discuss
how the yield received from a life insurance policy can be measured.

Before going into details, it is worth making some remarks. Products for which
it is reasonable to measure the yield received by the policyholder are those in which
there is an accumulation process, i.e. endowments, whole life assurances, or other
similar arrangements. The result of the accumulation is the benefit at maturity (for
endowments) or the surrender value (for endowments and whole life assurances).
In the following, for brevity we just refer to the benefit at maturity of an endow-
ment insurance. We also recall that the premium paid by the policyholder is not the
amount invested by the insurer on her behalf. As was discussed in Sect. 5.4.3, just a
part of the premium, namely the savings premium, is reserved for savings purposes;
however, the policyholder usually does not hold the information about the splitting
of the premium, and thus quite naturally compares the benefit received with the
expense-loaded premiums paid year by year.

Let us refer to a standard endowment, subject to adjustments as described in

Sect. 7.2.2. As noted in Sect. 7.2.1, what is updated at the rate j[Π]
t is the expense-

loaded premium, and not just the net premium (as would be required by the actuarial
balance (7.2.5)). The expense-loaded premium paid at time t is then calculated as
follows:

P[T]
t = P[T]

t−1 (1+ j[Π]
t ) (7.2.33)

with P[T]
0 = P[T] (where P[T] is the initial expense-loaded premium, assessed at issue

according to the selected technical basis and expense-loading parameters).
We define yield to maturity on the expense-loaded premiums the annual interest

rate i[T] satisfying the following equation

Sm =
m−1

∑
t=0

P[T]
t (1+ i[T])m−t (7.2.34)

Clearly, i[T] is the internal rate of return of the cash-flows paid and received by the
policyholder, having assumed that the policy stays in-force until maturity.

In place of the expense-loaded premiums, it could be interesting to consider other
quantities in (7.2.34), always referring to the payments by the policyholder. In par-

ticular, we can replace the expense-loaded premiums P[T]
t with the savings premi-

ums, P[S]
t , or with the net premiums, Pt . In some countries, a tax discount is applied

to the taxpayer who has underwritten a life insurance contract; the size of such a
discount usually depends on the amount of the premium paid. It could be interesting
to calculate the yield to maturity on the expense-loaded premiums net of the tax

discount, namely on P[T]
t (1− ε) (where ε is the proportion of the tax discount). We

denote by i[S], i[Π], i[TD] the yield to maturity obtained solving (7.2.34) after having
replaced the expense-loaded premiums respectively with the savings premiums, the
net premiums or the expense-loaded premiums net of the tax discount.
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Example 7.2.3. We refer to the standard endowment insurance considered in Exam-
ple 7.2.1. Take the expense-loading parameters of Example 4.5.1 (in Sect. 4.5.3);
the initial expense-loaded premium then is P[T] = 66.60. Just to provide an exam-
ple, we assume that the tax discount proportion is ε = 20%. Table 7.2.8 quotes the
yield to maturity for the arrangement examined in Table 7.2.1 of Example 7.2.1; to
facilitate the interpretation of the results, we quote the whole sequence of net premi-
ums, savings premiums, office premiums gross and net of the tax discount. In each
case, the premium sequence is compared to the benefit at maturity, which amounts
to 1288.19.

Table 7.2.8 Yield to maturity for an endowment insurance; j[V]
t = 3%, j[Π]

t = 0%, Sm = 1288.19

t Pt P[S]
t P[T]

t 0.80P[T]
t

0 59.54 56.42 66.60 53.28
1 59.54 56.29 66.60 53.28
2 59.54 56.17 66.60 53.28
3 59.54 56.08 66.60 53.28
4 59.54 56.00 66.60 53.28
5 59.54 55.96 66.60 53.28
6 59.54 55.96 66.60 53.28
7 59.54 56.01 66.60 53.28
8 59.54 56.12 66.60 53.28
9 59.54 56.32 66.60 53.28
10 59.54 56.63 66.60 53.28
11 59.54 57.07 66.60 53.28
12 59.54 57.67 66.60 53.28
13 59.54 58.48 66.60 53.28
14 59.54 59.54 66.60 53.28

yield to maturity i[Π] =4.454% i[S] =5.060% i[T] =3.115% i[TD] =5.763%

We note that whatever is the type of premium addressed, the yield to maturity
is higher than the technical interest rate (i′ = 0.02), thanks to the adjustment of
the reserve paid by the insurer. Trivially, the yield to maturity is higher the lower
is the premium amount considered. The difference between i[TD] and i[T] is due to
the tax discount. The difference between i[T] and i[Π] is due to the expense-loading;
the lower is the expense-loading applied by the insurer, the lower is this difference.
Finally, the difference between i[Π] and i[S] is due to the cost of the sum at risk, i.e.
to risk premiums. We recall that the risk premium is used for mutuality purposes,
and hence does not contribute to the accumulation of the benefit at maturity.

Tables 7.2.9 and 7.2.10 refer, respectively, to the arrangements in Tables 7.2.3
and 7.2.4. In the former case, the benefit at maturity amounts to 1557.97, in the
latter to 1414.79. Within each table, comparisons similar to those commented for
Table 7.2.8 can be performed. It is more interesting to compare the yields to maturity
in the different arrangements. We note that the size of the yield to maturity is more
or less the same when the same type of premium is considered under the different
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arrangements; typically, the higher is the premium paid by the policyholder, the
slightly lower is the yield to maturity. When referring to savings premiums, the
yield to maturity is not affected by the specific arrangement; in all the three tables,
actually we find i[S] = 5.060%. This can be justified noting that in all the three
arrangements, the yield paid year by year by the insurer is 2% through the technical
interest rate and 3% through the adjustment of the reserve. In Sect. 7.3 we will
explain how 5.060% comes out (here we just note that 0.05060 = 1.02×1.03−1);
see, in particular, Example 7.3.2.

Table 7.2.9 Yield to maturity for an endowment insurance; j[V]
t = 3%, j[Π]

t = 3%, Sm = 1557.97

t Pt P[S]
t P[T]

t 0.80P[T]
t

0 59.54 56.42 66.60 53.28
1 61.33 57.98 68.60 54.88
2 63.16 59.60 70.66 56.53
3 65.06 61.29 72.78 58.22
4 67.01 63.05 74.96 59.97
5 69.02 64.91 77.21 61.77
6 71.09 66.86 79.53 63.62
7 73.23 68.95 81.91 65.53
8 75.42 71.18 84.37 67.50
9 77.68 73.60 86.90 69.52
10 80.02 76.23 89.51 71.61
11 82.42 79.12 92.19 73.75
12 84.89 82.34 94.96 75.97
13 87.43 85.96 97.81 78.25
14 90.06 90.06 100.74 80.59

yield to maturity i[Π] =4.443% i[S] =5.060% i[T] =3.012% i[TD] =5.835%

�

From a financial point of view, the most appropriate measure for the yield to the
policyholder is i[S]. As we have noted in Example 7.2.3, only the savings premium
contributes to the accumulation of the benefit at maturity; the risk premium and the
expense loading are used to cover annual costs (namely, mutuality and expenses).
As it has emerged in Example 7.2.3, i[S] corresponds to the return totally assigned
to the contract by the insurer. However, unless the insurer provides the policyholder
with detailed information about the costs of the contract, the policyholder can just
refer to the expense-loaded premium, possibly net of the tax discount.
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Table 7.2.10 Yield to maturity for an endowment insurance; j[V]
t = 3%, j[Π]

t = 1.5%, Sm = 1414.79

t Pt P[S]
t P[T]

t 0.80P[T]
t

0 59.54 56.42 66.60 53.28
1 60.43 57.13 67.60 54.08
2 61.34 57.87 68.62 54.89
3 62.26 58.64 69.64 55.72
4 63.19 59.45 70.69 56.55
5 64.14 60.30 71.75 57.40
6 65.10 61.21 72.83 58.26
7 66.08 62.19 73.92 59.13
8 67.07 63.26 75.03 60.02
9 68.08 64.45 76.15 60.92
10 69.10 65.78 77.29 61.84
11 70.13 67.28 78.45 62.76
12 71.19 69.01 79.63 63.70
13 72.25 71.00 80.83 64.66
14 73.34 73.34 82.04 65.63

yield to maturity i[Π] =4.449% i[S] =5.060% i[T] =3.065% i[TD] =5.798%

7.3 Participating policies

Participating policies are designed along the model examined in Sect. 7.2. As al-
ready noted in Sect. 7.2.3, the feature of the participating design stands in the way

the rate of update of the reserve, j[V]
t , is selected. Thus, in this Section we discuss

about the choice of j[V]
t . For participating policies, the rate j[V]

t is usually denoted as
rt , the so-called revaluation rate; in the following, we adopt this notation. We recall
that premiums may either be updated, typically in proportion to rt (see Table 7.2.7),
or remain unchanged. Nowadays, the latter solution (namely, constant premiums) is
the most common choice.

Participating policies usually provide some (implicit) guarantee for the return
on the investment of the policyholder; consistently, the investment realized by the
insurer is not too risky. Assets typically consist of bonds. The investment fund is
internal, i.e. directly managed by the insurer; hence, the yield gained in a year not
only reflects market conditions, but also the investment ability of the insurer. In
some countries, the realized yield must be certified by an independent auditor; in
this case, the assets backing the reserve must be objectively identifiable in respect
of the overall assets of the insurer. A specific reporting is performed, and the fund
is referred to as a special (managed) fund or segregated fund.



336 7 Finance in life insurance: linking benefits to the investment performance

7.3.1 Participating policies with a guaranteed annual return

We let gt denote the investment yield gained in year (t − 1, t) by the insurer on
the assets backing the reserve of the participating business. When a certification is
required, the rate gt is the latest certified yield.

In the traditional participating arrangements, policy conditions define the total
return on the investment of the policyholder in year (t −1, t) as follows

max{i′,ηt gt} (7.3.1)

where ηt is a given proportion, the so-called participating proportion, and i′ (as
usual) the technical interest rate. Note that in (7.3.1) the technical interest rate is
guaranteed in each year (given that (7.3.1) must be fulfilled for any t). The meaning
of the participating proportion was already illustrated in Sect. 7.2.3. The quantity ηt

can be chosen year by year by the insurer, not below a minimum value η ′ (stated
in policy conditions, and often mandated by the supervisor) and below 1 (hence:
0 ≤ η ′ ≤ ηt < 1; for example, η ′ = 0.75). In some arrangements, a waiting period
is given (of 1 or 2 years), during which ηt = 0; this is justified by the fact that in the
early years of the contract the credit of the insurer in respect of initial expenses is
still too high (see Sect. 5.6). In general, an appropriate choice of ηt could allow to
realize some smoothing of the total yield paid on the investment of the policyholder
(for example, choosing a lower value for ηt than usual when the interest rate gt is
high, and vice versa a higher value ηt when gt is low). However, in some markets it
is usual to set ηt more or less constant in time. The fact that the supervisor requires
ηt < 1 expresses that some profit must be retained by the insurer to face future
adverse fluctuations.

Remark Of course, it could be possible, for the insurer, to retain profit also setting ηt = 1. Indeed,
the application of appropriate asset management fees could replace the profit otherwise gained
setting ηt < 1, and this is an approach that some insurers prefer. However, this is not a natural
choice within the participating business, as participating policies embed financial guarantees, as
we discuss in detail below. A financial guarantee implies some risk for the insurer, for which it
must be rewarded, either charging a fee expressing the cost of the guarantee (but this is not usual
for participating policies, as we comment below) or retaining profit. Vice versa, if no financial risk
is charged to the insurer, than the insurer just needs to be paid for managing the policyholder’s
assets, and this is appropriately obtained through asset management fees.

Turning to the calculation of rt , we recall that the total annual return on the in-
vestment of the policyholder must fulfil definition (7.3.1). First, we need to state
what is the amount invested for the policyholder. Refer to a policy for which premi-
ums are being paid. At the beginning of the year, i.e. at time t − 1, after premium
payment, the investment of the policyholder consists of the reserve Vt−1 and the

savings premium P[S]
t−1 (we recall that the risk premium and the expense loading are

used to fund annual costs, and hence do not contribute to the investment of the poli-
cyholder). At the end of the year, i.e. at time t, the value of the investment belonging
to an in-force policy is Vt . According to (7.3.1), it must turn out
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Vt = (Vt−1 +P[S]
t−1)(1+max{i′,ηt gt}) (7.3.2)

As described in Sect. 7.2.1, the rate rt is used to update the reserve Vt− , so to
fulfil (7.3.2). According to (5.4.13), the reserve Vt− can be expressed as follows

Vt− = (Vt−1 +P[S]
t−1)(1+ i′) (7.3.3)

We note that (7.3.3) holds also when a premium is not being paid, as the savings
premium is defined also in this case (see Sect. 5.4.3).

The link between Vt and Vt− is described by (7.2.8), with j[V]
t = rt . Replacing

(7.3.3) into (7.2.8), it turns out

Vt = (Vt−1 +P[S]
t−1)(1+ i′)(1+ rt) (7.3.4)

Equating (7.3.2) to (7.3.4), we finally find

(1+ i′)(1+ rt) = 1+max{i′,ηt gt} (7.3.5)

and hence

rt = max

{
ηt gt − i′

1+ i′
,0

}
(7.3.6)

The impossibility for rt to fall below 0 is a consequence of the fact that the
technical interest rate i′ is guaranteed annually; actually, the ratio ηt gt−i′

1+i′ can become
negative only if ηt gt < i′, namely if the realized investment yield is lower than the
technical interest rate. Conversely, the investment yield above i′, i.e. the difference
ηt gt − i′, must be divided by 1+ i′ because interest based on the technical rate i′ are
computed in advance, as it is made explicit by (7.3.3).

Expression (7.3.6) corresponds to the pay-off of a financial option; indeed, the
technical interest rate i′ is the minimum annual return guaranteed on the investment
of the policyholder.

Remark The financial option whose pay-off is described by (7.3.6) is considered to be an embed-
ded financial option. While the insurer’s liability is affected by such an option, the relevant cost is
not explicitly charged to the policyholder. The reason can be found in the origins of participating
policies. As noted in Sect. 7.1, participating policies were first designed during the Eighties of the
last century. At that time, the spread between market rates and the technical rate was very high. The
model described in Sect. 7.2 suggested how to pay to policyholders a return on investment in line
with the yield realized by the insurer, while keeping the technical interest rate at the usual low lev-
els. The adjustment rate in (7.3.6) represented a nice commercial solution; the risk originated by it
was assumed to be negligible, given that the relevant financial option was deeply out-of-the-money.
Indeed, a charge for the guarantee was not considered to be necessary. Conversely, nowadays the
spread ηt gt − i′ has reduced a lot, and the cost of the guarantee is no longer negligible. New defini-
tions of rt have been introduced, as we describe in Sect. 7.3.2. We will come back to the valuation
of the guarantee in Sect. 7.5.

Since (7.3.1) guarantees in each year a return not lower than i′, the yield realized
above i′ in a year, namely ηt gt − i′, is locked-in, and this is shown by (7.3.6) (the
option embedded in a traditional participating policy is then like a cliquet option).
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Therefore, when assessing the rate gt , the insurer must be sure that the return ob-
tained in a year cannot be lost in subsequent years; in other words, the rate gt must
be permanently gained, i.e. it must have been cashed. A return based on the current
value of assets is not appropriate, as the market value of assets is subject to depre-
ciation (if market conditions change unfavorably). In principle, assets backing the
reserve of a participating business are reported at historical cost (but clearly, several
accounting rules apply, which we do not discuss).

Example 7.3.1. In order to show the effect of locking-in the return realized above
an annual guaranteed level, we compare the following two arrangements: a partici-
pating policy without any guarantee for the annual return and a participating policy
with guarantee (7.3.1). We stress that the former arrangement is purely notional, as
no rational policyholder would accept it, and is quoted here only for comparison
with the latter (which describes a real arrangement). If there is no guarantee, the
annual return is simply ηt gt . Assume that in both cases the technical interest rate
is i′ = 0.02. We stress that only under (7.3.1) the rate i′ is the guaranteed annual
return; otherwise, it is simply a computation rate (i.e. a rate used to calculate premi-
ums and reserves; see Sect. 7.3.2 for further remarks and examples in this regard).
Table 7.3.1 quotes a possible path for the annual return (with no guarantee) ηt gt

and the corresponding annual return with guarantee (7.3.1), i.e. max{ηt gt , i′}. The

rates i[ave]
t and i[ave,guar]

t are defined so that the following equations are, respectively,
fulfilled:

(1+ i[ave]
t )t =

t

∏
s=1

(1+ηs gs) (7.3.7)

(1+ i[ave,guar]
t )t =

t

∏
s=1

(1+max{ηs gs, i
′}) (7.3.8)

Thus, the quantities i[ave,guar]
t and i[ave]

t are the average interest rates obtained in the
time-interval (0, t), either providing or not an annual guarantee.

The comparison between ηt gt and max{ηt gt , i′} is straightforward. What is more

interesting is to compare i[ave]
t to i[ave,guar]

t . First note that i[ave]
t is at any time higher

than 2%; so, if the target of the policyholder is to get an annual return which is on
average at least 2%, for the particular path of ηt gt quoted in Table 7.3.1, there is no
need of a guarantee. However, (7.3.1) requires that in each year the return is at least

2%, so that after having observed ηt gt < 2%, we find i[ave,guar]
t > i[ave]. Note that

starting from the year in which ηt gt first falls below 2%, it turns out i[ave,guar]
s > i[ave]

s

in all the future years s, even if ηs gs ≥ 2%; this is the effect of locking-in the extra-
yield realized before it first occurs ηt gt < 2%.
�

In Sect. 7.2.4, we have stated that i[S] is an appropriate measure of the yield to
maturity to the policyholder. In Example 7.2.3, we have noted in particular that,
given the path of the return paid year by year by the insurer, the rate i[S] remains
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Table 7.3.1 Annual return and annual average return, with and without guarantee (7.3.1)

t ηt gt i[ave]
t max{ηt gt , i′} i[ave,guar]

t

1 5.000% 5.000% 5.000% 5.000%
2 4.500% 4.750% 4.500% 4.750%
3 4.000% 4.499% 4.000% 4.499%
4 3.000% 4.122% 3.000% 4.122%
5 2.000% 3.694% 2.000% 3.694%
6 1.500% 3.325% 2.000% 3.410%
7 2.500% 3.207% 2.500% 3.280%
8 2.000% 3.055% 2.000% 3.119%
9 3.000% 3.049% 3.000% 3.106%

10 1.000% 2.842% 2.000% 2.994%
11 2.000% 2.766% 2.000% 2.904%
12 2.500% 2.743% 2.500% 2.870%
13 1.500% 2.647% 2.000% 2.803%
14 5.000% 2.814% 5.000% 2.958%
15 5.000% 2.958% 5.000% 3.093%

the same whatever is the choice concerning the update of the premium. We can

now comment more in detail. First, we note that i[S] = i[ave,guar]
m (or i[S] = i[ave]

m , if
no guarantee applies; we have already noticed that this is not a realistic situation).
Thanks to (7.3.2), solving

Sm =
m−1

∑
t=0

P[S]
t (1+ i[S])m−t (7.3.9)

or solving (7.3.8) for t = m is the same. Indeed, (7.3.1) expresses the annual return
on the investment of the policyholder, and such an investment is formed through the
savings premium. This justifies the findings of Example 7.2.3.

Example 7.3.2. In Example 7.2.3, we assumed i′ = 0.02 and j[V]
t = 0.03 in each year

(i.e., rt = 0.03 with the notation adopted in this Section). We are now able to say that
the annual return paid in each year by the insurer is: 1.02×1.03−1 = 0.05060. Such
a return is obtained on the investment of the policyholder, i.e. on the accumulation of
savings premium. From this, it turns out i[S] = 0.05060, whatever is the arrangement
for the update of the annual premiums.
�

An alternative definition for the revaluation rate rt is the following:

rt = max

{
ηt gt − i′

1+ i′
,rmin

}
(7.3.10)

where rmin is a minimum guaranteed annual revaluation rate (in practice, it is usu-
ally referred to as the guaranteed rate; we prefer to avoid this terminology, as this can
create some misunderstanding in respect of i′, which is also guaranteed). If we take
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rmin = 0, we find (7.3.6) as a particular case. Commonly, (7.3.10) is adopted with a
technical interest rate i′ lower than what is otherwise usual; possibly, i′ = 0. Then,
rmin is set so that the usual guaranteed rate is provided; for example, if the insurer
is willing to guarantee an annual return equal to 2%, it can either select i′ = 0.02
and rmin = 0, or i′ = 0 and rmin = 0.02, or i′ = 0.01 and rmin = 0.01, and so on. The
effect of reducing i′ in respect of the usual levels is to avoid computing in advance
(some of) the interest which is guaranteed. For a policy reaching maturity, either
computing in advance or not the guaranteed interest is to some extent the same (see
Example 7.3.3); conversely, for a policy getting closed before maturity, the benefit
may turn out to be lower if interest has not been computed in advance. We note that
the type of financial option embedded in (7.3.10) is the same as in (7.3.6), clearly
with different parameters; thus, similarly to (7.3.6), (7.3.10) implies the locking-in
of extra-yields on investment.

Example 7.3.3. Refer to a participating standard endowment insurance, issued at age
x = 50, with maturity m = 15 and net premium P = 59.54. We adopt the technical
basis TB1 = (0,LT1); thus, i′ = 0. We set the minimum guaranteed revaluation rate
rmin = 0.02. Solving (4.4.18), we find C = 858.75. Table 7.3.2 quotes the devel-
opment in time of the benefits, if in each year the reserve is adjusted at the rate
rt = 0.05060, while the premium remains unchanged.

Table 7.3.2 Participating endowment insurance; i′ = 0, rmin = 0.02, j[Π]
t = 0

t rt j[Π]
t j[B]

t Pt Ct St Vt− Vt

0 59.54 858.75 0.00
1 5.060% 0% 0.335% 59.54 858.75 861.62 56.83 59.70
2 5.060% 0% 0.684% 59.54 861.62 867.52 116.45 122.34
3 5.060% 0% 1.044% 59.54 867.52 876.58 179.02 188.08
4 5.060% 0% 1.413% 59.54 876.58 888.96 244.70 257.08
5 5.060% 0% 1.785% 59.54 888.96 904.83 313.68 329.55
6 5.060% 0% 2.159% 59.54 904.83 924.37 386.15 405.69
7 5.060% 0% 2.531% 59.54 924.37 947.76 462.32 485.71
8 5.060% 0% 2.896% 59.54 947.76 975.21 542.43 569.87
9 5.060% 0% 3.252% 59.54 975.21 1 006.92 626.72 658.43

10 5.060% 0% 3.595% 59.54 1 006.92 1 043.12 715.47 751.67
11 5.060% 0% 3.924% 59.54 1 043.12 1 084.06 808.98 849.92
12 5.060% 0% 4.236% 59.54 1 084.06 1 129.98 907.60 953.52
13 5.060% 0% 4.530% 59.54 1 129.98 1 181.17 1 011.68 1 062.87
14 5.060% 0% 4.805% 59.54 1 181.17 1 237.93 1 121.63 1 178.39
15 5.060% 0% 5.060% 1 237.93 1 300.57 1 237.93 1 300.57

The example in Table 7.3.2 can be compared with the example in Table 7.2.1; the
two examples differ for the technical interest rate, which is i′ = 0.02 in Table 7.2.1
(see data in Example 7.2.1). Given the same premium amount, when i′ = 0 (Ta-
ble 7.3.2) the initial amount of the benefit is lower. Further, rt is higher and, given
that the observed yield is always higher than the minimum guaranteed level, we
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simply find rt = ηt gt . As a result, j[B]
t is higher in Table 7.3.2 than in Table 7.2.1.

The benefit at maturity is almost the same in the two cases, as well as the reserve
at any time; however, the death benefit in Table 7.3.2 is quite always lower than in
Table 7.2.1. Thus, in case of early death, if some interest has not been computed in
advance, it is likely that the benefit is lower. Table 7.3.3 summarizes the comparison
between the arrangements in Tables 7.2.1 and 7.3.2.

Table 7.3.3 Participating endowment insurance with different technical interest rates

arrangement in Table 7.2.1 arrangement in Table 7.3.2

initial premium, P 59.54 59.54

technical interest rate, i′ 0.02 0

minimum guaranteed
revaluation rate, rmin 0 0.02

initial benefit, C1 = S0 1000 858.75

benefit at maturity, Sm 1288.19 1300.57

revaluation rate rt = max{ ηt gt−0.02
1.02 ,0} rt = max{ηt gt ,0.02}

annual total return
(1+ i′)(1+ rt)−1

rt = 5.06%= 1.02×1.03−1 = 5.06%

yield to maturity, i[S] 4.454% 4.568%

In Table 7.3.4 a further comparison is performed between arrangements consid-
ered in Tables 7.2.1 and 7.3.2, but with an alternative path for the observed invest-
ment yield (we consider the path of Example 7.3.1). Comments are straightforward.
�

7.3.2 Participating policies with a guaranteed average return

As we have noted in Sect. 7.3.1, the insurer does not apply a fee for the financial
options embedded in (7.3.6) and (7.3.10); indeed, the pricing of participating life
insurance covers is the same as for covers with fixed-benefits. The technical justifi-
cation stands in the fact that the model described in Sect. 7.2, for the adjustment of
benefits, guarantees that the contract is always on actuarial balance; the economic
justification, as we have mentioned in Sect. 7.3.1, stands in the fact that for many
years the value of the financial options embedded in (7.3.6) and (7.3.10) has been
negligible.

If we wonder about what benefits are affected by the guarantee, we first note that,

because of (7.3.6) or (7.3.10), it is guaranteed that j[B]
t ≥ 0; thus, as it is natural, the

benefit at maturity and the death benefit are affected by the guarantee. Also the
reserve is affected by the guarantee, given that under (7.3.6) we have rt ≥ 0, while
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Table 7.3.4 Participating endowment insurance with different technical interest rates

t ηt gt
rt = max{ ηt gt−0.02

1.02 ,0} rt = max{ηt gt ,0.02}
rt j[B]

t Ct St rt j[B]
t Ct St

0 1 000.00 858.75
1 5.000% 2.941% 0.221% 1 000.00 1 002.21 5.000% 0.331% 858.75 861.59
2 4.500% 2.451% 0.369% 1 002.21 1 005.91 4.500% 0.608% 861.59 866.83
3 4.000% 1.961% 0.442% 1 005.91 1 010.35 4.000% 0.823% 866.83 873.96
4 3.000% 0.980% 0.293% 1 010.35 1 013.31 3.000% 0.831% 873.96 881.22
5 2.000% 0.000% 0.000% 1 013.31 1 013.31 2.000% 0.694% 881.22 887.34
6 1.500% 0.000% 0.000% 1 013.31 1 013.31 2.000% 0.831% 887.34 894.72
7 2.500% 0.490% 0.247% 1 013.31 1 015.81 2.500% 1.209% 894.72 905.53
8 2.000% 0.000% 0.000% 1 015.81 1 015.81 2.000% 1.105% 905.53 915.54
9 3.000% 0.980% 0.621% 1 015.81 1 022.11 3.000% 1.858% 915.54 932.55

10 1.000% 0.000% 0.000% 1 022.11 1 022.11 2.000% 1.375% 932.55 945.37
11 2.000% 0.000% 0.000% 1 022.11 1 022.11 2.000% 1.505% 945.37 959.60
12 2.500% 0.490% 0.402% 1 022.11 1 026.23 2.500% 2.040% 959.60 979.17
13 1.500% 0.000% 0.000% 1 026.23 1 026.23 2.000% 1.758% 979.17 996.39
14 5.000% 2.941% 2.767% 1 026.23 1 054.62 5.000% 4.701% 996.39 1 043.23
15 5.000% 2.941% 2.941% 1 054.62 1 085.64 5.000% 5.000% 1 043.23 1 095.40

under (7.3.10) we have rt ≥ rmin. We recall that the surrender value, if any, is a
part of the reserve (see Sect. 5.7); hence, also the surrender value is affected by the
guarantee.

Considering that, because of the design, the financial guarantees in participating
policies are embedded, which in particular means that no fee is applied, in recent
times insurers have introduced new rules for the calculation of the revaluation rate rt ,
aiming at reducing the cost of the guarantee. In particular, what has been weakened
is the locking-in of realized extra-yields. In the following, we examine these modern

designs of participating policies, assuming that j[Π]
t = 0, as is common nowadays.

With reference to a participating policy, let us take the perspective of the accu-
mulation of savings premium; in other words, we look only at the accumulation of
the investment of the policyholder. For simplicity, we understand reference to an en-
dowment policy (but what we illustrate can be also referred to other products, such
as whole life assurances or life annuities).

Just for comparison, we first address a traditional policy with fixed-benefits. Such
a product guarantees the investment yield i′.

Remark We stress that in this case i′ is the return obtained by the policyholder on her investment,
and not a minimum guaranteed rate as in participating policies. The guarantee stands in the fact
that the yield paid by the insurer cannot be lower than i′, but it will not be higher than i′.

The development in time of the investment of the policyholder can be described
as follows (see Sect. 5.4.3)

Vt = (Vt−1 +P[S]
t−1)(1+ i′) (7.3.11)
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and then

Vt =
t−1

∑
s=0

P[S]
s (1+ i′)t−s (7.3.12)

We denote as
f (s, t) = (1+ i′)t−s (7.3.13)

the accumulation factor applied to savings premiums.
We now refer to a participating policy with revaluation rate rt as in (7.3.6). For

making easier the comparison among different cases, in the following we denote

such a revaluation rate as r[1]
t . The development in time of the investment of the

policyholder can be described as follows (see (7.3.2) and (7.3.4))

Vt = (Vt−1 +P[S]
t )(1+ i′)

(
1+max

{
ηt gt−i′

1+i′ ,0
})

= (Vt−1 +P[S]
t )(1+max{ηt gt , i′})

(7.3.14)

Thus we can define the accumulation factor

f [1](t −1, t) = (1+max{ηt gt , i
′}) (7.3.15)

for year (t −1, t) and, more in general for the time-interval (s, t)

f [1](s, t) =
t

∏
h=s+1

(1+max{ηh gh, i
′}) (7.3.16)

It turns out
f [1](s, t) ≥ f (s, t) (7.3.17)

due to the locking-in effect.
If the revaluation rate rt is defined as in (7.3.10), after examining the development

in time of the investment of the policyholder, we find that the accumulation factor is

f [2](t −1, t) = (1+ i′)
(

1+max
{

ηt gt−i′
1+i′ ,rmin

})
= max{(1+ i′)(1+ rmin),(1+ηt gt)}

(7.3.18)

and more in general

f [2](s, t) =
t

∏
h=s+1

max{(1+ i′)(1+ rmin),(1+ηh gh)} (7.3.19)

Clearly, it turns out
f [2](s, t) ≥ f (s, t) (7.3.20)

due to the locking-in effect. Further, parameters i′ and rmin in (7.3.19) are commonly
chosen so that

f [2](s, t) = f [1](s, t) (7.3.21)
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for any time-interval (s, t). In the following, for comparison we refer to the revalua-

tion rate defined by (7.3.10) as to the rate r[2]
t .

Consider now the revaluation rate r[3]
t defined as follows

r[3]
t =

ηt gt − i′

1+ i′
(7.3.22)

Depending on the the difference ηt gt − i′, the rate r[3]
t can take negative values; thus,

no guarantee is embedded. The accumulation factor based on r[3]
t can be defined as

follows

f [3](s, t) =
t

∏
h=s+1

(1+ηh gh) (7.3.23)

as one can easily check writing the equations expressing the development in time of
the investment of the policyholder. Under (7.3.23), we have

f [3](s, t) � f (s, t) (7.3.24)

given that no guarantee is applied. Further

f [3](s, t) ≤ f [1](s, t) (7.3.25)

f [3](s, t) ≤ f [2](s, t) (7.3.26)

We note that the accumulation factor f [3](s, t) was considered in Example 7.3.1,
for comparison with f [1](s, t) (even if this notation was not yet introduced); we
mentioned there that solution (7.3.23) is unworkable, as no rational policyholder
would accept to receive no guarantee under a participating policy. However, the
only way to avoid to lock-in extra-yields on investment is to let the revaluation rate
rt become negative, if necessary. Indeed, if rt < 0, the reserve is reduced, so to offset
(at least partially) the positive adjustments applied in previous years.

If the revaluation rate rt is allowed to take negative values, as in (7.3.22), we

may experience j[B]
t < 0 (we recall that we are assuming j[Π]

t = 0). Hence, the death
and the benefit at maturity are no longer guaranteed; as already noted, this is not
acceptable. If (7.3.22) is adopted, we can introduce an explicit guarantee on the
death benefit, for example defining the death benefit at time t as follows:

Ct = C1 ×max

{
t−1

∏
s=1

(1+ j[B]
s ),(1+ j[B,guar])t−1

}
(7.3.27)

where: C1 is the initial death benefit (i.e., the amount referred to for the calculation of
premiums); ∏t−1

s=1(1+ j[B]
s ) is the revaluation obtained in the time-interval (1, t −1)

based on the observed investment yields; j[B,guar] is a minimum guaranteed revalu-
ation rate of the death benefit. Note that, to avoid to lock-in past revaluations, the
rate j[B,guar] is guaranteed just to the time of payment of the death benefit, i.e. it
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expresses the annual average minimum revaluation rate of the death benefit which
is guaranteed.

A similar guarantee can be introduced for the benefit at maturity. Given that the
benefit at maturity is the result of the accumulation of savings premiums, it is more
natural to express the guarantee in terms of accumulation factor. For example, the
following definition could be adopted

f [4](s,m) = max

{
m

∏
h=s+1

(1+ηh gh),(1+ i′)m−s

}
(7.3.28)

where the return guaranteed to maturity is i′; the factor f [4](s,m) is meant here to be
applied just for the time-intervals (s,m), s = 0,1, . . . ,m−1. Should we be interested
in assessing the value of the investment at time t, t < m, for example because we
need to define the surrender value, reference should be made to the accumulation
factor f [3](s, t). Note that

f [4](s,m) ≥ (1+ i′)m−s (7.3.29)

so that, with reference to the benefit at maturity, each savings premium will be ac-
cumulated at an annual rate that on average is not lower than i′; indeed, i′ in (7.3.28)
represents the annual average minimum return guaranteed on the investment of the
policyholder. Also in this case, past extra-yields are not locked-in. Other solutions
are clearly possible; in particular, insurers have designed solutions which do not
avoid to lock-in extra-yields, but the locking-in does not occur in each year. In par-

ticular, the rate r[3]
t has been adopted, but requiring that every k years (since time 0)

the average return on the investment of the policyholder must be at least i′. In this
case, the accumulation factor could be defined as follows

f [5](s, t) = f [5](s,z)×
{

∏t
h=z+1(1+ηh gh) if z < t < z+ k

max
{

∏k
h=z+1(1+ηh gh),(1+ i′)k

}
if t = z+ k

(7.3.30)
with z = 0,k,2k, . . . and s ≤ z. Solution (7.3.30) implies a partial lock-in of extra-
yields on investment. The period k is commonly set to 3 or 5 years; if k = m, we find
(7.3.28) as a particular case, i.e. the yield would be guaranteed to maturity. We note
that under (7.3.30) at some policy anniversaries, namely at time k,2k, . . . , the reserve
cannot reduce (indeed, at time k,2k, . . . the revaluation rate cannot be negative);
as a consequence, the surrender value at such policy anniversaries receives some
guarantee.

Example 7.3.4. Table 7.3.5 lists the accumulation factors experienced in face of a
given path of the yield on investment ηt gt . The several definitions introduced above
for the accumulation factor have been considered. For the sake of brevity, only the
time-interval (0, t) has been addressed. The path for ηt gt is the same of Exam-
ple 7.3.1 and Table 7.3.4.
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Table 7.3.5 Alternative accumulation factors for participating policies

t ηt gt

f (0, t) f [1](0, t) f [2](0, t) f [3](0, t) f [4](0, t) f [5](0, t)

i′ = 0.02 i′ = 0.02
i′ = 0

i′ = 0.02
i′ = 0.02

rmin = 0.02 k = 3

1 5.000% 1.02000 1.05000 1.05000 1.05000 1.05000 1.05000
2 4.500% 1.04040 1.09725 1.09725 1.09725 1.09725 1.09725
3 4.000% 1.06121 1.14114 1.14114 1.14114 1.14114 1.14114
4 3.000% 1.08243 1.17537 1.17537 1.17537 1.17537 1.17537
5 2.000% 1.10408 1.19888 1.19888 1.19888 1.19888 1.19888
6 1.500% 1.12616 1.22286 1.22286 1.21686 1.21686 1.21686
7 2.500% 1.14869 1.25343 1.25343 1.24729 1.24729 1.24729
8 2.000% 1.17166 1.27850 1.27850 1.27223 1.27223 1.27223
9 3.000% 1.19509 1.31685 1.31685 1.31040 1.31040 1.31040

10 1.000% 1.21899 1.34319 1.34319 1.32350 1.32350 1.32350
11 2.000% 1.24337 1.37006 1.37006 1.34997 1.34997 1.34997
12 2.500% 1.26824 1.40431 1.40431 1.38372 1.38372 1.39061
13 1.500% 1.29361 1.43239 1.43239 1.40448 1.40448 1.41147
14 5.000% 1.31948 1.50401 1.50401 1.47470 1.47470 1.48204
15 5.000% 1.34587 1.57921 1.57921 1.54844 1.54844 1.55614

The annual yield experienced on average starting from time 0 is at any time
higher than 2% (see also Table 7.3.1); thus we have f (0, t) ≤ f [j](0, t), for j =
1,2, . . . ,5. For the same reason, f [4](0,m) = f [3](0,m), i.e. the guarantee in (7.3.28)
is not active at maturity. Due to the parameters, it always turns out f [1](0, t) =
f [2](0, t). Due to the lock-in, we find f [1](0, t) ≥ f [3](0, t), given that f [3](0, t)
is simply based on the experienced yield (with no guarantee). Finally, we note
that f [5](0, t) > f [3](0, t) from time t = 12, where a partial lock-in occurs (given
that in the latest 3-years prior to time 12 the observed yield is on average lower
than 2%). Due to the fact that the lock-in in (7.3.30) is just partial, it turns out
f [5](0, t) ≤ f [1](0, t).
�

7.4 Unit-linked policies

The main feature of unit-linked policies is that the financial risk is borne by the pol-
icyholder. The underlying insurance cover is usually an endowment; the premium is
invested into a reference fund, selected by the policyholder out of a basket designed
by the insurer. Commonly, the lines of investment which are made available by the
insurer implies different risk-return profiles; thus, the policyholder can opt for more
conservative or more dynamic asset combinations. The line of investment selected
by the policyholder may be changed later on, possibly against the payment of a fee
(the so-called switching fee). If a switching option has been underwritten in policy
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conditions, the policyholder has the opportunity to change the investment line at
some dates at no cost.

The asset management of unit-linked policies plays a primary role in this busi-
ness; the discussion of the several issues involved, however, is outside the scope of
this book. In the following we address only the actuarial issues which are involved
in the management of unit-linked policies.

7.4.1 Definition of unit-linked benefits

The fund accumulated with premiums is called policy fund or policy account. Ben-
efits are defined in terms of the policy fund available at the time of payment. More
precisely:

• the survival benefit at maturity, the so-called maturity benefit is the current value
at maturity of the policy fund;

• the death benefit is the current value of the policy fund at the time of death, to
which a sum at risk is added, which is defined so that it is positive (or at least
non-negative);

• the surrender value is the current value of the policy fund at the time of surrender,
possibly net of a (small) surrender fee.

Given that benefits depend on the current value of the policy fund, a risk emerges for
the policyholder, as such a value is unknown before payment. Guarantees may be
provided; the sum at risk, for example, can be defined so that there is some embed-
ded guarantee on the death benefit. However, it is more usual to define guarantees
explicitly; a fee is then applied to meet the relevant cost.

Unit-linked policies are given this name because the reference fund is split into
a notional number of units. Benefits could then be though of as the current value
of the number of units which have been credited to the policy; such a number can
be assessed adopting the actuarial model used for fixed benefits, as we describe in
Sect. 7.4.2. What remains unknown before payment is the current value of a unit.
In this perspective, the benefit can be considered to be expressed in account units
other than the usual currency, whence the term unit-linked. However, as we will see
in Sect.7.4.2, the number of units which define the benefit is usually known just at
the beginning of the year of payment, and not earlier.

As account units, in principle reference can be made to any quantity whose value
is likely to increase in time, such as gold, some foreign currency, real estate, secu-
rities, and so on. In practice, there is an Asset-Liability constraint: the insurer must
be able to buy or replicate the reference units, to meet its liability without taking
a (too strong) basis risk. Account units which have been adopted by insurers are
foreign currency and investment funds. Nowadays, the standard choice is reference
to investment funds.

As far as the underlying insurance cover is concerned, we mentioned above that
the usual form is the endowment insurance. However, also whole life assurances
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can be realized with a unit-linked arrangement; in this case, there would be no ma-
turity benefit. Also life annuities can be realized as unit-linked; however, the annual
amount would fluctuate depending on the current value of the reference fund, thus
originating a severe risk for the policyholder. In the following, we refer to an en-
dowment insurance.

7.4.2 Unit-linked policies without guarantees

Consider a unit-linked endowment insurance, including no financial guarantee. At

time t, a premium P[T]
t is paid, inclusive of expense loadings; the premium can be

either constant in time or not, depending on policy conditions. We denote by Λt

the total expense loading at time t; the initial commission is usually charged to the
first premium. After issue, the loading includes collection and general administrative
expenses, as well as management fees. The expense loading is typically proportional
to the size of the premium and the policy fund.

The net premium Pt is invested into the reference fund. If we let wt denote the
current value of a unit, then

nt =
Pt

wt
(7.4.1)

represents the number of units purchased by the insurer at time t with the net pre-
mium. Information about the current value wt is made available to the policyholder;
since the policyholder is bearing the financial risk, she must receive full information
about the performance of the investment fund. The sum at risk originates a mutuality
cost, which needs to be funded. In principle, the net premium must be split into risk
and savings premium; in other words, the number nt is split into two components:

one (which we denote by n[S]
t ) is credited to the policy to contribute to savings, the

other (which we denote by n[R]
t ) is used to meet mutuality costs. Trivially,

nt = n[S]
t +n[R]

t (7.4.2)

We note that if nt = 0 (due to having set Pt = 0), then (7.4.2) would imply

n[S]
t = −n[R]

t ; if no premium is paid, annual costs (namely, the risk premium, as
well as expenses) are met by taking money from the policy account. This shows that
unit-linked arrangements allow quite easily for some flexibility in the choice of the
annual premium. Actually, from a technical point of view, it is not necessary that a
premium is paid in each year; as noted above, what is required is that the current
policy account is large enough to meet annual costs. However, appropriate policy
conditions must be designed in this case, such as those adopted in Universal Life

policies (see Sect. 7.8). In the following, we mean that Pt > 0 and such that n[S]
t > 0,

as is more usual for the policy design that we are addressing.
We let Nt denote the number of units totally credited to the policy at time t, before

premium payment. It is easy to understand that
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Nt =
t−1

∑
s=0

n[S]
s (7.4.3)

In order to perform the splitting (7.4.2), and then to calculate Nt , we need to assess
the amount of benefits, the sum at risk in particular.

First, we define the policy fund at time t, as follows

Ft = Nt wt (7.4.4)

Note that Ft is assessed at current value, given that the financial risk is borne by the
policyholder. As usual, assets back liabilities. The reserve at time t, representing the
liability of the insurer, is simply defined as follows

Vt = Ft (7.4.5)

The maturity benefit, which is the current value of the policy fund, is given by

Sm = Fm (7.4.6)

at time m. Earlier to time m, we can assess the amount which is funded by current
assets, as follows

St = Ft (7.4.7)

It is worth noting that, contrarily to fixed-benefits and participating policies, the
maturity benefit gradually accumulates in time (similarly to what happens in the
case of single recurrent premiums; see Sect. 4.4.5); indeed, Ft is clearly the result of
the payments which have been made to date.

The death benefit payable at time t is

Ct = Ft +Kt (7.4.8)

where Kt is the sum at risk, defined so that Kt ≥ 0. For example

Ct = Ft (1+α) (7.4.9)

i.e. Kt = α Ft , with α > 0, or
Ct = Ft +G (7.4.10)

i.e. Kt = G, with G > 0. We note that (7.4.10) embeds a financial guarantee, as
(excluding the case Ft < 0) we always have Ct ≥ G > 0. Conversely, no guarantee
is embedded in (7.4.9), as Ct = 0 if Ft = 0. The quantity α in (7.4.9) is simply
a proportion expressing the sum at risk; the quantity G in (7.4.10) can instead be
meant as a minimum death benefit guaranteed.

The surrender value at time t is usually defined as follows

Rt = ϕ(t)Ft (7.4.11)

where 1−ϕ(t) represents the surrender fee at time t (commonly very close to 0).
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We can now calculate the number of units, n[S]
t , which are credited to the policy

fund at time t, after receiving the premium; we note that

n[S]
t = Nt+1 −Nt (7.4.12)

The number Nt+1 must be assessed so that assets and liabilities of the contract are
on actuarial balance in year (t, t + 1). Extending the recursive Eq. (5.4.8) for the
reserve of insurance covers with fixed benefit, we can write the following equation
relating to year (t, t +1)

(Ft +Pt)
wt+1

wt
= (Ct+1 −Ft+1)q′x+t +Ft+1 (7.4.13)

Equation (7.4.13) can be easily understood if compared to (5.4.8):

• reference is to a policy in-force at time t;
• Ft represents the amount of assets available at time t, while Pt is the net premium

cashed at that time;
• assets are invested into the reference fund, whose yield in year (t, t +1) is

zt+1 =
wt+1

wt
−1 (7.4.14)

We note that zt+1 is unknown at time t;
• whatever happens, namely if the insured is still alive at the end of the year or not,

the policy fund Ft+1 will be available;
• in case of death during the year, the sum at risk Ct+1 −Ft+1 must be added to the

policy fund, so to pay the death benefit Ct+1 to beneficiaries.

Contrarily to (5.4.8), the equality in (7.4.13) is just notional, as not all the quantities
involved are known for sure. Let assume death benefit (7.4.9); if we replace into
(7.4.13) the definitions introduced above for the several quantities involved, we find

(Nt +nt)wt+1 = α Nt+1 wt+1 q′x+t +Nt+1 wt+1 (7.4.15)

Each term in (7.4.15) is proportional to wt+1; this allows us to change the account
unit, from the monetary unit to the reference fund unit. If we assume that wt+1 is
strictly positive, after dividing (7.4.15) by wt+1 we obtain

Nt +nt = α Nt+1 q′x+t +Nt+1 (7.4.16)

which is a balance condition expressed in terms of investment units, in which all the
quantities involved are deterministic at time t. Thus, (7.4.16) can be used to calculate

Nt+1 (i.e., n[S]
t ). It is worth noting that quantities in (7.4.16) are deterministic only at

time t, i.e. after premium payment. Before that time, the number nt is random, given
that it depends on the current value of a unit (see (7.4.1)).

Solving (7.4.16), we find
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Nt+1 =
Nt +nt

α q′x+t +1
(7.4.17)

and then

n[S]
t =

nt −α q′x+t

α q′x+t +1
(7.4.18)

n[R]
t = (nt +1)

α q′x+t

α q′x+t +1
(7.4.19)

Of course, it turns out n[S]
t < nt .

The definition of the risk and the savings premium is now straightforward. We
have

P[R]
t = n[R]

t wt (7.4.20)

P[S]
t = n[S]

t wt (7.4.21)

The development in time of the risk premium depends on several factors, namely
the mortality rate (which is increasing throughout the policy duration), the size of
the sum at risk (which is proportional to the size of the policy fund), and the current
value of a unit. What is important to note is that, after premium payment, the balance
condition (7.4.16) implies no financial risk for the insurer. This is a consequence of
defining the benefits so that they are proportional to the current value of one unit.
However, Eq. (7.4.16), if considered before time t, reveals a financial risk for the
insurer, as the number of units which are purchased year by year is unknown, and
then the number of units credited to the contract is also unknown, because these
numbers depend on the value of one unit at the time of premium payment. Thus,
the number of units which define a benefit (the maturity, the death or the surrender
benefit) are known for certain just at the beginning of the year of possible payment.

Example 7.4.1. Consider a unit-linked endowment, with no financial guarantee, is-
sued for a person age x = 50, maturity m = 15, death benefit Ct+1 = 1.10Ft+1 (then,
α = 0.10). The life table is LT1 (while no technical interest rate needs to be as-
signed, as the financial risk is not transferred to the insurer). Table 7.4.1 provides an
example of development of benefits throughout time. Information about the number
of units purchased and credited at any policy anniversary is also included, as well as
information about the risk premium and the savings premium.

Note the decreasing behavior of nt , due to the increasing value of a unit (while
the net premium remains constant). The risk premium is increasing in time, and this
is due to the death probabilities and to the fact that the sum at risk increases in time.
The magnitude of the risk premium is anyhow very small, given that the sum at risk
is not very large.
�

We have used above the terms risk premium and savings premium. This termi-
nology is not the usual one for unit-linked policies. A unit-linked policy is mainly



352 7 Finance in life insurance: linking benefits to the investment performance

Table 7.4.1 Unit-linked endowment insurance; Ct+1 = 1.10Ft+1

t Pt wt zt nt Nt n[S]
t P[R]

t P[S]
t Ft Ct Ct −Ft

0 100 1.00 100.00 0.00 99.97 0.03 99.97 0.00
1 100 1.04 4% 96.15 99.97 96.08 0.08 99.92 103.96 114.36 10.40
2 100 1.08 4% 92.46 196.05 92.34 0.13 99.87 212.04 233.25 21.20
3 100 1.12 4% 88.90 288.38 88.73 0.20 99.80 324.39 356.83 32.44
4 100 1.17 4% 85.48 377.11 85.24 0.28 99.72 441.16 485.28 44.12
5 100 1.22 4% 82.19 462.35 81.88 0.38 99.62 562.52 618.77 56.25
6 100 1.27 4% 79.03 544.24 78.64 0.50 99.50 688.63 757.50 68.86
7 100 1.32 4% 75.99 622.88 75.50 0.64 99.36 819.66 901.63 81.97
8 100 1.37 4% 73.07 698.38 72.47 0.82 99.18 955.78 1 051.36 95.58
9 100 1.42 4% 70.26 770.85 69.54 1.03 98.97 1 097.16 1 206.88 109.72

10 100 1.48 4% 67.56 840.39 66.69 1.28 98.72 1 243.98 1 368.38 124.40
11 100 1.54 4% 64.96 907.08 63.93 1.58 98.42 1 396.42 1 536.06 139.64
12 100 1.60 4% 62.46 971.02 61.25 1.93 98.07 1 554.63 1 710.10 155.46
13 100 1.67 4% 60.06 1 032.27 58.64 2.35 97.65 1 718.81 1 890.69 171.88
14 100 1.73 4% 57.75 1 090.92 56.10 2.85 97.15 1 889.11 2 078.02 188.91
15 1.80 4% 1 147.02 2 065.71 2 272.28 206.57

designed to provide an appropriate investment opportunity, joint to some capital pro-
tection in case of early death. The benefit corresponding to the policy fund is then
simply addressed as the savings, or investment, of the policyholder, and the quantity

P[S]
t is named the invested premium (or invested amount). In this perspective, the

sum at risk is a supplementary (or rider) benefit, and then the quantity P[R]
t is dealt

with as a fee for supplementary (or rider) benefits. Under (7.4.9), it is likely that the
risk premium is increasing, as plotted in the example of Table 7.4.1. Insurers often
prefer to apply a constant fee for the rider benefits, similarly to any other fee. Some
approximations then result in respect of the example provided in Table 7.4.1, as a
sort of level risk premium must be assessed. The magnitude of the risk premium is
usually so low that such approximations are negligible in this case.

Let us now consider the death benefit (7.4.10). If we replace the various quantities
in (7.4.13), we find

(Nt +nt)wt+1 = Gq′x+t +Nt+1 wt+1 (7.4.22)

from which we obtain

Nt+1 = Nt +nt − Gq′x+t

wt+1
(7.4.23)

The quantity wt+1 in (7.4.23) (and in (7.4.22)) is unknown; in order to calculate
Nt+1, an estimate of wt+1 is required. This implies some financial risk for the insurer;
such a risk is originated by the fact that the death benefit embeds a fixed benefit
(which, as we have mentioned above, represents a guaranteed minimum benefit).
This is a reason why the definition of the death benefit highly preferred by insurers
in unit-linked policies with no guarantees is given by Eq. (7.4.9).
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7.4.3 Unit-linked policies with financial guarantees

As described at the beginning of Sect. 7.4, in unit-linked policies the financial risk
is borne by the policyholder. Partially, the risk can be transferred to the insurer,
through the underwriting of appropriate guarantees.

Guarantees may relate to any of the benefits provided by the insurance cover:

• the maturity guarantee concerns the maturity benefit;
• the death benefit guarantee is given on the death benefit;
• the surrender guarantee concerns the surrender value.

In the following, we disregard the surrender guarantee, and we assume that the same
type of guarantee is provided for the maturity and the death benefit. This way, we
shorten a little bit the notation; anyhow, it is not difficult to address more general
cases, in which the maturity and the death benefit guarantees are different.

The guarantee is defined specifying the minimum benefit amount. If, because of
adverse financial trends, the policy fund at the time of payment is not high enough,
the minimum amount will be paid. Generically, we let Bt be the benefit due at time
t; if t = 1,2, . . . ,m− 1 it is a death benefit, while if t = m it is the benefit paid at
maturity, either in case of death or survival (given that we are assuming that the
same guarantee is provided for the maturity and the death benefit).

The guaranteed amount can be stated according to different targets. The simplest
case is to set a fixed guaranteed amount G. The benefit at time t +1 is then defined
as follows

Bt+1 = max{Ft+1,G} (7.4.24)

For an example, see Fig. 7.4.1.
The quantity

Kt+1 = Bt+1 −Ft+1 = max{G−Ft+1,0} (7.4.25)

represents the sum at risk, and corresponds to the pay-off of a put option (see also
Sect. 7.5).

Alternative definitions of the guaranteed amount are chosen so that the difference
Bt+1 −Ft+1 corresponds to the pay-off of a given financial option.

Remark When a financial guarantee is underwritten, a financial risk emerges for the insurer. Such
a risk needs to be hedged appropriately, through a suitable asset management strategy. Similarly
to what noted for participating policies, before underwriting a guarantee, the insurer must investi-
gate if it is possible to hedge it. Therefore, usually the insurer investigates the hedging strategies
available on the market, and then selects the guarantee offered to the policyholder.

For example, under the benefit

Bt+1 = max{Ft+1,max{Fs}s=0,1,...,t} (7.4.26)

it is guaranteed that the minimum amount paid at time t + 1 is the highest value of
the policy fund experienced at the previous policy anniversaries; see Fig.7.4.2. The
guaranteed amount in this case is defined as follows
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Fig. 7.4.1 Guaranteed benefit Bt+1 = max{Ft+1,G}; annual constant premiums

Fig. 7.4.2 Guaranteed benefit Bt+1 = max{Ft+1,max{Fs}s=0,1,...,t}; single premium

time

Ft+1

Bt+1

G

time

Ft+1

Bt+1
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Gt = max{Fs}s=0,1,...,t (7.4.27)

(where the suffix t denotes that such an amount is known at the beginning of year
(t, t +1)). The sum at risk is

Kt+1 = Bt+1 −Ft+1 = max{max{Fs}s=0,1,...,t −Ft+1,0} (7.4.28)

and this corresponds to the pay-off of a ratchet option.
With reference to the maturity benefit, the following guarantee

Sm = max{Fm,Gm−1} (7.4.29)

where

Gm−1 =
m−1

∑
t=0

P[S]
t (1+ i′)m−t (7.4.30)

is similar to the guarantee embedded in the accumulation factor f [4](s,m) for par-
ticipating policies (see (7.3.28)).

Some remarks on the valuation of guarantees are presented in Sect. 7.5.

Remark It should be clear that in unit-linked policies the asset perspective is prevailing. It is
enough to look at the way the reserve, i.e. the value of the insurer’s liability, is defined when no
guarantee is provided (see (7.4.5)). Indeed, unit-linked policies are considered to be an asset-driven
business. In contrast, fixed-benefit policies, for which the definition of liabilities comes before the
selection of assets, are considered to be a liability-driven business. The distinction mainly relies on
the party bearing the financial risk, namely the insurer for liability-driven arrangements, the policy-
holder for asset-driven solutions. Typical of a liability-driven business is a conservative assessment
of the liabilities, and assets as well; for an asset-driven business, a market-consistent valuation is
instead the natural choice.
Participating policies, as well as unit-linked policies with financial guarantees are somewhat at an
intermediate step between a liability-driven and an asset-driven business. Basically, participating
policies are liability-driven, as is suggested by the approach adopted for the calculation of premi-
ums and reserves. However, the benefit amount, and then the insurer’s liability, is affected by the
investment performance. Similarly, unit-linked policies with financial guarantees are asset-driven;
however, since the guarantees transfer risk to the insurer, conservative valuation assumptions are
required in this regard. In particular, an additional reserve in respect of the reserve (7.4.5) may be
necessary, which should be assessed consistently with the cost of the guarantee.
Figure 7.4.3 provides a graphical representation of the comments developed in this Remark. The
large arrows, in particular, show which is the starting point for the assessment of the value of assets
and liabilities, or for their management: the liabilities for fixed-benefits and participating policies,
the assets for unit-linked policies (with or without guarantees). In the case of participating policies,
the small arrow expresses that the value of the liability must be updated according to the investment
performance, while the small arrow in the case of unit-linked policies with guarantees recalls that
the liability originated by the guarantee requires an appropriate hedging, and then an appropriate
selection of assets.
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Fig. 7.4.3 Interaction between assets and liabilities

7.5 Financial options in unit-linked and participating policies

As we have already noted, it goes beyond the scope of this book to deal with issues
related to asset management and asset valuation. In this Section we just provide a
description of the structure of the financial options included in life insurance poli-
cies. In Sect. 7.5.2, in particular, we address the valuation of such options in one
example, just aiming at outlining the main issues of such a valuation.

7.5.1 The structure of minimum guarantees

We first refer to a unit-linked endowment insurance, including a guarantee on the
death and the maturity benefit. The guarantee is defined so that the benefit payable at
maturity in case of death is the same as the maturity benefit. We disregard guarantees
concerning the surrender value.

The benefit payable at time t + 1 (in case of death or, if t + 1 = m, survival on
death) is defined as follows

Bt+1 = max{Ft+1,Gt} (7.5.1)

where Gt is the guaranteed amount, known at time t at the latest. Rearranging
(7.5.1), the benefit can be expressed as follows

Bt+1 = Ft+1 +max{Gt −Ft+1,0} (7.5.2)

or as follows
Bt+1 = Gt +max{Ft+1 −Gt ,0} (7.5.3)
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According to (7.5.2), the benefit consists of the policy fund (whose value is un-
known) and the pay-off of a put option, with strike Gt and underlying the reference
fund. The maturity of the option is time t + 1, the time of possible payment of the
benefit. Conversely, according to (7.5.3) the benefit consists of a fixed benefit Gt ,
like a traditional policy, to which the pay-off of a call option is added. The strike,
the underlying and the maturity of the call option are clearly the same as those of the
put option (given that we are describing the same benefit). For unit-linked policies,
the description provided by (7.5.2) is more natural than (7.5.3), as the main fea-
ture of the arrangement is to realize an investment in the reference fund. However,
when addressing the calculation of the cost of the guarantee, sometimes it is easier
to assess the cost of a call option, and then reference would be made to (7.5.3).

According to the way the strike is defined, we can investigate further the struc-
ture of the option. If Gt = G, constant, the option is European-like, while if Gt

depends on the past performances of the policy fund, such as in (7.4.27), the option
is path-dependent. If Gt is a function of the premiums paid, such as in (7.4.30), the
guarantee is endogenous. If guarantee (7.4.27) is chosen and a single premium was
paid, the value of the option just depends on the investment performance (whilst
when it is endogenous its value also depends on choices concerning the invested
amount).

If a guarantee is underwritten in a unit-linked policy, a fee is required to the pol-
icyholder. In general, it is easier to assess the cost of a European-like option than of
a path dependent option, as well as it is easier to evaluate an option with exogenous
guarantees than with endogenous guarantees. A market-consistent assessment is re-
quired, following the common practice for the pricing of financial derivatives. This
requires a calibration to market data, even if the option is not traded directly on the
market. Reference should be made to similar options. However, options traded in
financial markets have many differences in respect of those included in life policies,
such as the maturity (which is typically shorter for traded options), a different un-
derlying, a different strike. Further, it must be noted that the exercise of options in
(7.5.2) and (7.5.3) is subject not only to economic events (namely: it is convenient
to exercise the call option if Ft+1 > Gt , while it is convenient to exercise the put
option if Ft+1 < Gt ), but also to the lifetime of the insured. Indeed, the benefit at
time t + 1 is payable in case of death (or survival); this aspect adds complexity to
the valuation of the insurer’s liability. Some details in this regard are provided in
Sect. 7.5.2.

Addressing now surrender guarantees, we note that they may be expressed sim-
ilarly to (7.5.1); clearly, the benefit would be the surrender value Rt+1 instead of
Bt+1. The guaranteed amount Gt is usually defined so to provide a financial pro-
tection to the investment of the policyholder; therefore, the amount Gt typically
implies a minimum (annual or average) return on the amount invested. The exercise
of the surrender guarantee depends on economic events (the exercise is convenient if
Gt > Ft+1), but also on preferences of the policyholder (whether to maintain or not
the policy). This latter aspect is very hard to model; surrender guarantees represent
important costs for insurers, but their assessment is still an open problem, due to the
difficulty in representing individual preferences.
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We make a final comment in respect of participating policies. In Sects. 7.3.1 and
7.3.2 we have already commented on the financial options which are embedded. We
give here just an example about how to explicit the pay-off of the relevant option.
Assume that the accumulation factor f [1](s, t) is adopted (see (7.3.16)). After some
rearrangements, such a quantity can be expressed as follows

f [1](s, t) = (1+ i′)t−s
t

∏
h=s+1

(
1+max

{
ηt gt − i′

1+ i′
,0

})
(7.5.4)

The factor (1 + i′)t−s represents the minimum guaranteed accumulation, while

∏t
h=s+1

(
1+max

{
ηt gt−i′

1+i′ ,0
})

is originated by call options on the yield of the in-

vestment fund. The accumulation factor f [1](s, t) could be rearranged so to explicit
the pay-off of put options, but for participating policies the description provided by
(7.5.4) is more natural, as first of all a participating policy guarantees a given return,
and possibly an extra-yield.

7.5.2 The valuation of financial options in a unit-linked policy

As we have mentioned in Sect. 7.5.1, the valuation of financial options included in
life insurance covers is complex. In this Section we aim at providing some remarks
on how the different events to which the exercise of such an option is subject should
be accounted for.

Refer to a unit-linked endowment insurance, issued with a single premium. The
death and maturity benefit are defined as in (7.5.1), with Gt = G, constant. We as-
sume that no guarantee is provided on the surrender value (which is then simply the
policy fund, possibly net of a surrender fee). The single expense-loaded premium
Π [T] is split into three components:

• the management fees and the acquisition costs, Θ ;
• the invested amount, Π [S];
• the fee for ancillary benefits (namely, for the sum at risk), Π [R].

The above notation is similar to what adopted for traditional policies (namely, for
the expense loading, the savings and the risk premium); however, the meaning of
the several quantities is not the same as for traditional policies, and must be meant
as specified above.

The quantity Π [S] is invested into the selected fund. We assume

Π [S] = N w0 (7.5.5)

where N is the number of units which are credited to the policy. The quantity N is
determined so that the policy fund always consists of N units, i.e.

Ft = N wt (7.5.6)
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Replacing (7.5.6) into (7.5.1), we can express the benefit at time t as follows

Bt = N wt +max{G−N wt ,0} (7.5.7)

or, setting G = N ×E, as

Bt = N wt +N max{E −wt ,0} (7.5.8)

According to (7.5.8), the benefit consists of N units of the reference fund and N put
options, each with underlying a unit of the reference fund and strike E. It is easy to
rewrite (7.5.8) so to explicit the pay-off of call options.

The present value at time 0 of the benefit payable at time t, which we denote as
V0(Bt), can be assessed as follows

V0(Bt) = N w0 +N P0(t) (7.5.9)

where P0(t) is the value (or price) at time 0 of a put option with maturity at time
t, strike E and underlying one unit of the reference fund. The price P0(t) must be
assessed through an appropriate financial model; for example, if we accept standard
assumptions (namely: the risk-free rate is deterministic and constant, the current
value of the underlying follows a geometric standard Brownian motion, and so on),
the Black and Scholes formula applies. Quite often standard assumptions are not
appropriate, and numerical techniques must be used instead of a closed formula.

The benefit Bt is paid at time t depending on the lifetime of the insured. Given an
appropriate life table, through which the mortality rates qx+t are assessed, we expect
that

• a proportion t−1|1qx of the policies issued at time 0 will receive the benefit Bt at
time t, t = 1,2, . . . ,m−1 (namely, because death occurs in year (t −1, t));

• a proportion m−1 px =m−1|1 qx + m px of the policies issued at time 0 will receive
the benefit Bm at time m (namely, in face of the insureds either dying in the last
year, or alive at maturity).

To realize the actuarial balance between the premium and the benefit, the follow-
ing condition must be fulfilled

Π [T] −Θ =
m−1

∑
t=1

t−1|1qx V0(Bt)+ m−1 px V0(Bm) (7.5.10)

Rearranging, we have

Π [T] −Θ = N w0 +

(
m−1

∑
t=1

t−1|1qx N P0(t) + m−1 px N P0(m)

)
(7.5.11)

As stated by (7.5.5), the quantity N w0 represents the invested amount; the quantity
in brackets represents the amount Π [R] meeting the cost of supplementary benefits,
i.e. the cost of mutuality and of the guarantee. According to the fees, the current
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value of a unit of the reference fund, the price of the financial options and mortality
rates, Eq.(7.5.11) allows to determine the number N of units which can be credited
to the policy.

Note that in (7.5.10), and then in (7.5.11), independence between the lifetime
of the insureds and the return on the reference fund is implicitly assumed. Such an
assumption is reasonable; what is not trivial is how the probabilities qx+t should
be chosen (actually, we have used a generic notation, not specifying whether they
are realistic or prudential). Following the pricing principles of traditional benefits,
a conservative choice should be taken; given that we are dealing with an endow-
ment, mortality rates higher than what is realistic should in particular be involved.
However, due to the cost of the guarantees, not necessarily this is a choice on the
safe-side.

7.6 With-profit policies

With-profit policies represent a traditional UK business. Similarly to participating
policies, they guarantee a given return on investment, while distributing (part of) the
realized extra-yield to policyholders. They are typically issued with annual constant
premiums.

The main difference in respect of participating policies consists in the way profit
is assigned; in with-profit policies, a bonus is added in each year to the benefit,
which is defined according to a given rule. According to the prevailing practice,
bonuses are calculated so that the release of profit is smoothed in time. This is
obtained adopting parameters which are approximately constant (in particular, they
should be constant if the yield on investment is flat). However, as we illustrate below,
this may imply that in some years the bonus is too high in respect of the yield
realized in that year on the investment of the policyholder. To avoid major costs for
the insurer, some rules for the calculation of bonuses are designed so to slow down
the distribution of unrealized gains, while maintaining an apparent smoothed release
of profit.

Three types of bonus can be identified:

• reversionary bonus;
• terminal bonus;
• guaranteed bonus.

The reversionary bonus is funded through financial profit. Once it has been as-

signed, it is locked-in. Let B[rev]
t be the reversionary bonus at time t. Similarly to

the adjustment of the reserve in participating policies, B[rev]
t is assigned to in-force

policies. Following time t, the benefit amount cannot be lower than

Gt = C +
t

∑
s=1

B[rev]
s (7.6.1)
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where C is the initial guaranteed amount of the benefit (namely, the amount referred
to for premium calculation), given that the current and the previous reversionary
bonuses are locked-in.

The benefit paid at time t (in case of death if t < m, either in case of survival or
death if t = m) is defined as follows

Ct = Gt−1 +B[term]
t (7.6.2)

where B[term]
t is the so-called terminal bonus. The goal of the terminal bonus is to pay

the profit not yet released; it is required B[term]
t ≥ 0, given that reversionary bonuses

are locked-in (and the initial benefit amount is guaranteed). Conversely, it may turn

out B[term]
t � B[term]

t−1 , as no specific guarantee is provided on the terminal bonus. It is

not unusual that B[term]
t > B[rev]

t , as we justify below. We finally note that, given the
terminal bonus at maturity, no reversionary bonus at maturity is assigned.

Contrarily to the reversionary and terminal bonuses, the guaranteed bonus is
explicitly funded by premiums, which are determined (at policy issue) accounting
for the annual increase of the benefit originated by the guaranteed bonus. Indeed,
the guaranteed bonus simply consists in an annual increase of the benefit amount.
If a guaranteed bonus has been underwritten, the guaranteed benefit amount since
time t is

Gt = C +
t

∑
s=1

B[rev]
s +

t

∑
s=1

B[guar]
s (7.6.3)

where B[guar]
s is the bonus guaranteed at time s.

As mentioned above, for with-profit policies it is common to obtain (or to show) a
smoothed release of profit in time. Rules for the calculation of reversionary bonuses
are defined so to slow down the distribution of unrealized gains. We examine some
of these rules, just to give an idea on how this target can be reached. We refer to
an endowment with-profit policy, with initial benefit amount C and level premium
P. Similarly to participating policies, the premium P is calculated as if the policy
was with fixed-benefits; namely, P is calculated taking C as a constant benefit (if a

guaranteed bonus applies, reference would be made to C for the first year, C+B[guar]
1

for the second year, and so on; for brevity, we disregard this case).
A possible rule for the calculation of the reversionary bonus is the linear rule,

according to which

B[rev]
t = αt C (7.6.4)

where αt , αt ≥ 0, is the bonus proportion at time t. An alternative rule is the expo-
nential (or compound) rule, under which

B[rev]
t = βt Gt−1 = βt

(
C +

t−1

∑
s=0

B[rev]
s

)
(7.6.5)

In principle, αt or βt should be assessed referring to the extra-yield on the in-
vestment of the policyholder realized in year (t −1, t). However, according to usual
practice, they are set more or less constant in time. Basically, the idea is to distribute
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year by year a share of the total profit which is expected to be realized by matu-
rity. This originates some cross-subsidy effects throughout time and among cohorts,
which may produce some costs for the insurer. In order to understand better, it is
worth making a comparison with participating policies.

The reversionary bonus B[rev]
t can be compared with the benefit update j[B]

t Ct

of participating policies. In particular, the proportion βt in (7.6.5) can be directly

compared to j[B]
t . It is useful to refer to the example in Table 7.2.1, where the extra-

yield on investment (and then profit, in relative terms) is constant in time. Since

j[P]
t = 0 (i.e., premiums are constant, as for with-profit policies), we find that j[B]

t is
increasing in time. Consistently, the proportion βt in (7.6.5) should be increasing. If,
as it occurs in practice, it is set constant in time, then when t is small the proportion
βt = β is higher than what justified by current profits, whilst when t is close to
maturity βt = β is smaller than what justified by current profits (we note that βt

is not exactly constant in practice, as to some extent it follows the fluctuations of
the experienced investment yield). Overall, at any time t the insurer is assigning a
too high bonus to policies recently issued, and a too low bonus to policies close to
maturity. If the portfolio composition is appropriate, the insurer can be on balance.
Anyhow, a cross-subsidy effect emerges among the different cohorts.

Considering the policyholders’ expectation for a constant bonus proportion, rule
(7.6.5) is preferable to (7.6.4), from the point of view of the insurer. It is easy to jus-
tify why. Assume that (7.6.4) is adopted with αt = α , constant. Then, the guaranteed
benefit at time t is

Gt = C (1+α t) (7.6.6)

Similarly, if we assume βt = β , constant, in (7.6.5), we find for the guaranteed
benefit at time t

Gt = C (1+β )t (7.6.7)

Assume that the terminal bonus is calculated following the same rule of the rever-
sionary bonus. In this case, the benefit at maturity can be expressed as Gm. Given the
total profit realized by maturity, Eqs. (7.6.6) and (7.6.7) should result in the same
amount Gm, i.e. we should find

(1+α m) = (1+β )m (7.6.8)

Condition (7.6.8) requires β < α . It can be easily checked that if β < α , then for
t < m

(1+α t) > (1+β )t (7.6.9)

Thus, provided that the amount of profit distributed in total is the same, the release
of profit in time is slower if an exponential reversionary bonus is adopted (with a
constant proportion β ).

Example 7.6.1. Refer to a with-profit endowment insurance, with initial sum insured
C = 1000 and maturity m = 10. Assume that the total amount at maturity of the

bonuses is 300, i.e. ∑9
t=1 B[rev]

t + B[term]
10 = 300. Expressing the terminal bonus with

the same rule of the reversionary bonus and adopting a constant proportion, for the
linear rule we find α = 0.03, and for the exponential rule β = 0.02658. It can be
easily verified that 1000(1+0.03 t) > 10001.02658t at any time t < 10. At time 5,
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for example, the guaranteed amount with the linear rule is G5 = 1000(1 + 0.03×
5) = 1150, while with the exponential rule G5 = 1000×1.026585 = 1140.16.
�

A rule further slowing down the release of profit is the so-called supercompound
rule, defining the reversionary bonus as follows

B[rev]
t = γt C +δt

t−1

∑
s=1

B[rev]
s (7.6.10)

In this case, the reversionary bonus has both a linear and an exponential component.
An appropriate choice of the parameters γt and δt can result in a reduced rate of
increase of the guaranteed amount.

Example 7.6.2. Refer to Example 7.6.1. If we set γt = γ = 0.02, after some little al-

gebra we find that if δt = δ = 0.08732, then ∑9
t=1 B[rev]

t +B[term]
10 = 300. We can verify

that at time t < 10, it turns out Gt < 10001.02658t < 1000(1 + 0.03 t). At time 5,
for example, the guaranteed amount is G5 = 1119.06, which can be compared with
the amounts quoted in Example 7.6.1 for the linear and the exponential rule.
�

Of course, given a rule for the calculation of the reversionary bonus, a straight-
forward way to avoid the release of unrealized profits consists in setting the value
of the bonus proportion lower than what would be required by the total profit ex-
pected during the policy duration; in other words, the bonus proportion should be
chosen with a conservative view. The terminal bonus ensures that in case of imme-
diate payment the beneficiary would receive the extra-yield really gained so far on
the investment of the policyholder. Indeed, while the development in time of the
minimum guaranteed amount is slowed down, the actual benefit would be in line
with the realized gain on investment.

7.7 Index-linked policies

Index-linked policies are endowment-like contracts, funded with a single premium,
whose benefit amount is linked to the performance of a stock-market index, the
so-called reference index. A guarantee is provided for the maturity benefit, as this
is defined as the single premium (also called invested amount) rolled-up with the
highest between an accumulation factor depending on the performance of the ref-
erence index and a guaranteed accumulation factor. The reference index is usually
based on a wide basket of stocks, so to smooth extreme fluctuations; possibly, a mix
of indexes is referred to, with the aim of improving such a smoothing.

Let It denote the value at time t of the reference index. A given function Φ,
the participating rule, defines the accumulation factor based on the performance of
the reference index during the policy duration. In principle, the participating rule



364 7 Finance in life insurance: linking benefits to the investment performance

depends on the whole path of the reference index during the policy duration; the
specific form of Φ may address just some aspects of such a path (see below for
some examples).

The maturity benefit is defined as follows

S = Π ×max{γ,Φ(I0, I1, . . . , Im)} (7.7.1)

where Π is, as usual, the net single premium and γ the guaranteed accumulation
factor (as it is reasonable, the expense loading is not accounted for in the rolling-
up of the single premium). An alternative expression for the maturity benefit is the
following:

S = Π γ +Π ×max{Φ(I0, I1, . . . , Im)− γ,0} (7.7.2)

where Π γ is the guaranteed benefit, while Π ×max{Φ(I0, I1, . . . , Im)− γ,0} is the
pay-off of a call option on the reference index, with strike γ and maturity m.

Several choices can be made in respect of the guaranteed accumulation factor γ:

• γ = 0 (the arrangement is referred to as index-linked with no explicit guarantee);
• 0 < γ < 1 (index-linked with a partial guarantee);
• γ = 1 (index-linked with a guaranteed principal);
• γ > 1 (index-linked with guaranteed interest).

At a first instance, it could seem difficult to accept γ ≤ 1. However, first it must be
noted that through the index-linked policy the policyholder realizes an investment in
a stock-market index; as is well-known, stock-market indexes are subject to down-
wards fluctuations. In this case, a guaranteed principal may be of interest. Further,
it must be considered that the premium has to fund both the guaranteed amount and
the call option. The lower the guaranteed amount, the higher the amount available
for investing in the call option, and then in the participation to the performance of
the reference index. We further note that, depending on the option, some guarantees
may be embedded into its pay-off, so that a high γ would be unnecessary.

The integral participating rule is a very simple example of participation to the
performance of the index. Let

gt =
It

It−1
−1 (7.7.3)

be the rate of change of the reference index in year (t − 1, t). Due to the nature of
the index It , we may experience gt � 0. The participating rule is defined as follows

Φ(I0, I1, . . . , Im) = (1+g1)(1+g2) . . . (1+gm) =
Im

I0
(7.7.4)

In practice, the option embedded in (7.7.1) is European-style. Clearly, it may turn
out Im

I0
< 1. However, if Im

I0
< γ the guaranteed amount would be paid at maturity.

In the Cliquet participating rule, the single premium is rolled-up in year (t−1, t)
at the rate
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jt =

⎧⎪⎨
⎪⎩

0 if gt < 0

gt if 0 ≤ gt < g′

g′ if gt ≥ g′
(7.7.5)

where g′ expresses the maximum annual rate of increase of the reference index
admitted for the rolling-up of the single premium; for example, g′ = 0.20. The par-
ticipating rule is defined as follows

Φ(I0, I1, . . . , Im) = α (1+ j1)(1+ j2) . . . (1+ jm) (7.7.6)

where α , α > 0, is a participating proportion, amplifying (if α > 1) or com-
pressing (if α < 1) the change of the reference index. We note that jt ≥ 0; thus
Φ(I0, I1, . . . , Im)≥ α , i.e. the Cliquet participating rule embeds a minimum accumu-
lation guarantee. Indeed, past positive jumps of the reference index are locked-in.
Depending on the proportion α and on the possible path of the reference index, the
option implied by the Cliquet participating rule could be more expensive than that
implied by the integral participating rule.

The pay-off described by (7.7.1) is that of a structured Zero Coupon Bond or
index-bond. This is the asset backing the policy. Usually, the insurer purchases
index-bonds issued by investment banks; this explains why the index-linked pol-
icy is issued at single premium (annual premiums would require that index-bonds
with the features specified in (7.7.1) are available also after issue, and the insurer
cannot be certain about this). A default risk emerges, which should be borne by the
insurer.

In case of early termination of the contract, because of death or surrender, a
benefit is paid. The death benefit is usually defined as the current value of the index-
bond, increased by a given proportion (say, 5 or 10%). The beneficiaries are usually
given the possibility of keeping the investment until maturity, if they think that it is
not currently convenient to cash the investment. We point out that the amount of the
death benefit is not guaranteed, as the factor γ just concerns the maturity benefit.
We also note that the insurance component is negligible; basically, the index-linked
policy is an investment product. Consistently, the surrender value is the current
value of the index-bond, possibly reduced by a (small) fee. No guarantee applies to
this benefit.

The expense-loaded premium Π [T] consists of three components: the expense
loading (which is referred to as management fees), the cost of the index-bond and
the cost of mutuality. This latter component is usually assessed approximately, due
to the small size of the sum at risk. The reserve is simply the value of the index-bond,
possibly increased by a small proportion, to account for the death benefit.

7.8 Universal Life policies

Universal Life (UL) policies are typical products of the US market, which can be de-
signed either as participating or unit-linked policies. Their main features consists in
a high flexibility available to the policyholder in deciding year by year: the amount
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of premium, to make a partial withdrawal, the type of investment backing the re-
serve, and so on. Further, similarly to a bank account, the policyholder receives a
periodic statement, showing the costs (acquisition costs, management fees, fees for
rider benefits, and so on) that have been charged to her policy account. If the policy
is designed on a unit-linked basis, the current value of the policy assets is reported
in the statement; if a participating arrangement is designed, the statement reports
the annual adjustment which has been credited to the reserve.

The underlying contractual form is a whole life assurance. This way, the contract
has no specified maturity; the contract terminates either because of death or full
withdrawal. The sum at risk is defined so that it is positive; see examples provided
in Sect. 5.4.4.

The UL is a complex product for the insurer. The flexibility granted to the policy-
holder originates many risks. For example, it is difficult to predict future profits, due
to the uncertainty on the premium level; the possibility of partial withdrawal deter-
mines a liquidity risk; it is difficult to match the liabilities with appropriate assets,
as there is uncertainty on the timing of the former, and so on. Further, a considerable
transparency in respect of the information provided to the policyholder is required.
On the other hand, the product could be very attractive. The insurer can try to gain
the loyalty of the policyholder designing an insurance package, providing capital
protection and other insurance benefits during the working life of the insured, and
then pension benefits after retirement. This idea is realized by the variable annuities
policies, which we describe in the next Section.

Health insurance benefits can also be included in the UL policy: accident insur-
ance, disability benefits, hospitalization benefits, and so on. Thus, the UL policy can
be shaped as a package of insurance covers.

7.9 Variable annuities

The term variable annuity is used to refer to a wide range of life insurance products,
whose benefits can be protected against investment and mortality / longevity risks
by selecting one or more guarantees out of a broad set of possible arrangements.
Originally developed for providing a post-retirement income with some degree of
flexibility, nowadays accumulation and death benefits constitute important compo-
nents of the product design. Indeed, the variable annuity can be shaped so as to offer
dynamic investment opportunities with some guarantees, protection in case of early
death and/or a post-retirement income.

The design of variable annuities matches features of unit-linked life insurance
contracts (the investment into a reference fund selected by the policyholder) to those
of participating contracts (the guarantees). Basically, the variable annuity is a fund-
linked insurance contract, including a package of financial options on the policy
fund value. Guarantees are then also looked at as riders to the basic benefit given
by the account value. Similarly to unit-linked policies, guarantees are explicit, and
then a fee is applied to the policyholder who underwrites them.
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As for participating or unit-linked contracts, financial options in variable annu-
ities are non-standard, as their exercise depends not just on economic factors, but
also on the lifetime of the insured or on preferences of the policyholder. Thus, their
valuation raises several complex issues; difficulties arise also in relation to the time-
horizon, which involves many years when post-retirement benefits are dealt with.
Some issues in this respect are discussed in Chap. 8. In this Section we only give
a description of the most common guarantees; as for participating and unit-linked
policies, we do not deal with their valuation.

Guarantees in variable annuities may be first classified into two main broad
classes:

• Guaranteed Minimum Death Benefit (GMDB);
• Guaranteed Minimum Living Benefit (GMLB).

The second class can be further arranged into three subclasses:

• Guaranteed Minimum Accumulation Benefit (GMAB);
• Guaranteed Minimum Withdrawal Benefit (GMWB);
• Guaranteed Minimum Income Benefit (GMIB).

The acronym GMxB is used to briefly refer to the whole set of guarantees, i.e. Guar-
anteed Minimum Benefit of type ‘x’, where ‘x’ stands for the class of benefits in-
volved: accumulation (A), death (D), withdrawal (W) or income (I).

Variable annuities are generally issued with single premium or single recurrent
premiums. The total amount of premiums is also named the principal of the con-
tract or the invested amount. Apart from some upfront costs, premiums are en-
tirely invested into the reference funds chosen by the policyholder. Similarly to
unit-linked policies, several investment opportunities are available to the customer,
providing different risk/return profiles. The policyholder is allowed to switch from
one risk/return solution to another at no cost, if some constraints are fulfilled (for
example, the switch is required no more than once a year). Unlike in unit-linked,
with profit or participating policies, reference funds backing variable annuities are
not required to replicate the guarantees selected by the policyholder, as these are
hedged by specific assets. Therefore, reference fund managers have more flexibility
in catching investment opportunities.

Guarantees and asset management fees, administrative costs and other expenses
are charged year by year to the contract through a reduction of the policy account
value. This improves the transparency of the contract, as any deduction to the pol-
icy account value must be reported to the policyholder; this follows the tradition
of Universal Life policies. Some guarantees can be added or removed, at policy-
holder’s discretion, when the contract is already in-force. Accordingly, the corre-
sponding fees start or stop being charged. The cost of guarantees, as well as other
expenses, are typically expressed as a given percentage of the policy account value.
In particular when relating to mortality or longevity guarantees, applying a constant
percentage may result in some approximations of the real cost. If the sum at risk
is positive, such an approximation is usually negligible, as we have commented for
unit-linked policies (see Sect. 7.4.2); conversely, when income benefits are involved,



368 7 Finance in life insurance: linking benefits to the investment performance

and then the sum at risk is negative, major costs may emerge from such approxima-
tions, in particular due to the extent of the time-horizon involved. See Sect. 8.6 for
some remarks in this regard.

The Guaranteed Minimum Accumulation Benefit (GMAB) is usually available
prior to retirement. At some specified date, the insured (if alive) is credited the
greater between the policy account value and a guaranteed amount. Such guaranteed
amount can be stated as follows:

• the amount of premiums paid, net of withdrawals (the so-called return of premi-
ums);

• the roll-up of premiums, net of withdrawals, at a specified guaranteed interest
rate;

• the highest account value recorded at some specified times (prior to the maturity
of the GMAB); this is a ratchet guarantee, which locks-in the positive perfor-
mances of the reference fund.

See Fig. 7.9.1 for a graphical representation of the main guarantees; to make clearer
the presentation, a single premium has been considered and it has been assumed that
no withdrawals occur. A further guarantee which may be attached to the GMAB is
the reset, which gives the opportunity to renew the GMAB when it reaches maturity.

Fig. 7.9.1 Possible choices for the GMAB and the GMDB; single premium (no withdrawal)

Similarly to the GMAB, also the Guaranteed Minimum Death Benefit (GMDB)
is available during the accumulation period; some insurers are willing to provide a
GMDB also after retirement, up to some maximum age (say, 75 years). The structure
of the guarantee is similar to the GMAB: in case of death prior to the stated maturity,

time

return

roll-up

policy fund

ratchet
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the insurer will pay the greater between the account value and a stated amount. The
guaranteed amount can be either fixed, e.g. equal to

• the amount of premiums paid, net of withdrawals;
• the roll-up of premiums, net of withdrawals, at a specified guaranteed interest

rate;

or depending on the account value, such as

• the highest account value recorded at some specified times prior to death (ratchet);
• the account value at some prior specified date (the so-called reset date) plus the

total amount of premiums paid following such date, net of withdrawals. This is
the reset guarantee (whose meaning is different within the GMAB and GMDB).

Fig. 7.9.1 also represents the main GMDB guarantees. The difference between the
ratchet and the reset guarantee within the GMDB stands in the behavior of the guar-
anteed minimum amount: in the ratchet guarantee the minimum amount never de-
creases, whilst a reduction may occur in the reset, if the account value decreases
between two reset dates.

The Guaranteed Minimum Income Benefit (GMIB) provides a lifetime annuity
from a specified future point in time. The guarantee may be arranged in two different
ways:

• the amount to be annuitized (namely, the amount to be converted into a life annu-
ity) will be the greater between the account value and a specified amount. Possi-
ble ways to specify such an amount are similar to the GMAB. The annuitization
rate (that is, the ratio between the annual income and the annuitized amount, also
called the conversion coefficient) will be defined according to market conditions
prevailing at the annuitization date;

• the annuitization rate will be the more favorable between a stated rate and what
resulting from current conditions. The annuitized amount will be the account
value.

The former guarantee is sometimes described as a guarantee on the annual amount,
which would suggest an arrangement similar to a deferred life annuity; it is then
worthwhile to stress that the guarantee actually concerns the amount to be annu-
itized, as described above. In principle, it is possible to offer both guarantees, but in
practice this is not usual, because of the high cost.

Remark It is worth quoting here a terminology prevailing in the life annuity markets. Although
it is not commonly used for variable annuities, it may help in understanding better the features of
the GMIB.
An annuitization rate defined according to current market conditions is named current annuitiza-
tion rate (CAR). Under a CAR, the annual amount is guaranteed after annuitization (given that the
CAR essentially expresses the price of an immediate life annuity), but not prior to this time. Con-
versely, a guaranteed annuitization rate (GAR) states the annuitization rate prior to annuitization.
A policyholder entitled to a GAR usually has the possibility to choose, at annuitization, the best
rate between the CAR and the GAR; this possibility is referred to as a Guaranteed Annuitization
Option (GAO). See also Sect. 8.6.
Referring such terminology to the GMIB, we would say that the GMIB can consists in:
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• a guarantee on the amount to be annuitized (while a CAR is adopted for the annuitization);
• a GAO (while the amount to be annuitized is not guaranteed).

As already mentioned, it is possible to underwrite both a guarantee on the amount to be annuitized
and a GAO, but this would be very expensive for the policyholder (as the insurer would be exposed
to major risks).

If the GMIB is exercised, after annuitization the policyholder loses access to the
account value (while prior to annuitization the contract works like an investment
product, bearing some guarantees). The guarantee must be selected by the policy-
holder some years before annuitization; typically, the GMIB may be exercised after
a waiting period of 5 to 10 years. The cost of the GMIB is deducted from the account
value during the accumulation period. If prior to annuitization the policyholder gives
up the guarantee, the insurer stops deducting the relevant fee. Typically, full annuiti-
zation is required; however, partial annuitization is admitted in some arrangements.
As far as the duration of the annuity is concerned, the following solutions may be
available: a traditional life annuity; a last survivor annuity; a life annuity with a
minimum number of payments (say, up to 5 or 10 years). Money-back (or capital
protection) arrangements may also be available, providing a death benefit consisting
of the residual principal amount, i.e. the annuitized amount net of the annual pay-
ments already cashed. The annual amount may be either fixed (either flat or escalat-
ing), participating or inflation-linked or linked to stock prices (see also Sect. 4.3.3);
a financial risk is borne by the annuitant in the latter case, as the annual amount
can fluctuate in time (conversely, in a participating scheme the annual amount never
decreases; see Sects. 7.3 and 7.4).

The Guaranteed Minimum Withdrawal Benefit (GMWB) guarantees periodical
withdrawals from the policy account, also if the account value reduces to zero (ei-
ther because of bad investment performances or long lifetime of the insured). See
Fig. 7.9.2 for a graphical representation.

The guarantee concerns the annual payment and the duration of the income
stream. The annual payment is stated as a given percentage of a base amount, which
is usually the account value at the date the GMWB is selected. In some arrange-
ments, at specified dates (e.g., every policy anniversary) the base amount may step
up to the current value of the policy account, if this is higher; this is a ratchet guar-
antee, which may be lifetime or limited to some years (e.g., 10 years). Note that,
thanks to the ratchet, the guaranteed annual payment may increase in time; in some
arrangements, a maximum accepted annual increase is stated in policy conditions.
The guaranteed annual payment may be alternatively meant as the exact, the maxi-
mum or the minimum amount that the policyholder is allowed to withdraw in each
year. In the last case, any withdrawal above the guaranteed level reduces the base
amount. The duration of the withdrawals may be fixed (e.g., 20 years) or lifetime. In
the former case, if at maturity the account value is positive, it is paid back to the pol-
icyholder or, alternatively, the contract stays in-force until exhaustion of the policy
account value. The cost of the guarantee is deducted from the account value during
the payment period; if the policyholder gives up the guarantee, the relevant fee stops
being applied. During the withdrawal period, the policyholder keeps access to the
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Fig. 7.9.2 Fund available under a GMWB; guaranteed annual withdrawal: 5% of the initial fund,
for 20 years

unit-linked fund; if at death the account value is positive, such an amount is paid to
the estate of the policyholder.

From the descriptions above, it emerges that GMAB and GMDB are similar to
what can be found in participating and unit-linked arrangements, apart from the
possible range of guarantees, which is wider in variable annuities than in traditional
contracts and is explicit. The GMIB is like a traditional life annuity, possibly partic-
ipating. The GMWB is the real novelty of variable annuities in respect of traditional
life insurance contracts; it provides a benefit which is similar to an income draw-
down, but with guarantees (see Sect. 8.5.3 for more details on the income draw-
down). When comparing a GMIB to a GMWB, three major differences arise: the
duration of the annuity (which is lifetime in the GMIB), the accessibility to the ac-
count value (just for the GMWB) and the features of the reference fund (which is
unit-linked in the GMWB, but typically participating in the GMIB). Clearly, the
presence of death benefits also in the GMIB, a lifetime duration for the withdrawals
in the GMWB and other possible features reduce a lot the differences between the
GMIB and the GMWB. Apart from the use of one name or the other, policy condi-
tions should suggest the real features of the income provided by the contract.

7.10 References and suggestions for further reading

Literature on insurance benefits linked to the investment performance is very rich.
Here, we just mention the textbooks dealing with this topic. A description of the

time

guaranteed fund

policy fund
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early forms of policies realizing several form of flexibility and linking to the invest-
ment performance is given by [18]. Many authors have addressed the valuation of
financial options embedded in insurance benefits. Market-valuation methods for the
valuation of participating policies are described in [41]. Unit-linked policies, and
possible approaches to the valuation of the relevant financial options are dealt with
by [29] and [20]. A description of with-profit policies can be found in [9], while for
Universal Life reference can be made to [7]. An introduction to variable annuities
can be found in [40].



Chapter 8
Pension plans: technical and financial
perspectives

8.1 Introduction

In this Chapter we examine some features of private pension programmes, namely
those arrangements providing a post-retirement income in addition to the public
pension. As we will see, a private pension plan can be designed either on an individ-
ual or a group basis. Although in the modern forms the funding of benefits is always
realized on individual basis, group pension plans allow for a funding arrangement
based on solidarity principles. The post-retirement income is the basic benefit of a
pension plan; however, several rider benefits can be underwritten, covering risks to
which an individual is exposed either before or after retirement.

It is worth anticipating some of the common terminology adopted when referring
to pension plans; further terms will be introduced later on.

• The lifetime of an individual is split into two economic periods: the period before
retirement, the so-called savings period (or working period) and the period after
retirement, the so-called post-retirement period (or simply retirement period);
see also Sect. 1.2.5.

• An individual joining a pension plan is referred to as a member. The member is
active during her working life, and retired after retirement.

• Similarly to life insurance, benefits must be funded by appropriate payments (the
premiums, in life insurance). Such payments are called contributions.

• The institution arranging a private pension plan is generically referred to as the
provider. As we will see, it can be an insurer, another financial institution or a
specific institution set up for this purpose.

• The pension income is considered to be the main benefit of a private pension
plan. Further benefits can be underwritten, which are looked at as riders. Within
pension plans, they are referred to as ancillary benefits.

In detail, the main issues dealt with in this Chapter are the following:

• possible technical designs of private pension plans, in particular with reference
to the definition of benefits and the relevant funding principles;

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 373
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• the accumulation of savings for pension purposes, and the risks to which an in-
dividual is exposed before retirement;

• solutions for the post-retirement income available to an individual, and relevant
risks;

• risks borne by the provider, depending on the benefits provided before and after
retirement.

We point out that the topic discussed in this Chapter is very wide, and a thor-
ough presentation is not possible here. Basically, in this Chapter we aim at carrying
forward the discussion started in Sect. 1.2.5 concerning possible solutions for the
provision of a post-retirement income.

8.2 Pension programmes

We refer the term pension programme (or pension plan) to any arrangement aimed
at providing a post-retirement income. Pension plans may be classified according to
the number of individuals they cover, the rule linking benefits to contributions and
the timing of payment of contributions.

8.2.1 Individual and group pension plans

Referring to the number of individuals which are covered by the pension plan, we
identify individual (or single-member) plans and group pension plans.

An individual pension plan is similar to a life insurance contract, although the
legal form of the contract may be other than that. The provider can be an insurer
or another financial institution with a specific license for dealing with pension ben-
efits. The individual pays contributions during her working life, and receives an
income after retirement. Several benefits can be underwritten as riders to the post-
retirement income, such as a death benefit during the savings period and in the first
years (say, 5–10 years) after retirement, sickness insurance benefits, and so on; see
also Sect. 8.5.2. Individual contributions must be on balance with the benefits un-
derwritten by the individual; the way this balance is realized depends on the risks
that are transferred to the provider; we comment on this in Sects. 8.2.2 and 8.3.
As mentioned in Sect. 1.2.5, the savings period is also called accumulation phase,
while the post-retirement period is also called decumulation phase. These terms fol-
low the idea that during her working life the individual saves money, to be used after
retirement.

A group pension plan covers a number of individuals who share some common
features as regards their occupation. Usually, they either work for the same em-
ployer, or in the same economic sector, or are self-employed for the same profes-
sion, and so on. Joining or not the pension plan is an individual decision, unless
current legislation states otherwise. The employer is referred to as the sponsor of
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the pension plan. The plan may be managed directly by the sponsor; in this case,
the sponsor typically underwrites some insurance contract, typically a group insur-
ance or some other specific agreement with an insurer, to transfer at least partially
its risks. More commonly, a specific institution is set up for managing the liabilities
of the pension plan, the so-called pension fund. Similarly to the case of individual
pension plans, also in the case of group pension plans individuals pay contributions
during their working life and receive an income after retirement; some ancillary ben-
efits can be underwritten, typically concerning the event of early death. The balance
between contributions and benefits can be realized on an individual basis (similarly
to an individual pension plan) or for the whole group. This latter solution implies
solidarity effects, as we explain in Sect. 8.2.2. Contributions may be paid also by
the sponsor, as an indirect (and deferred) form of salary to its employees.

Social security plans (or state pension plans) represent an “extreme” example of
group pension plan, as they cover the whole population of a country. Joining a social
security plan is not a choice; in particular, it is compulsory to pay contributions to
the social security plan. The balance between contributions and benefits is realized
on a group basis: the contributions paid currently by active people are used to fund
the benefits currently paid to retired people. As opposed to social security plans,
individual and group pension plans are considered private pension plans. In this
Chapter, we only address this type of plans.

Remark According to legislation, it may be compulsory to join some private pension plan, in
addition to the social security plan. In particular, this is imposed when the public pension is set at
minimum levels, not adequate to ensure to each citizen living standards in line with those during her
working life. In a welfare economy, the State Government has to guarantee an adequate income to
any retired citizen; if the benefit paid by the social security is kept low, the compulsory membership
to some private pension plan ensures that in the future unexpected costs will not be originated by
individuals not getting in total an adequate income (apart from a possible default of the provider).
This is the idea of what is called a three-pillar pension system, namely a pension system arranged
on the social security plan (the first pillar), group pension plans (the second pillar) and individual
pension plans (the third pillar). The pension legislation contributes to define the importance of
each pillar. The second and third pillars are the private pension solutions. Usually, the third pillar
is not compulsory, while joining the second pillar can be mandatory (for the reasons quoted above).
Nevertheless, if it is mandatory to join some pension plan and the individual is not satisfied with
the performance of the pension fund supported by her sponsor, she has the possibility to join
some other private plan (possibly, an individual one). In the following, we do not take care of the
constraints imposed by legislation on the membership to a private pension plan; we just discuss
some technical issues of private arrangements.
A fourth pillar is sometimes referred to, the so-called phased retirement or partial retirement. An
individual may decide, at the normal retirement age, to continue to carry on a working activity, but
at a slower pace (either taking a part-time position or a lighter job). In this case, she (usually) will
receive in total the public pension, but just partially the private pension. The advantage stays in the
flexibility gained in respect of the amount accumulated within the private pension plan which has
not yet been converted into a post-retirement income. Further remarks in this regard are given in
Sect. 8.5.4.
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8.2.2 Benefits and contributions

As noted in Sect. 8.2.1, a balance must be realized between contributions and bene-
fits. In particular, each plan must adopt specific rules for the calculation of benefits
and contributions. In the following, we refer to the pension benefit only (while we
disregard ancillary benefits).

A major distinction exists between defined contribution and defined benefit pen-
sion plans.

In a defined benefit (DB) pension plan, a rule is given for the definition of the
benefit, i.e. the post-retirement pension. It can be a fixed annual amount or, more
commonly, a proportion of the member’s salary prior to retirement. The proportion
depends on the number of working years; the salary prior to retirement can be the
salary received in the last year prior to retirement or an average of the salary received
in a given number of years prior to retirement. The contributions are then calculated
so that they are on balance with the specified benefits.

If the balance between contributions and benefits is realized on a individual basis,
from a technical point we have to solve an equation similar to (5.2.1) when the mem-
ber joins the plan; after the initial time, the balance is expressed similarly to (5.3.1).
Indeed, the arrangement works like a life insurance contract with fixed-benefits. Let
0 be the time when the individual joins the pension plan, and r the retirement time. In
principle, the actuarial balance between contributions and benefits must be assessed
at time 0, as follows

Prem(0,r) = Ben(0,+∞) (8.2.1)

where, similarly to life insurance, the quantity Prem(0,r) represents the expected
present value at time 0 of the contributions of the individual in the time-interval
(0,r), while Ben(0,+∞) represents the expected present value at time 0 of the ben-
efits which will be paid to the individual (starting from time r and until member’s
death, given that we are only addressing the pension benefit). Appropriate assump-
tions are required for the assessment (8.2.1). In particular, an interest rate must be
chosen to discount future contributions and future benefits. To understand the other
assumptions, we first note that Ben(0,+∞) corresponds to the actuarial value at
time 0 of a life annuity (with fixed benefits) commencing at time r if the individual
is alive and still a member of the plan at that time. During the time-interval (0,r)
it may happen that the individual moves to another plan (e.g. because she changes
employment), while after retirement she remains a member of the plan, until death.
Then we note that contributions are paid in (0,r) if the individual is alive, still be-
longs to the plan and still receives a salary. Due to a disability, it is possible that the
individual is unable to perform the usual work, which inhibits her from receiving
the salary, and then paying the contribution.

Summarizing, apart from the choice of the discount rate, to assess (8.2.1) as-
sumptions are required in respect of the lifetime of the individual, the probability
that she remains a member of the plan and the probability that she receives a salary
without discontinuances. Contributions resulting from all these assumptions should
not be changed after time 0, similarly to what happens in life insurance. Several
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risks emerge for the provider, in particular due to the extent of the time-horizon,
which may make difficult to take appropriate assumptions. In practice, the rules of
the pension plan may state that assumptions could be updated, if this is required by
the evolving economic and demographic scenario; this usually results in an update
of contributions (and thus some risks are charged to the member). We finally note
that (8.2.1) implies the accumulation of a fund in the interval (0,r), to be used after
retirement for paying out the defined pension benefit. So, at time t, t = 0,1, . . . ,r−1,
the following balance must be fulfilled

Prem(t,r)+Vt = Ben(t,+∞) (8.2.2)

while at time t, t = r,r +1, . . .

Vt = Ben(t,+∞) (8.2.3)

In both cases, Vt represents the individual fund, whose management is similar to
that of a reserve in life insurance (which explains the notation we have adopted).
Note that, if the plan’s rules allow for this, the cost of an update to the valuation
assumptions can be charged to the member just in the time-interval (0,r), as no
contribution is paid following time r.

If the balance between contributions and benefits is realized on a group basis, the
following condition must be satisfied:

Prem[P](t, t +T )+V [P]
t = Ben[P](t, t +T ) (8.2.4)

where t is the current time, T is a given time-horizon (namely, the time-horizon in
respect of which, according to the plan’s rules, the balance between benefits and

contributions must be realized), V [P]
t is the total amount of assets hold by the pen-

sion fund at time t, Prem[P](t, t +T ) is the present value at time t of the contributions
which are expected to be received in the time-interval (t, t +T ) by the pension plan,
and Ben[P](t, t +T ) is the present value at time t of the benefits which are expected
to be paid by the pension plan in the time-interval (t, t +T ). Besides the assumptions
already mentioned for the balance (8.2.1), condition (8.2.4) requires assumptions on
the number of members paying contributions in the time-interval (t, t + T ), as well
as on the number of those who cash benefits in the same time-interval. In particular,
as active members reference can be made just to those who are within the plan at
time t, or alternatively also to those who will join the plan in the period (t, t + T ).
It must be noted that V [P]

t refers to the whole group; in general, it is not possible to
split this amount into individual funds. Indeed, when the balance between contri-
butions and benefits is realized on a group basis, it is not clear what contributions
are meeting the cost of the benefits of a given individual. To understand better, we
can consider that while condition (8.2.1) always implies the accumulation of the

individual contributions, the balance (8.2.4) could be realized also with V [P]
t = 0 at

any time t; in this case, the benefits currently paid to the retired members would
be funded by the contributions currently paid by the active members (as it typically
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happens in social security plans). In other words, the implementation of (8.2.4) in-
volves solidarity effects. We further note that (8.2.4) usually implies less guarantees
than (8.2.1). For example, it is natural that the provider updates the valuation as-
sumptions from one year to the other, in particular because the composition of the
group is changing in time; the cost of the update is spread over the contributions, so
that it is charged to the active members.

We now address defined contribution (DC) pension plans. In this case, a rule is
given for the calculation of the contributions. The simplest choice is to set a fixed
annual amount for each member, but more often the annual individual contribution
is a proportion of the member’s salary. Contributions are accumulated in an individ-
ual account, which is used at retirement to obtain a pension income. No guarantee is
naturally implied before retirement, unless ancillary benefits have been underwrit-
ten; after retirement, a guarantee is provided if the benefit consists of an immediate
life annuity. Other choices are possible, as we discuss in more detail in Sect. 8.5. We
will come back on the possible guarantees prior and after retirement in Sect. 8.3.

As suggested by the descriptions above, DB pension plans imply several risks for
the provider. Conversely, a DC pension plan does not necessarily imply guarantees;
the advantage for the member is a greater flexibility, in respect both of investment
choices and the type of post-retirement income.

In recent times, DC pension plans have become more popular than DB plans.
This is due, in particular, to the fact that the former allow for more flexibility in
favor of the member, while reducing risks for the provider. Further, nowadays the
member is commonly allowed to move from a plan to another (although some con-
straints may apply). Thus, plans based on funding arrangements implying solidarity
effects, as DB plans do, become unsustainable. In the following we only address DC
arrangements.

8.2.3 Timing of the funding

It is clear that an individual pays contributions while she is an active member of the
pension plan, and receives an income while she is retired. The payment of contribu-
tions may be interrupted in face of specific events (such as a disability that prevents
the usual working activity), and some rider benefits may come into payment during
the working period. In the following, for simplicity we refer to the pension benefit
only and we disregard discontinuances in the payment of contributions.

If we take the point of view of the provider, at any time contributions are be-
ing received from the active members and benefits are being paid to the retired
members. Depending on the rule linking contributions to benefits, as well as on the
principle adopted for the balance between contributions and benefits, there can be
an accumulation of assets.

A funded pension plan is an arrangement in which contributions are accumulated
into a fund. If the balance between contributions and benefits is realized on an indi-
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vidual basis, each member is assigned a specific fund. An important issue concerns
how the fund is invested, as well as who is bearing the investment risk.

In an unfunded pension plan (or pay-as-you-go pension plan) benefits currently
paid are met by the contributions currently received by the provider. In this case,
the balance between contributions and benefits is realized on a group basis. No fund
is accumulated. An intermediate solution, adopted by some social security plans,
consists in using the contributions currently paid by the active members to fund
the amount backing the liability of the provider in respect of the members who
are currently retiring; no fund is accumulated during the working period, while a
fund (namely, the reserve of an immediate life annuity) is set up at retirement, and
maintained up to death.

As we have already mentioned, unfunded plans are of interest just for social
security plans, so that we no further address them. In the following, we just consider
funded plans realizing an individual balance between benefits and contributions.

8.3 Transferring risks to the provider

In this Section, we summarize the risks that an individual, who is planning her post-
retirement income, can transfer to the provider. We will come back in more detail to
some of the issues introduced here in the following Sections.

We refer to a pension plan in which an individual saves money during her work-
ing life, in the form of contributions which are credited to her own personal fund.
At retirement, the accumulated fund is used to receive a pension income. This can
be realized within an individual or a group pension plan. As stated in Sect. 8.2.2, we
only refer to DC pension plans. In this case, only an individual balance can be real-
ized between contributions and benefits. From a technical point of view, the specific
form of the pension plan (either individual or group) does not matter in this case;
for brevity, we then refer only to individual pension plans.

In a DC pension plan, the working and the post-retirement period are addressed
separately when defining the benefits. During the working period, the money is ac-
cumulated in the individual fund; the investment risk is naturally borne by the mem-
ber. The advantage consists in the possibility for the member to select the asset com-
position she prefers, in particular in terms of risk/return profile (see also Sect. 8.4).
Financial guarantees may be underwritten, so to transfer part of the financial risk
to the provider; a fee is usually required. The availability of guarantees depends on
who is the provider; insurers offer financial guarantees on their pension products
(similarly to those examined in Chap. 7 for participating, unit-linked and variable
annuity policies), while a group pension plan usually does not.

Ancillary benefits available during the working period are death benefits, dis-
ability benefits and other health insurance benefits. The death benefit can either be a
lump sum benefit (a fixed amount or a multiple of the pensionable salary at death),
or a pension in favor of the member’s spouse. Death benefits can also take the form
of a financial guarantee, similarly to what available within a unit-linked or a variable
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annuity product. These latter benefits are usually offered by an insurer, while a lump
sum or a pension to the spouse are offered by any pension fund. Disability benefits
may consist in the possibility to interrupt the payment of contributions in the case
of a disability, or may be given by a disability income replacing the salary if the
member is unable to work because of sickness or injury. Health insurance benefits
are offered by insurers, or by a sponsor getting protection by an insurer. A fee is
required for the ancillary benefits, whose cost is assessed counting on the possibil-
ity for the provider to realize mutuality effects. Risks originated by mutuality are
borne by the provider. Withdrawals prior to retirement are allowed just in face of
specific events (such as the purchase of a house, the wedding of a child, a critical
illness requiring special medical care, the change of the pension plan in face of a
new employment, and so on).

At retirement, the member has to select the form of the pension income. In some
cases, it is possible to cash the accumulated amount. The member can simply plan
a sequence of withdrawals from her account, as long as money is left. This is the
so-called income drawdown (see Sect. 8.5.3). The investment risk and the risk con-
nected to her longevity (see Sect. 1.2.5 and 8.5.3) are borne by the individual. The
advantage is that she has access to her fund, in particular for the selection of the
asset composition; further, in case of early death the residual fund belongs to her
estate. Alternatively, the individual fund at retirement can be annuitized, i.e. con-
verted into a life annuity. All risks are transferred to the provider, in particular the
longevity risk, with the disadvantage of loosing access to the individual fund (for
example, in case of early death the residual fund is used by the insurer for mutu-
ality purposes). Intermediate solutions are possible; the fund at retirement can be
partially annuitized. The advantage is to get some guarantees from the life annu-
ity, while keeping some flexibility on the fund not annuitized. See Sect. 8.5.3 for
more details. Ancillary benefits during retirement are typically death benefits, and
can be obtained in respect of the fund which has been annuitized. In particular, the
death benefit is implied by the type of life annuity selected by the individual (see
Sect. 8.5.2). We mention the benefit provided by a capital protection, under which
at death the estate receive the difference between the fund annuitized at retirement
and the total income received by the annuitant up to death, and the pension in favor
of the member’s spouse, the so-called last-survivor annuity. Death benefits similar
to those packaged in a variable annuity product can also be available, typically for
some years after retirement (see Sect. 7.9). The funding of a death benefit is based
on mutuality, similarly to what examined for life insurance products; the relevant
risk is charged to the provider. However, we note that the death benefit mitigates
the longevity risk taken by the provider; see also Sect. 8.6. The disadvantage for the
individual of a death benefit taken as a rider to a life annuity is the cost: given the
fund to be annuitized, the annual amount available if a rider benefit is underwritten
is lower than in the case of a standard life annuity.
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8.4 Pension savings before retirement

As we have mentioned in Sect. 8.3, during the accumulation period the investment
risk is naturally borne by the individual. It is then desirable that the individual has
some control over the investment of her fund. In principle, the member can select the
asset composition more suitable to her preferences in terms of risk/return profile. It
often happens that members do not have the required expertise for selecting appro-
priately the investment, so that the provider gives advice; in particular, it prearranges
some lines of investment, which are characterized by different risk/return profiles.
What is usually recommended is a lifestyle investment strategy. While young, the
member should try to maximize the investment return by including in the assets an
appropriate proportion of stocks. When approaching retirement time, a defensive
strategy is preferable, and thus the investment should consists mainly of bonds. The
shift from the former to the latter asset composition should be clearly progressive in
time.

Several guarantees may protect the investment, but this typically requires the
payment of a fee. Underwriting a guarantee corresponds to underwriting a financial
option, as mentioned in Sects. 7.5 and 7.9. Since the guarantees imply a risk for
the provider, some constraints may then be imposed on the asset composition. More
often, the guarantees are hedged with appropriate assets, as we have commented for
variable annuities.

8.5 Arranging the post-retirement income

As mentioned in Sect. 8.3, at retirement time the individual can usually choose
among several alternatives to obtain the post-retirement income. Immediate life an-
nuities and income drawdown constitute typical solutions. “Mixtures” of life annu-
ities and income drawdown also provide practicable solutions.

Life annuities have been described in Sect. 4.3.3. In this Section we first turn
again on this insurance product, looking at the life annuity as a (possible) element
in post-retirement income arrangements. Then, alternatives to the life annuity are
examined. In what follows, we just refer to the net cost of benefits, i.e. we disregard
expenses.

8.5.1 Some basic features of life annuities

When planning the post-retirement income, some basic features of the life annu-
ity product should be carefully accounted for. In particular, we note the following
aspects.
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1. The life annuity product relies on the mutuality mechanism, like the pure endow-
ment insurance (see Sect. 1.7.4, and Fig. 1.7.7 in particular). This means that:

a. the amounts released by the deceased annuitants are shared among the annui-
tants who are still alive;

b. on the annuitant’s death, her estate is not credited with any amount, and hence
no bequest is available.

2. A life annuity provides the annuitants with an “inflexible” post-retirement in-
come, in the sense that the annual amounts must be in line with the payment
profile, as stated by the policy conditions.

Both features 1b and 2 can be perceived as disadvantages, and hence weaken the
propensity to immediately annuitize the whole amount available at retirement. We
now illustrate how these disadvantages can be mitigated, at least to some extent,
either by purchasing life insurance products in which other benefits are packaged,
or adopting a specific annuitization strategy.

In the following, we denote by y the age at retirement; the retirement time is de-
noted as time 0. The amount available at retirement, resulting from an accumulation
process, is denoted by S.

8.5.2 Packaging benefits into the life annuity product

If the annuitant dies soon after the (ordinary) life annuity commencement, neither
the annuitant nor the annuitant’s estate receive much benefit from the purchase of
the life annuity. In order to mitigate this risk, it is possible to buy a life annuity
with a guarantee period (5 or 10 years, say), in which case the benefit is paid for
the guarantee period regardless of whether the annuitant is alive or not. For a guar-
antee period of s years, and an amount S to be converted into an annuity (so that
S represents the single premium), the resulting annual benefit fulfills the following
relation:

S = ba′s� +b s|a′x (8.5.1)

where a′s� denotes the present value of a temporary annuity-certain, according to in-

terest rate i′. Thus, the insurance product results in a deferred life annuity combined
with a temporary annuity-certain.

Capital protection represents an interesting feature of some life annuity products,
usually called value-protected life annuities or money-back life annuities. Consider,
for example, a single-premium, level annuity. In the case of early death of the an-
nuitant, a value-protected annuity will pay to the annuitant’s estate the difference
(if positive) between the single premium and the cumulated benefits paid to the an-
nuitant. Usually, capital protection expires at some given age (75, say), after which
nothing is paid even though the difference above mentioned is positive.

A last-survivor annuity is an annuity payable as long as at least one of two in-
dividuals (the annuitants), say (1) and (2), is alive. It can be stated that the annuity
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continues with the same annual benefit, say b, until the death of the last survivor. A
modified form provides that the amount, initially set to b, will be reduced following
the first death: to b′ if individual (2) dies first, and to b′′ if individual (1) dies first,
clearly with b′ < b, b′′ < b. Conversely, in many pension plans the last-survivor an-
nuity provides that the annual benefit is reduced only if the retiree, say individual
(1), dies first. Formally, b′ = b (instead of b′ < b). Whatever the arrangement, the
expected duration of a last-survivor annuity is longer than that of an ordinary life
annuity (that is, with just one annuitant).

8.5.3 Life annuities versus income drawdown

A temporary withdrawal (or drawdown) process can mitigate both disadvantages 1b
and 2, mentioned in Sect. 8.5.1. Assume that the retiree can choose between the two
following alternatives:

1. to purchase an immediate life annuity, with annual benefit b, such that ba′y = S,
namely to annuitize the available amount;

2. to leave the amount S in a fund, and then

a. withdraw the amount b(1) at times h = 1,2, . . . ,k (say, with k = 5 or k = 10);
b. (provided she is alive) convert at time k the remaining amount R into an im-

mediate life annuity with annual benefit b(2).

(see Fig. 8.5.1).
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Fig. 8.5.1 Immediate annuitization versus delayed annuitization
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If the retiree chooses the second alternative, the amount R available at time k to
buy the life annuity depends on the annual withdrawal b(1) and the interest rate, g,
credited to the non-annuitized fund. If g = i′, namely the interest rate assumed in
the pricing basis of the life annuity, and b(1) = b then, the amount R is not sufficient
to purchase a life annuity with annual benefit b(2) = b, because of the absence of
mutuality during the withdrawal period.

However, the absence of mutuality can be compensated (at least in principle)
by a higher investment yield, namely if g > i′. We note the analogy between this
problem and the one we have addressed while dealing with the pure endowment
(see Sect. 4.3.2).

In formal terms, we can find relations among the quantities g, i′, b, b(1), b(2), and
k. In the case a life annuity (in arrears) is purchased at retirement time, we obviously
have:

S = ba′y (8.5.2)

In the case of k-year delay, the amount R available at time k is given by:

R = S (1+g)k −b(1)
k

∑
h=1

(1+g)k−h (8.5.3)

and the resulting annuity benefit b(2) fulfills the following equation:

R = b(2) a′y+k (8.5.4)

in which it is assumed that the underlying technical basis coincides with the one
adopted in Eq. (8.5.2) (see below for comments on this aspect).

From Eqs. (8.5.3) and (8.5.4), we obtain:

S (1+g)k −b(1)
k

∑
h=1

(1+g)k−h = b(2) a′y+k (8.5.5)

Several results can be obtained by using Eq. (8.5.5). For example, given S, i′, b, k,
and

• given g and b(1) (e.g. b(1) = b), calculate b(2);
• given b(1) and b(2) (e.g. b(1) = b(2) = b), calculate the interest rate g.

The spread g− i′ compensates the mutuality effect (for a given delay k), and is often
called the Implied Longevity Yield (ILY)1; we note that g corresponds to the rate gx,m

defined in Sect. 4.3.2.

Example 8.5.1. Assume that the amount S = 1706.88 is available at age y = 65. Use
the technical basis TB1 = (0.02,LT4). Hence, an immediate life annuity with annual
benefit b = 100 could be bought, as it results from Table 4.3.7. As an alternative to
the immediate conversion of S into a life annuity, assume that the annual amount
b(1) = b is withdrawn from a fund (whose initial value is S). Table 8.5.1 displays

1 Registered trademarks and property of CANNEX Financial Exchanges.
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the annuity benefit b(2) as a function of the delay k, and the interest rate g credited
to the fund throughout the delay period. We note that the technical basis TB1 =
(0.02,LT4) is adopted, whatever the delay k. If g = i′ = 0.02, then we have, of
course, b(2) < b; further, b(2) decreases as the delay k increases. If g > i′, we can
have situations in which the higher yield during the delay period implies b(2) > b,
that is, a higher annuity benefit.

Table 8.5.1 Life annuity benefit b(2) after the delay period; b(1) = b; TB1 = (0.02,LT4)

k g = 0.02 g = 0.025 g = 0.03 g = 0.035

5 95.63 98.54 101.50 104.53
10 85.79 92.65 99.87 107.45
15 64.09 76.61 90.21 104.96
20 16.40 37.29 60.88 87.42

Table 8.5.2 shows, for various delays k (and still assuming b(1) = b), the “equiv-
alent rate”, namely the investment yield g required to have b(2) = b, hence compen-
sating exactly the absence of mutuality during the withdrawal period.

Table 8.5.2 Equivalent rates; b(1) = b; TB1 = (0.02,LT4)

k g

5 0.02748
10 0.03009
15 0.03336
20 0.03718

�

The delay in the purchase of the life annuity has some advantages. In particular:

• in the case of death before time k, the fund available constitutes a bequest (which
is not provided by a life annuity purchased at time 0, because of the mutuality
effect);

• more flexibility is gained, as the annuitant may change the income profile mod-
ifying the withdrawal sequence (however, with a possible change in the fund
available at time k).

Conversely, a disadvantage is due to the risk of a shift to a different mortality
assumption in the pricing basis of life annuities, leading to a conversion rate at time
k which is less favorable to the life annuity purchaser than that in-force at time 0.
Further, if k is high, it may be difficult to gain the required investment yield (in
particular, avoiding too risky investments) to cover the absence of mutuality.
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The ideas underlying the delayed annuitization can be generalized, leading to the
so-called staggered annuitization. As shown in Fig. 8.5.2, the staggered annuitiza-
tion can be defined as a process according to which

• no life annuity is purchased at retirement time (time 0), so that an income draw-
down process starts at that time;

• a first life annuity is purchased at time k′, by using part of the remaining amount
R′;

• a second life annuity is purchased at time k′′, by using part of the remaining
amount R′′;

• . . . . . .

The staggered annuitization implies that (after time k′) a share of the post-
retirement income consists of withdrawals whereas the remaining share is provided
by a (set of) life annuities. Advantages and disadvantages of this arrangement can
be easily understood looking at what noted above in relation to the delayed annuiti-
zation.
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Fig. 8.5.2 Staggered annuitization

8.5.4 Phased retirement

Several employment arrangements allow an employee to gradually move from the
working period to the retirement period. Such a progressive shift from full-time
work to full-time retirement is usually denoted as phased retirement (see also the
Remark in Sect. 8.2.1).

The phased retirement can be implemented in several ways (according to possible
constraints imposed by current legislation). For example:

1. an employee who is approaching retirement age continues working with a re-
duced working load, until the transition to full-time retirement;
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2. an employee who reaches retirement age y asks for partially continuing her work-
ing activity, or starting a similar activity, anyway with a limited working load.

We focus on solution 2, which in particular allows to maintain a higher income
than that received, as post-retirement income, if the employee quits work entirely.

We assume that the employee chooses to obtain her income via an immediate life
annuity. However, thanks to partial retirement, an annual benefit is chosen, lower
than that needed in the case of total retirement. Hence, only a part of the available
amount S is annuitized at age y, namely at the beginning of the partial retirement
phase. Let b(A) denote the annual benefit which is paid from the beginning of this
phase onwards. Clearly b(A) < b, where b denotes the annual benefit provided by the
full annuitization of S (see Eq. (8.5.2)). The amount required to purchase a whole
life annuity with benefit b(A) is given by b(A) a′y. Assume that the total duration of
the partial retirement phase is m years. At time m the following amount, R, will be
available

R = (S−b(A) a′y)(1+g)m (8.5.6)

where g denotes the interest rate credited on the non-annuitized fund throughout the
partial retirement phase. The amount R can be annuitized to obtain a further life
annuity with annual benefit b(B), determined by the following relation:

R = b(B) a′y+m (8.5.7)

Hence, during the total retirement phase, the retiree will cash the annual benefit
b(A) + b(B), which clearly depends on the interest rate g. Figure 8.5.3 shows the
annuitization process related to phase retirement.
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Fig. 8.5.3 Annuitization in phased retirement

Note that, as in the staggered annuitization process, the individual bears the risk
of an unfavorable change in the technical basis adopted at time m to determine the
benefit b(B) (while keeping access to the non-annuitized fund over the whole partial
retirement period).
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The phased retirement process and the related annuitization process can be gen-
eralized in several ways. For example:

• more than just one phase of partial retirement can be envisaged, to implement a
more gradual shift from full-time work to full-time retirement;

• annuitization and income drawdown can coexist during the various phases (ac-
cording to arrangements like those described in Sect. 8.5.3).

8.6 Risks for the provider

As we have mentioned in Sect. 8.3, several risks can be transferred to the provider
prior and after retirement, which require an appropriate management. Basically, in
this Section we summarize what are the risks, and when they are located. Most of
the comments quoted below have already been developed previously in this book,
with reference to life insurance.

In the following we address both the working and the retirement period of an
individual; thus, time 0 denotes the time when the individual joins the plan (during
her working period), while r (r > 0) is the retirement time. The individual age at
time 0 is x, while at retirement it is y = x+ r.

Let us first address the working period. For an individual joining the plan at time
0, and retiring at time r, the following fund is accumulated at time t, t = 1,2, . . . ,r,
if no guarantee applies and no rider benefit is underwritten

Ft = (Ft−1 −EXt−1)(1+gt)+ ct (8.6.1)

where F0 ≥ 0, ct is the contribution paid at time t, gt is the investment return in
year (t − 1, t), and EXt−1 are the expenses and other fees charged to the individual
account at time t − 1. Following the notation adopted in Sects. 1.2.5 and 8.5, the
value Fr = S of the fund at time r is converted into a sequence of periodic amounts.
Note that in (8.6.1) we have assumed, similarly to Sect. 1.2.5, that the contribution
is paid at the end of the year, once the annual salary has been gained. In practice,
contributions may be paid at the end of each month, given that the salary is received
monthly; to shorten the notation, we prefer to make reference to annual contribu-
tions. Due to the fees charged to the individual account at the beginning of each
year, it is required F0 > 0 (namely, an entry fee is applied to new members). Further,
at the beginning of each year the fund must be large enough to cover the current fee.
For management fees this is always realized, as they are expressed as a proportion
of the value of the fund.

A financial guarantee affects the investment return. If the financial guarantee
concerns the annual return, then instead of (8.6.1) we should consider

Ft = (Ft−1 −EXt−1)(1+max{gt , i
′})+ ct (8.6.2)
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where i′ is the guaranteed annual return. The financial option embedded in (8.6.2)
is a cliquet option, and the financial risk borne by the provider is similar to what
emerges in participating policies. Note that no participation proportion is applied,
as here the option is explicit, and then a specific fee is applied. We assume that the
fee for the financial guarantee is included in EXt−1; if the current fund value is not
large enough to meet the cost of the guarantee, then the guarantee is not provided
(or an additional contribution is required to the member).

The financial guarantee, instead of the annual return as in (8.6.2), could concern
the average return in a given period, such as the guarantee described by the accumu-
lation factor defined by (7.3.28). Similarly to what we have commented in Sect. 7.5,
other types of guarantees can be arranged, following the pay-off of the financial op-
tions traded on the market. A fee is applied, which reflects the cost of the financial
option. Of course, an appropriate hedging of the financial guarantee must be realized
by the provider, through an adequate investment strategy.

Assume now that a lump sum death benefit Ct is underwritten, in case of death in
year (t − 1, t) before retirement. The amount Ct can be chosen in one of the forms
examined for life insurances; see in particular Sect. 5.4.4. An actuarial balance must
be realized by the provider, as follows:

Ft = (Ft−1 −EXt−1)(1+gt)+ ct − (Ct −Ft)q′x+t−1 (8.6.3)

Equation (8.6.3) can be easily interpreted if compared to the recursive equation
of the reserve (5.4.8). Equation (8.6.3) shows us that the individual fund at time
t for a member still alive is the result of the annual contribution, of the invest-
ment of the individual fund at the beginning of the year net of expenses (quantity
(Ft−1−EXt−1)(1+gt)) and net of the cost of mutuality originated by the death ben-
efit (quantity (Ct −Ft)q′x+t−1). Similarly to life insurance, the cost of mutuality is
assessed on the basis of a life table (from which the mortality rate q′x+t is derived),
which is guaranteed during the coverage period. A mortality risk then emerges for
the provider. If the observed frequency of death is higher than q′x+t , then an un-
expected cost emerges for the provider. Given that we are addressing the working
period, which involves young adult ages, the risk is usually originated by random
fluctuations (see Sect. 2.3.1), and can be diversified by increasing the size of the
pool or by taking an appropriate reinsurance arrangement (see Sects. 2.4 and 2.5).

The death benefit could consist, instead of a lump sum, of a life annuity in favor
of the member’s spouse. The amount Ct in (8.6.3) would correspond to the actuarial
value of a life annuity depending on the lifetime of the spouse. A financial risk and a
mortality risk would be involved, similarly to any life annuity (see below). Overall,
two lives would be involved; in particular, a second life table would be required, for
the estimate of the spouse’s lifetime.

Disability benefits or other health insurance benefits can be underwritten as rid-
ers during the working period. A disability benefit, in particular, could provide an
annual income to the member if, because of a sickness or an injury, the member is
unable to work; several policy conditions state the nature and the severity of the dis-
ability which is covered. Further benefits could consist in a lump sum paid in case of
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an accident causing a permanent injury or the death of the member, a refund of med-
ical expenses, an so on. All these benefits are managed by the provider on the basis
of the mutuality principle; a risk of random fluctuations emerges. If the provider
is not an insurer, usually protection is obtained from an insurer by underwriting an
appropriate insurance contract (a group insurance contract).

Let us now address the post-retirement period. As described in Sect. 8.5, the
member can select among a life annuity, an income drawdown, a combination of the
two or a phased retirement. As long as the fund is not annuitized, i.e. a life annuity
has not been underwritten, risks are borne by the member. Thus, the development
of the fund can be described as

Ft = (Ft−1 −EXt−1)(1+gt)−b(1)
t (8.6.4)

where b(1)
t is the withdrawal at time t (note that (8.6.4) generalizes (1.2.17) in

Sect. 1.2.5). A financial guarantee can be underwritten, for example

Ft = (Ft−1 −EXt−1)(1+max{gt , i
′})−b(1)

t (8.6.5)

The annual fee EXt−1 includes also the cost of the guarantee.
Assume now that a fixed-life annuity is underwritten at retirement time, i.e. that

the fund available at maturity is fully annuitized, with the guarantee of receiving the
annual amount b at the end of each year, until death. The amount Fr is transferred to
the provider (typically, an insurer), which has to set up an individual reserve in face
of its liabilities. The development in time of the individual reserve is described as
follows:

Vt +b = Vt−1 (1+ i′)+(Vt +b)q′x+t−1 (8.6.6)

where Vt , as usual in life insurance, is the individual reserve. As noted in Sect. 8.5.3,
contrarily to the amount Ft +b(1)

t in (8.6.4) or (8.6.5), which in case of death of the
member in year (t−1, t) is available to her estate (clearly if Ft +bt > 0), the quantity
Vt + b is available to the insurer in case of death of the member in year (t − 1, t),
for the funding of mutuality. Equation (8.6.6) is the recursive equation of the reserve
(see Sect. 5.4.2). The following interpretation is useful, to understand the risks taken
by the insurer (see also Example 5.4.4). The quantity Vt + b represents the amount
the insurer must hold at time t if the member is alive: Vt is used to carrying on the
contract, while b must be paid to the member. This amount is funded by the assets
available for the policy at the beginning of the year, Vt−1, joint to the interest guar-
anteed on their investment, Vt−1 i′, and by the mutuality contribution (Vt +b)q′x+t−1.
We note that q′x+t−1 expresses the expected frequency of death, which is estimated
according to a given (projected and conservative) life table. If the observed fre-
quency of death is lower than q′x+t−1, then the insurer experiences a longevity risk.
The risk may be originated by random fluctuations, as well as by systematic devia-
tions (see Sect. 2.3.1). Systematic deviations, in particular, can be originated by an
unanticipated mortality dynamics. The term aggregate longevity risk is used to refer
to the systematic component of the longevity risk.
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We point out that in Eq. (8.6.6) we have disregarded expenses; just the net reserve
has been addressed. As described for a life insurance contract, a provision is set up
for meeting the annual expenses charged to the contract (see Sect. 5.6). At time r,
the individual fund Fr = S is used to meet the cost of the annuity, namely V0, and
the loading for expenses, Θ [A] +Θ [G].

The rate i′ in Eq. (8.6.6) is a technical interest rate, so it is guaranteed. The
provider has to assign an annual return which is exactly i′, and this originates a
financial risk. Given that usually i′ is set at a low level, the risk is not severe. How-
ever, a participating life annuity is more usual than a fixed-benefit life annuity. In
this case, the development in time of the individual reserve is described as follows:

Vt +bt = Vt−1 (1+max{ηt gt , i
′})+(Vt +bt)q′x+t−1 (8.6.7)

where we have adopted the notation introduced for participating policies (see
Sect. 7.3); note, in particular, that we have considered the standard revaluation rate

r[1]
t (defined by (7.3.6)). The quantity bt is the annual amount to be paid at time

t, which includes the adjustments at previous years (see Sect. 7.2.2). As noted in
Sect. 7.3, the interest rate i′ in (8.6.7) is a minimum guaranteed annual return; the
financial risk to which the insurer is exposed requires an appropriate hedging.

The longevity risk implied by (8.6.6) or (8.6.7), which is originated by the
longevity of the annuitants, can be mitigated by a death benefit. Assume that a lump
sum Ct is paid at time t in case of death in year (t − 1, t). We refer to the case of a
fixed annual amount (i.e., to (8.6.6)). First, we note that given the fund available at
time r, Fr = S, if a death benefit is underwritten, then the annual amount is lower
than the amount b in (8.6.6); we denote the new amount by b′. The development in
time of the individual reserve is now described as follows:

Vt +b′ = Vt−1 (1+ i′)+(Vt +b′ −Ct)q′x+t−1 (8.6.8)

In face of reasonable choices for Ct , the quantity (Vt + b′ −Ct) is positive, so that
the provider is still exposed to the longevity risk, but lower then Vt + b in (8.6.6).
This reduces the need for mutuality, and then the importance of longevity risk. If
the death benefit consists of a life annuity in favor of the annuitant’s spouse, than
Ct would correspond to the actuarial value of a life annuity, which originates further
longevity risk for the provider (given that two lives are involved).

From the discussion above, it emerges that the main risks for a pension provider
are the financial and the mortality/longevity risks. The mortality risk, in particular,
arises during the working period, while the longevity risk in the post-retirement pe-
riod. While during the working period the mortality risk is not too important (due
to the range of ages involved), after retirement the longevity risk, and in particular
the systematic component, may become considerable. After retirement, it is worth
noting that when t is small (i.e., not too far away from the retirement time), the ex-
pected frequency of death is low, so that the contribution expected from mutuality in
(8.6.6) or (8.6.7) is small (and it is even smaller in (8.6.8)); conversely, the individ-
ual reserve is high, the size of the gain on investments is expected to be large (given
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that a large amount of money is invested), and then the financial risk may be im-
portant. When t is high (namely, far away from the retirement time), the rate q′x+t−1
is high, so that a major contribution is expected from mutuality, and this increases
the importance of the longevity risk; at the same time, the financial risk is moderate,
as the size of the assets is small. In order to understand how the importance of the
financial risk versus the longevity risk evolves in time in a life annuity, we suggest
to look at Example 5.4.4.

As a final source of risk, we mention the GAO (Guaranteed Annuity Option; see
the Remark in Sect. 7.9). With reference to the possible choice at retirement of a life
annuity, a guaranteed annuitization rate (GAR) 1

a′x+r
may be underwritten before re-

tirement time. Since the rate 1
a′x+r

requires the choice of an interest rate and a life

table, the provider is exposed to financial and longevity risk. The financial risk is
originated by the possibility that the interest rate included in the GAR is too high in
relation to the market rates at retirement time; the longevity risk is originated by the
possibility that at retirement time a new (projected) life table is available, according
to which the life table adopted in the GAR is considered to be no longer conserva-
tive. The exercise of the GAO is affected by the comparison between the current
annuitization rate (CAR) and the GAR, but also by the preferences of the member
in respect of receiving a life annuity (instead of entering into an income drawdown
process). In any case, the GAO implies a financial option, whose underlying is given
by the current annuitization rate (CAR). A fee must be applied by the provider, but
calculating this fee is hard work, as the financial option is very particular (for exam-
ple, the underlying is an annuitization rate) and its value depends on interest rates,
life tables, as well as on the member’s preferences in respect of the life annuity.

The management of the risks taken by the provider should follow the guidelines
described in Sect. 1.3. Risks must be identified, their importance must be assessed,
and appropriate actions must be taken either for controlling or financing the loss.
Monitoring is also an important step of the risk management, as the importance of
the several risks may change in time, as we have mentioned above.

8.7 References and suggestions for further reading

The book [40] is specifically devoted to post-retirement income planning, and life
annuities and pensions in particular. Aging and post-retirement solutions are dis-
cussed by [6].

In this Chapter we have not dealt with methods for funding benefits in group
pension plans, under an actuarial perspective. The reader interested in these issues
can refer to [9] (Part IV), [1], and [58]. Actuarial aspects of pension plans are dealt
with also by [10] (Chap. 20).

Financial risks in pension plans and related risk management solutions are fo-
cussed by [24].
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Finally, we recall that [46] also addresses the impact of future mortality trends
on the costs of pensions and life annuities.





Chapter 9
Non-life insurance: pricing and reserving

9.1 Introduction

The purpose of this Chapter is to introduce the fundamentals of the actuarial val-
uation of non-life insurance covers. First we give an overview of the contents of
non-life insurance products, then we focus on premium calculation and reserving
issues. While numerical examples are provided, specific covers are not dealt with
in detail. To develop premiums and reserves for specific lines of business, further
reading is required (some suggestions are provided in Sect. 9.13).

In detail, the main issues dealt with in this Chapter are the following:

• general aspects of non-life insurance products;
• main policy conditions limiting the liability of the insurer;
• premium calculation and related statistical bases;
• general aspects of the stochastic modeling of the payment of the insurer;
• technical reserves:
• profit assessment.

Problems other than those focused in life insurance technique will emerge. In
particular, while investment perspectives can be disregarded, modeling the uncer-
tainty of the payout of the insurer is a major issue. For a contract, such uncertainty
concerns the number of events originating a payment by the insurer, the amount of
each payment and the time of each payment. Clearly, in face of such uncertainty,
a stochastic modeling of the insurer’s payout could be considered more coherent
than a deterministic representation. Indeed, for some lines of business (e.g., those
subject to extreme events), a stochastic modeling is necessary to avoid biased valu-
ations. However, a deterministic modeling is satisfactory in many cases. Given the
introductory character of this Chapter, we mainly discuss deterministic models.

A. Olivieri, E. Pitacco, Introduction to Insurance Mathematics, 395
DOI 10.1007/978-3-642-16029-5 9, c© Springer-Verlag Berlin Heidelberg 2011
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9.2 Non-life insurance products

A short description of the main features of non-life insurance products is provided
in this Section, mainly aiming at introducing the basic items involved in premium
and reserve calculation.

9.2.1 General aspects

The contents of non-life insurance (also named general insurance or property/casualty
insurance) is compensating a person or an organization for a loss or a damage to her
property or for the liability to indemnify a third party for a loss or a damage arising
from specified contingencies such as fire, theft, injury, negligence, and so on. Health
insurance is the term used when the purpose is to compensate a person or her family
for the economic consequences of an alteration of the health status originated by a
sickness or an accident.

In a non-life insurance contract, the benefit amount is not stated in advance. Ex-
cept for covers with forfeiture benefits (see Sect. 9.2.2), the amount paid by the
insurer depends on the severity of the loss or damage suffered by the insured or by
a third party, in respect of which the insured is liable. Further, the total payout of
the insurer for one policy depends not just on the size of each loss, but also on the
number of events determining a loss or a damage to the insured or to a third party.
Both are unknown at the time of issue.

The insurance coverage period is usually short, typically one year; a single pre-
mium is the common arrangement. The contract may be subject to automatic re-
newal, so that the contractual relationship between the insured and the insurer ex-
tends over more than one year. However, premiums keep on being paid yearly, and
each of them is the single premium for the relevant year. The times of occurrence
of the adverse events are unknown, as well as the time of the relevant settlement. In
respect of the latter, the time-span of an annual policy may extend well beyond one
year, for example in case of litigation in setting the eligibility to or the size of the
benefit. This aspect must be allowed for, in particular, in the calculation of technical
reserves. The term policy year is used to refer to the coverage period, i.e. the period
in which claims are covered by the insurer.

9.2.2 Main categories of non-life insurance products

Non-life insurance includes a wide range of products, offering protection in respect
of many risks. We do not aim to provide a comprehensive and detailed presentation
of the possible contents of non-life insurance covers; we just give some information,
which are useful to understand the fundamentals of pricing and reserving.



9.2 Non-life insurance products 397

The non-life business may be segmented according to different perspectives.
Considering the possible contractor, we may distinguish between personal insur-
ance, addressed to individuals or families (e.g., motor insurance, health insurance,
homeowners insurance, and so on), and commercial insurance, addressed to busi-
ness entities (e.g., transportation insurance, workers compensation, and so on). In
relation to the possible beneficiary, we may classify property insurance, liability (or
casualty) insurance and health insurance. Property insurance provides financial pro-
tection against a possible loss of or damage to the property of the insured, including
loss of profits or emergence of costs; liability (or casualty) insurance offers finan-
cial protection against various liability claims; health insurance, as stated above (see
Sect. 9.2.1), offers financial protection for expenses or loss of income originated by
a sickness or an accident (we note that some forms of health insurance, typically
those with forfeiture benefits and a duration of more than one year, are classified
within life insurance).

Going into greater detail in respect of the insured contingency, we can identify the
following main classes of non-life insurance products: in the framework of health in-
surance, personal accident insurance (providing forfeiture benefits in case of bodily
injury or dismemberment), and sickness insurance (providing hospitalization ben-
efits and reimbursement of medical expenses); motor insurance (merging liability
and property insurance benefits in favor of car owners); marine and transportation
insurance (usually a separate line in respect of personal motor insurance); insurance
against fire and other damages to property; liability insurance; credit insurance.

With regard to the timing of claim settlement, the business may be short-tail or
long-tail; usually, liability business is long-tail, given possible litigations concern-
ing the existence and the size of the claim, while property insurance is short-tail,
as it is relatively easy to verify the existence and the size of a loss. Personal in-
surance lines tend to be less volatile than commercial lines; some lines of business
may be severely exposed to catastrophe risk, e.g. homeowners business located in
geographical areas subject to earthquakes or hurricanes.

From the presentation above, the large variety of products that fall within non-
life insurance emerges. While the general principles for pricing and reserving are
common to all the business lines, the specific methods applied in practice may differ
significantly, consistent with the features of the particular line of business dealt with.
As mentioned previously, we aim just at describing the general principles.

As mentioned in Sect. 9.1, an essential component of pricing and reserving mod-
els for non-life insurance is the representation of uncertainty, i.e. of the random
occurrence and amount of claims. However, a stochastic approach is not always
strictly required; for many purposes, deterministic models provide a satisfactory
representation.
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9.3 Loss and claim amount

As a first step in the valuation of a non-life insurance contract, in particular for pre-
mium calculation, the possible amount of claims must be assessed. Not necessarily
a loss suffered by the insured (emerging either from a damage to her property, a
liability, or medical expenses) is covered in full by the insurer. Limitations to the
insurer’s payment may be introduced through appropriate policy conditions.

Let us refer to a policy covering a given risk (for example, motor insurance),
with term one year. During the year, the policy will record a random number N of
claims. The possible outcomes of N are 0,1, . . . (similarly to Case 3d in Sect. 1.2.4).
Each claim will cause a random loss to the insured. We denote by Xk the loss to the
insured caused by claim k, k = 1,2, . . . . According to policy conditions, the insurer
will assess the claim amount Yk for claim k. Reasonably, Yk ≤ Xk, to prevent moral
hazard. In general terms, the claim amount Yk is a given function of the loss amount
Xk; such a function is called the claim function. Under the same contract, a different
claim function could be selected for each claim, so that (for example) the higher
is the number of claims reported so far, the more restrictive is the policy condition
applied to the current claim. For brevity, we will disregard this possibility, so that
the same claim function f will apply to any claim, i.e. Yk = f (Xk).

Remark The settlement of a claim originates some expenses, the so-called claim settlement or
claim processing expenses (see also Sect. 9.6). The total cost of a claim to the insurer, i.e. Yk and
claim settlement expenses, is sometimes called the loss amount. Further, sometimes Yk is meant to
already include claim settlement expenses, and hence it is Yk to be called loss amount. To avoid any
misunderstanding, we prefer to use the term “loss” just to refer to Xk; in the following (unless it is
necessary, due to the prevailing terminology in practice) we will refer to Yk as to the claim amount,
not inclusive of claim settlement expenses.

Under the full compensation arrangement, the insurer pays in full the loss suf-
fered by the insured or by a third party; thus, the claim function is defined as follows

Yk = Xk (9.3.1)

In property insurance, arrangement (9.3.1) is known as full value, while in liability
insurance as unlimited liability. Figure 9.3.1 provides a graphical representation. In
the case of property insurance, the maximum loss amount and then the maximum
payment by the insurer are given by the value V of the property (so the graph in
Fig. 9.3.1 should be read for Xk ≤V ); conversely, no natural cap is provided for the
payment by the insurer in the case of liability insurance (in this case, the graph in
Fig. 9.3.1 must be read for Xk > 0).

Remark Experience could suggest that some extreme values for the loss amount are unrealistic.
The maximum probable loss (or MPL), in particular, is defined as

MPL = inf{x : P[Xk ≤ x] = 1} (9.3.2)

In words: the MPL is the highest value for the loss originated by a (single) claim for which the
probability to occur is positive. In the case of property insurance, it may turn out MPL < V ; in the
case of liability insurance, we exclude to observe loss amounts higher than the MPL.
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Fig. 9.3.1 Claim amount according to full compensation

Arrangement (9.3.1) is clearly unsatisfactory for the insurer. Not only it is ex-
posed to the risk of large claims, but he is also facing small claims, which are usually
high in numbers and carry processing costs which may exceed the benefit amount.
Further, the insured could be careless in preventing accidents, given that the cost of
a claim is fully charged to the insurer.

Small claims can be avoided through deductibles. In particular, according to a
franchise (or minimum) deductible the insurer only intervenes if the loss amount
is above a given threshold, the deductible d. The claim amount is then defined as
follows (see also Fig. 9.3.2):

Yk =

{
0 if Xk ≤ d

Xk if Xk > d
(9.3.3)

Yk

Xk
d

d

Fig. 9.3.2 Claim amount according to the fran-
chise deductible

Yk

Xk
d

Fig. 9.3.3 Claim amount according to the
fixed-amount deductible
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According to a fixed-amount deductible, an amount d is always charged to the
policyholder; clearly, if the loss amount is lower than d, there is no payment by
the insurer. The claim amount is then defined as follows (see also Fig. 9.3.3 and, in
Sect. 1.3.4, Fig. 1.3.4 and Eqs. (1.3.4a) and (1.3.4b)):

Yk =

{
0 if Xk ≤ d

Xk −d if Xk > d
(9.3.4)

A proportion α of the loss (0 ≤ α < 1) is charged to the insured under the pro-
portional (or fixed-percentage) deductible; in this case, the claim amount is defined
as follows (see also Fig. 9.3.4 and, in Sect. 1.3.4, Fig. 1.3.3 and Eqs. (1.3.3a) and
(1.3.3b)):

Yk = (1−α)Xk ; 0 ≤ α < 1 (9.3.5)

Note that the higher is the loss amount, the higher is the cost charged to the insured.
The arrangement is usual in property insurance, in case the insured value, V ′, is
lower than the current value of the property, V . In this case, α = max{1− V ′

V ,0}.
Note that V is usually ascertained at the time of claim occurrence, while V ′ is set at
policy issue (or renewal time); due to a depreciation or a revaluation of the property,
it may well turn out V � V ′. In case V ′ < V , the insurer reduces accordingly the
claim amount, to avoid that at issue the insured reports an underestimated value of
the property, so to pay a lower premium. Of course, underinsurance (i.e., V ′ < V )
can be a specific choice of the insured. The proportional deductible is applied also in
covers where the behavior of the insured can affect the claim cost, such as sickness
insurance, theft insurance, all risks motor insurance, and so on.

Yk

Xk

α Xk

(1−α)Xk

Fig. 9.3.4 Claim amount according to the proportional deductible

In order to avoid large claims, the insurer may apply upper limits. If a limit value
M is adopted, the claim amount is defined as follows (see also Fig. 9.3.5):

Yk = min{Xk,M} (9.3.6)
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In liability insurance, the limit value is also called the capacity of the policy; in
property insurance (where M < V ), the arrangement is also called first loss.

Yk

Xk

M

M

Fig. 9.3.5 Claim amount according to the limit value

Policy conditions are usually arranged in various combinations: for example, in
property insurance the proportional deductible is usually joint to a franchise de-
ductible; in liability insurance, a deductible (either franchise or fixed-amount) and
a limit value are usual (in property insurance, the possible claim of the insurer is
naturally capped by the value of the property, if no limit is explicitly set; conversely,
in liability insurance, the maximum claim amount is completely unknown if a limit
value is not adopted). Table 9.3.1 provides an example of claim amount determined
according to alternative policy conditions, for three possible loss values.

Table 9.3.1 Claim amount under alternative policy conditions

Policy conditions
Loss

100 500 1 000

Full compensation 100 500 1 000
Franchise deductible, d = 150 0 500 1 000
Fixed-amount deductible, d = 150 0 350 850
Proportional deductible, α = 5% 95 475 950
Limit value, M = 900 100 500 900
Proportional deductible, α = 5%, and limit value, M = 900 95 475 900
Franchise deductible, d = 150, and limit value, M = 900 0 500 900
Franchise deductible, d = 150, proportional deductible,
α = 5%, and limit value, M = 900 0 475 900

The claim functions described above represent the most common forms of limita-
tion to the insurer’s liability. Insurance practice provides further examples of policy
conditions; some of them are in particular suitable for a specific line of business (and
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not for others). Overall, deductibles and limit values result in a premium reduction,
as the cost of the benefit turns out to be reduced. As already noted, deductibles
allow the insurer to avoid the settlement costs of small claims; thus, they also origi-
nate a reduction of the expense loading. Conversely, limit values, avoiding too large
claims, reduce the risk profile of the insurer and thus may lead to a lower safety
loading.

9.4 The equivalence premium

By definition, the equivalence premium is the expected present value of the insurer’s
payout (see Sect. 1.7.4). To calculate this value, specific items must be allowed for,
according to the type of insurance cover dealt with.

9.4.1 The items of the equivalence premium

In non-life insurance, the following items must be considered for the calculation of
the equivalence premium:

• the number of claims which may be reported by a policy during the coverage
period;

• the claim amount of each possible claim;
• the time of payment of each claim;
• the value of time.

As discussed in Sect. 9.3, the amount of a claim is a function of the loss suffered
by the insured, as it is defined by the policy conditions applied. To some extent,
also the number of claims is affected by policy conditions, as deductibles exclude
small claims. The description of the possible time-pattern of a claim, as well as
assumptions for its representation are discussed in the next Section.

9.4.2 The time-pattern of a claim

Figure 9.4.1 provides an example of the possible development of a single claim.
The claim occurs at time t1; such a time must fall before the policy term (which
we assume to be one year); if we denote by 0 the time of policy issue, then we
must have: 0 < t1 ≤ 1. Conversely, times t2, t3 and t4 may fall after the maturity
of the policy. The time-lag between occurrence and settlement may be due to the
administrative processing of the claim, to possible litigations, and so on. The time-
lag between occurrence and notification may run from some days (e.g. for property
or motor insurance) to years (e.g. for liability in health insurance, due to the nature
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of the damage, which may be perceived just after some time since when it was
incurred). Between times t1 and t2, the claim is incurred but not reported (IBNR).
Between times t2 and t4 it is outstanding. At time t4, the liability of the insurer
(for this specific claim) is written off. In normal situations, the closure of the claim
occurs right after settlement; in case of litigation, the closure may take place after
some time, due to the possibility of a further payment required to the insurer, or also
of a partial recovery of the settled amount.

t1 t2 t3 t4

| | | |

occurrence notification settlement closure

Fig. 9.4.1 The possible time-pattern of a claim

Fig. 9.4.1 suggests that the settlement of a claim may occur far away since occur-
rence. However, to the purpose of premium calculation, usually the following two
assumptions are adopted:

• the claim is reported as soon as it occurs, and it is immediately settled (in the
example of Fig. 9.4.1 we would assume: t1 = t2 = t3);

• the times of occurrence of claims are uniformly distributed over the year, so
that on average claims occur in the middle of the policy year (in the example of
Fig. 9.4.1 we would then assume: t1 = 1

2 ).

9.4.3 The expected aggregate claim amount

Let us refer to a policy with term one year. During the policy year, N claims may be
reported, N = 0,1, . . . . Realistically, the number of claims is limited, so that we can
refer to a maximum (reasonable) outcome nmax for N, as suggested by the physical
features of the insured risk (e.g., the risk cannot report more than one claim per
day), by policy conditions (e.g., no compensation is acknowledged if the number of
claims exceeds a given threshold), or by empirical evidence. Within a deterministic
setting, we do not need to take care of this aspect, so that we will let N take any
possible integer value. Then, Xk is the loss amount (to the insured) for claim k,
k = 1,2, . . . ; as discussed in Sect. 1.2.4 (see Case 3b), Xk is a random variable that
can take only positive values, given that the case of a null loss is expressed by N = 0.

Remark To be more precise, Xk is defined conditional on having observed N ≥ k. From a practical
point of view, this means that Xk is the loss amount of a claim which has occurred. However, the
random variable Xk is defined at issue, when the number of claims is not known. So, we should
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better assume that Xk is defined whatever the number of claims will be, but necessarily Xk = 0
if N < k, whilst Xk > 0 if N ≥ k. From a probabilistic point of view, this latter approach is more
accurate. However, to the purpose of simplifying the presentation, we can accept the idea that Xk
is the claim amount of a claim that has occurred; the main conclusions of the discussion are not
affected by this simplification.

According to policy conditions, the claim amount Yk (i.e., the payment made by
the insurer) is defined as a function of Xk, k = 1,2, . . . ,N; we note that, because of
deductibles, it is possible that Yk = 0, while Xk > 0. In practice, it often happens that
the insured does not report the claim if the loss amount is below the deductible; in
this case, also Yk would only take positive values.

Assuming that claims are immediately reported and settled, and that they occur
on average at the same time, i.e. in the middle of the policy year (see Sect. 9.4.2),
the aggregate claim amount (or total payout of the insurer) in a year for a policy is
defined as follows:

S =

{
0 if N = 0

Y1 +Y2 + · · ·+YN if N > 0
(9.4.1)

The equivalence premium, P, by definition the expected present value of the in-
surer’s payout, is then assessed as

P = E[S] (1+ i′)−1/2 (9.4.2)

where the expected value E[S] is calculated according to realistic assumptions for
the number of claims N and for the claim amounts Y1,Y2, . . . ,YN , whilst i′ is the
annual interest rate expressing the time-value of money. Usually, a conservative
assumption is adopted for i′; possibly, i′ = 0, due to the short duration of the policy.
For brevity, in the following we set i′ = 0 (a quite usual choice also in practice).

As commented in Sect. 1.4.4, the calculation of E[S] is usually performed accept-
ing the following assumptions:

1. the random variables Xk are independent of the random number N;
2. whatever the outcome n of N, the random variables X1,X2, . . . ,Xn are

a. mutually independent;
b. identically distributed (and hence with a common expected value, say E[X1]).

We further assume that

3. the same policy conditions are applied to any claim, so that also the random vari-
ables Y1,Y2, . . . ,Yn are identically distributed (it follows, in particular, that if we
assign the probability distribution of Y1, we also hold the probability distribution
of any claim amount Yk, k = 1,2, . . . ,n). The random variables Y1,Y2, . . . ,Yn, then,
have a common expected value (say, E[Y1]).

Thanks to such assumptions, S has a compound distribution, with components Y1,
the so-called claim severity, and N, the so-called claim frequency. Then, following
steps similar to those described in Sect. 1.4.4, the expected aggregate claim amount
E[S] can be factorized as follows (see (1.4.37)):
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E[S] = E[N]E[Y1] (9.4.3)

We note that, for the assessment of the expected total payout, and then of the
equivalence premium, all what we need is an estimate of the expected claim fre-
quency, E[N], and the expected claim severity, E[Y1]; see also Sect. 9.7 and Case 3d
in Sect. 1.2.4. No specific distributional assumption is required for N and Y1 (how-
ever, we stress that result (9.4.3) is underpinned by assumptions (1)–(3), which in
fact relate to the probability distribution of S).

9.5 The net premium

In order to determine the net premium, a safety loading must be added to the equiv-
alence premium. As is well-known (see Sect. 1.7.4 and 2.3.5), the safety loading is
a reward for the risks borne by the insurer; meanwhile, the safety loading represents
the expected profit to the insurer. In non-life insurance, an explicit assessment of the
safety loading is usually performed, as the data on which the claim frequency and
the claim severity are estimated are based on insurance experience (see Sect. 9.7),
so that they originate a realistic valuation of the insurer’s liability.

The rule adopted to determine the safety loading is called premium principle. To
be precise, a premium principle (as is suggested by the name) is a formula for the
calculation of the net premium; the safety loading can then be assessed subtracting
the equivalence to the net premium. A description of the more practical premium
principles follows.

According to the expected value principle, the net premium is calculated as fol-
lows:

Π = (1+α)E[S] (9.5.1)

where α is a given proportion (α > 0). The safety loading, α E[S], is proportional
to the expected total payout of the insurer. The advantage of this rule is that data
required for the calculation of the net premium coincide with those used for the
equivalence premium; the disadvantage is that the safety loading is not based on a
risk measure. An expression alternative to (9.5.1) is as follows:

Π = E[S]+κΠ (9.5.2)

where the safety loading, κΠ , is expressed as a proportion of the net premium. It
turns out:

Π = E[S]× 1
1−κ

(9.5.3)

Clearly, (9.5.1) and (9.5.2) are equivalent, provided that α = κ
1−κ .

A safety loading proportional to a risk measure is originated by the variance
principle. In this case, the net premium is assessed as follows:

Π = E[S]+λ Var[S] (9.5.4)
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where λ (λ > 0) is a given intensity.

Remark We note that λ Var[S] must be an amount; since Var[S] is an amount to the square, the
dimension of λ must be that of 1

amount . Otherwise said, λ is an intensity.

The safety loading, λ Var[S], is proportional to the variance; its quality as a risk
reward depends on the appropriateness of the variance in quantifying the risks orig-
inated by S. To understand if this is the case, the probability distribution of S should
be analysed. If it is “regular enough”, i.e. it is symmetric and short tailed, then the
variance is a good risk measure; see Sect. 9.8 for comments in this regard. We point
out that (9.5.4) requires further data in respect of those used for the calculation
of the equivalence premium; this justifies the large preference, in practice, for the
equivalence principle.

Remark It is interesting to obtain the expression of Var[S], to understand in detail what infor-
mation are required for implementing rule (9.5.4). To shorten the notation, as in Sect. 1.4.4 we let
P[N = h] = πh. In general terms

Var[S] = E[S2]− (E[S])2 (9.5.5)

We already know the expression of E[S] (see (9.4.3)), so now we need to work out E[S2]. We have

E[S2] = ∑∞
h=1 πh E[S2|N = h] = ∑∞

h=1 πh E

[(
∑h

i=1 Yi
)2 |N = h

]
= ∑∞

h=1 πh
(
∑h

i=1 E[Y 2
i |N = h]+∑h

i=1 ∑ j: j �=i E[Yi Yj|N = h]
) (9.5.6)

Thanks to assumption (1) (and (3)), E[Y 2
i |N = h] = E[Y 2

i ] for all i and E[Yi Yj|N = h] = E[Yi Yj]
for all i, j. Thanks to assumption (2a) (and (3)), E[Yi Yj] = E[Yi]E[Yj] for all i, j. Finally, thanks to
assumption (2b) (and (3)), E[Y 2

j ] = E[Y 2
1 ] for all i and E[Yi] = E[Y1] for all i. Replacing into (9.5.6),

we obtain

E[S2] = ∑∞
h=1 πh hE[Y 2

1 ]+∑∞
h=1 πh h(h−1)(E[Y1])2

= E[N]E[Y 2
1 ]+E[N (N −1)] (E[Y1])2 = E[N]Var[Y1]+E[N2] (E[Y1])2 (9.5.7)

When we plug (9.5.7) into (9.5.5), we finally find

Var[S] = E[N]Var[Y1]+Var[N] (E[Y1])2 (9.5.8)

from which we learn that to implement rule (9.5.4) we first need an estimate of the expected
claim frequency, E[N], and the expected claim severity, E[Y1], i.e. the same data required for the
equivalence premium; we further need an estimate of the variance of the claim frequency, Var[N],
and the variance of the claim severity, Var[Y1].

Quite similar to the variance principle, the standard deviation principle assesses
the net premium as follows:

Π = E[S]+β
√

Var[S] (9.5.9)

where β (β > 0) is a given proportion. The main advantage of (9.5.9) in respect
to (9.5.4) consists in the fact that the parameter β is unit-free (while, as recalled
above, λ is an intensity). Apart from this, the rationale of the two rules is similar; in
particular, the same amount for the net premium could be determined under the two
rules, provided that β = λ

√
Var[S].
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Example 9.5.1. Assume E[S] = 1.30 and Var[S] = 13. The equivalence premium is:
P = E[S] = 1.30. Then assume that the net premium is: Π = 1.40; trivially, the safety
loading is: Π −P = 0.10. Such a value could have been obtained (alternatively) as
follows:

• through the expected value principle, taking: α = Π
E[S] −1 = 7.692% or κ = 1−

E[S]
Π = 7.143%;

• through the variance principle, taking: λ = Π−E[S]
Var[S] = 0.00769;

• through the standard deviation principle, taking: β = Π−E[S]√
Var[S]

= 2.774%.

�

We have commented above on some practical implications of the various pre-
mium principles. It is worthwhile to note that a premium principle defines a func-
tional H which assigns a positive real number (namely, the net premium Π ) to the
distribution function of the aggregate claim amount S; thus, Π = H[S]. Some math-
ematical properties should be satisfied by H, which are relevant from a practical
point of view. We recall the main properties.

(P1) For any S, it must turn out:
H[S] > E[S] (9.5.10)

This is an obvious requirement: the safety loading must be positive.
(P2) If S1 and S2 are two independent risks (i.e., the aggregate claim amounts of two

independent risks), we require:

H[S1 +S2] ≤ H[S1]+H[S2] (9.5.11)

This prevents the insured to find convenience in fragmenting the risk.
(P3) Given two independent risks S1 and S2, we require:

H[S1] ≤ H[S1 +S2] (9.5.12)

If the cover protects against a wider range of risks, the premium should be higher.
(P4) Given two positive real numbers a and b, we require:

H[aS +b] ≥ aH[S]+b (9.5.13)

The constant b represents an increase of the claim amount, common to all the
possible claims; similarly, a represents a proportional increase of any possible
claim. If the possible amount of any claim increases, we expect a similar increase
in the premium. We note that the property is not satisfied by the variance and the
standard deviation principles (the variance principle fulfils (9.5.13) only if b = 0).

(P5) If the claim amount cannot exceed an amount K, or if there exists a positive
amount K such that P[S ≤ K] = 1, then it must turn out:

H[S] ≤ K (9.5.14)
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Also this property is quite obvious: no insured would rationally be willing to pay
a premium higher than the maximum compensation she can realistically obtain
from the insurer.

We mention a last premium principle. The event S > Π represents a situation of
(economic) loss to the insurer. According to the percentile principle, the net pre-
mium Π must be such that

P[S > Π ] = ε (9.5.15)

where ε (ε > 0) is the accepted loss probability. To apply (9.5.15), the probability
distribution of S must be assigned; the technical implementation of rule (9.5.15)
may be time-consuming, and clearly data for the estimate of the whole probability
distribution of S are required. In practice, simpler rules are preferred, unless extreme
risks are transferred to the insurer.

9.6 The expense-loaded premium

Expenses charged to a non-life insurance policy include: the initial commission;
administrative and other expenses; claim settlement expenses. The latter are some-
times reported joint to claim amounts, so that an explicit loading is not applied (to
avoid a double charge). Expenses may be fixed or floating; in this latter case, their
amount may depend either on the number of claims, the amount of premiums or the
amount of claims. In most practice, a forfeiture loading rule is adopted, which how-
ever may be justified only considering in detail the several types of expenses which
may be charged to the policy. In the following, we examine such a rule, assuming
that the net premium has been calculated according to the expected value principle.

We consider the following classes of expenses:

• initial commission: Θ [A] (stated as a fixed amount);
• administrative and other expenses: Θ [G] (stated as a fixed amount);
• claim settlement expenses: Θ [S] (stated as an amount per claim).

The expense-loaded (or gross) premium, Π [T], is defined as follows:

Π [T] = E[S]+κ Π [T] +Θ [A] +Θ [G] +Θ [S]
E[N] (9.6.1)

where κ is the safety-loading proportion, applied to the expense-loaded premium
(instead of the net premium). We note that if claim settlement expenses are included
in the cost of claims, then Θ [S] = 0.

Replacing (9.4.3) into (9.6.1) and rearranging, we obtain

Π [T] = E[S]
1+ Θ [S]

E[Y1]

1−κ
+

Θ [A] +Θ [G]

1−κ
(9.6.2)

Setting: δ =
1+ Θ [S]

E[Y1]
1−κ and e = Θ [A]+Θ [G]

1−κ , we finally get to the forfeiture formula
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Π [T] = δ E[S]+ e (9.6.3)

quite common in practice. We note that, in principle, the parameters δ and e should
reflect the various expenses loaded, as well as the safety-loading proportion. In prac-
tice, some approximated choices could be adopted.

Example 9.6.1. Assume E[S] = 1.30 and E[N] = 0.13. Let the expense-loaded pre-
mium be: Π [T] = 1.50. Such a value could have been obtained assuming the follow-
ing loading parameters:

• safety loading: κ = 7% (per unit of expense-loaded premium);
• initial and administrative expenses: Θ [A] +Θ [G] = 0.0924 (fixed amount);
• claim settlement expenses: Θ [S] = 0.02 (amount per claim).

We find: δ = 1.07742 (proportion of the expected aggregate claim amount) and
e = 0.10 (fixed amount).
�

9.7 Statistical data for the equivalence premium

In this Section we illustrate some quantities which can be used to estimate the ex-
pected claim frequency, E[N], the expected claim severity, E[Y1], and then the ex-
pected total payout for a policy, E[S]. Data are collected from a set of policies with
specified features.

Remark Assume that all policies are termed one year. As already mentioned in Sect. 9.2.1, the
time between the issue (or renewal) time of a policy and its maturity (or next renewal time) is
called policy year. Reasonably, such a period does not coincide with the calendar year (unless the
policy is issued on January 1). Data on claims may be collected either on a calendar or a policy year
basis. For pricing, policy year data are appropriate, as the premium has to match the cost of claims
arising during the life of the policy. Conversely, when reporting the result of the management of
the portfolio, the natural reference is to the calendar year. In the following, we will specify which
is the form of data we are referring to.

9.7.1 Risk premium, claim frequency, loss severity

In this Section, we refer to a homogeneous portfolio, consisting of r policies (or in-
sured risks), all issued at the same time and all with duration one year. Homogeneity
of the policies means, in particular, that they are similar in respect of: the type of
risk covered (e.g., fire insurance, motor insurance, or others), policy conditions (de-
ductibles, limit values or insured valued), the propensity to incur into a claim, the
possible severity of a claim, and so on. The policy year is the same for all the poli-
cies, so that we can easily collect data on this basis. We stress that all the policies
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are exposed for one year (the common policy period) to the risk of incurring into
one or more claims.

Assume that, during the (policy) year, policies report z claims in total, z � r,
with claim amounts y1,y2, . . . ,yz. Note that the information is aggregate, as we just
know that z claims have been reported in the portfolio, while we do not know which
policies have reported such claims.

The ratio between the total payout for the portfolio and the number of policies,
i.e. the claim amount per policy

Q =
y1 + y2 + · · ·+ yz

r
(9.7.1)

is called risk premium or average claim cost. Should each policy have paid a (net)
premium Π = Q, then the insurer would be on balance, as the total inflow amount
would be rQ, the same as the outflow amount, y1 + y2 + · · ·+ yz; for this reason, the
quantity Q is looked at as an “observed premium”.

The quantity Q provides an estimate of E[S] (it is reasonable to add a safety
loading to Q, in face of random fluctuations). It is interesting to split Q as follows.
The ratio

n̄ =
z
r

(9.7.2)

represents the average number of claims per policy, or the average claim frequency.
Conversely, the ratio

ȳ =
y1 + y2 + · · ·+ yz

z
(9.7.3)

represents the average claim amount per claim, or the average claim severity. Note,
in particular, that n̄ expresses an estimate of E[N], while ȳ provides an estimate of
E[Y1]. Then we have

Q = n̄× ȳ (9.7.4)

which is the statistical estimate of (9.4.3).
With regard to the average claim frequency, the following splitting is of interest.

Let zmax be the maximum number of claims reported by one policy (clearly, zmax ≤ z)
and rh the number of policies realizing h claims (h = 0,1, . . . ,zmax). The number of
policies can be split as follows:

r = r0 + r1 + · · ·+ rzmax (9.7.5)

while the number of claims can be written as:

z = r1 +2r2 + · · ·+ zmax rzmax (9.7.6)

The average claim frequency can then be factorized as follows:

n̄ =
r1 +2r2 + · · ·+ zmax rzmax

r1 + r2 + · · ·+ rzmax

×
(

1− r0

r

)
(9.7.7)
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The first ratio (which could also be written as z
r−r0

), represents the average number
of claims per policy reporting claims; the quantity r0

r expresses the no-claim fre-
quency. Thus, the quantity in brackets in (9.7.7) represents the average frequency
of at least one claim. It is interesting to read (9.7.7) as the statistical estimate of
E[N], appropriately expressed. As recalled in (1.4.31) (see Sect. 1.4.3), the expected
number of claims per policy is defined as follows:

E[N] =
+∞

∑
n=0

n×P[N = n] =
+∞

∑
n=1

n×P[N = n] (9.7.8)

Such a quantity can be decomposed as

E[N] = E[N|N = 0]×P[N = 0]+E[N|N ≥ 1]×P[N ≥ 1] (9.7.9)

which reduces to
E[N] = E[N|N ≥ 1]×P[N ≥ 1] (9.7.10)

given that E[N|N = 0] = 0. It is easy to see that (9.7.7) provides a statistical estimate
of the factors in the right-hand side of (9.7.10).

Equation (9.7.7) is useful to get some information (at least at an aggregate level)
about the concentration of claims on few policies, and then on the acceptability of
the independence assumptions underlying (9.4.3). Indeed, we note that for a given
value of the average claim frequency n̄, the higher is the ratio r1+2r2+···+zmax rzmax

r1+r2+···+rzmax
,

the stronger is the concentration of claims on few policies. Clearly, if a high concen-
tration emerges, the independence assumptions should be checked through further
investigations, as correlation effects could be present when several claims are re-
ported by a policy.

Example 9.7.1. In Table 9.7.1 the average claim frequency experienced in two port-
folios is reported. Both portfolios consist of 100 000 policies and have reported the
same number of claims. However, portfolio B experiences a higher concentration
of claims on few policies, as witnessed by the average number of claims per policy
with claims. Whilst for portfolio A the low value of the average number of claims
per policy with claims suggests that the independence assumptions could be con-
sidered reasonable, for portfolio B some further investigation could be necessary in
this respect.
�

9.7.2 Units of exposure: the case of heterogeneous portfolios

An exposure unit is a measure of some feature of the insured risk which has proved
to bear a close correspondence to the claim experience. Examples of exposure units
are as follows: insured value (suitable for property insurance), time spent in the
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Table 9.7.1 Claim experience in two portfolios

both portfolios

number of policies, r 100 000
number of claims, z 13 000
total claim amount, y1 + y2 + · · ·+ yz 13 000 000

portfolio A portfolio B

risk premium, Q 130 130
average claim severity, ȳ 1 000 1 000
average claim frequency, n̄ 0.13 0.13
average number of claims per policy with claims, z

r−r0
1.08 1.80

average frequency of at least one claim, 1− r0
r 0.118 0.072

portfolio in a given calendar year (used in motor insurance), payroll (for workers
compensation insurance). Exposure units are used to summarize appropriately the
cost of claims incurred or the amount of premiums earned. One example in this
respect is provided by the risk premium, introduced in Sect. 9.7.1.

Refer to a property insurance coverage. The risk premium, as defined by (9.7.1),
requires that policies are homogeneous in respect of the insured value, the time of
entry and the duration; in these circumstances, to get an average information about
the claim cost, we simply divide the total portfolio payout by the number of policies.
We now address how we should measure the average claim cost if the insured values
are different.

Let V ′(1),V ′(2), . . . ,V ′(r) be the insured values of the r policies (for which we
still assume the same type of cover, the same time of entry and the same duration).
Reasonably, the higher is the insured value V ′( j), the higher should be the possible
claim amount that we expect from a policy. The average claim cost should then be
measured as follows:

θ =
y1 + y2 + · · ·+ yz

V ′(1) +V ′(2) + · · ·+V ′(r) (9.7.11)

i.e. as an average claim amount per unit of exposure (clearly, θ is unit-free). We
note that it is reasonable that those policies with a higher insured value pay a higher
premium. In particular, the same premium rate (i.e., the same premium per unit of
insured value) could be applied to all the policies (given that, apart from the insured
value, they are similar); the premium amount would then be proportional to the
insured value. If θ is the premium rate applied, then the total inflow amount of the
insurer would coincide with the total outflow amount:

θ (V ′(1) +V ′(2) + · · ·+V ′(r)) = y1 + y2 + · · ·+ yz (9.7.12)

In this perspective, θ can be looked at as an observed premium rate.
Let define the average insured value as follows:

V̄ ′ =
V ′(1) +V ′(2) + · · ·+V ′(r)

r
(9.7.13)
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which, clearly, represents the average exposure per policy. The observed premium
rate θ can be split as follows:

θ = n̄× ȳ

V̄ ′ =
Q

V̄ ′ (9.7.14)

The quantity ȳ/V̄ ′ is named average claim degree. We note that, similarly to the
case of the homogeneous portfolio (see Sect. 9.7.1), the quantity Q = n̄× ȳ still
expresses the average claim amount per policy; however, due to the different insured
values, such a piece of information is not appropriate neither for pricing, nor for
summarizing the cost of claims incurred.

9.7.3 Units of exposure: the number of policy years

So far, we have assumed that policies are issued (or renewed) at the same time;
more realistically, issue or renewal times are different. As a first consequence, policy
years are different. It may then become easier, or more natural, to collect claim on a
calendar year basis (which, trivially, is a term of reference common to all policies),
and this is what we will assume from now on.

A second consequence of the different times of issue (or renewal) is the follow-
ing. When the policy year is the same for all the policies, the number of policies
which are in-force at a given time (say, at issue) also represents the number of poli-
cies which are overall in-force during the year we are referring to. Conversely, this
correspondence does not hold when policies have different issue or renewal times.
This should be considered when calculating summaries of the cost of claims. For
example, in the risk premium (see (9.7.1)), the total amount of claims incurred in
one year is compared to the number of policies which, during the year, have been
exposed to the risk of generating those claims. In this Section, we discuss how we
should assess the denominator of Q when policies have different policy years. As
stated above, we assume that data are collected on a calendar year basis; in partic-
ular, then, y1 + y2 + · · ·+ yz is the total payout for a portfolio in a given calendar
year.

We call number of the exposed to risk (or number of policy years or, in the specific
case of motor insurance, number of car years) the time totally spent in the portfolio
during the calendar year by the policies which are in-force for a part (at least) of
such a year. For example, if a policy is issued on July 1 and a second policy is
issued on February 1 of year t, the number of the exposed to risk during year t is
6

12 + 11
12 = 17

12 ; actually, the policy issued on July 1 stays in the portfolio for half a
year during year t (and for half a year during year t +1), while the policy issued on
February 1 spends 11 months in the portfolio in year t (and one month in year t +1).

The calculation of the number of policy years may be performed exactly, consid-
ering for each policy the exact time spent in the portfolio during the year, or approx-
imately. Clearly, exact calculation techniques do not require any further comment.
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As far as approximate methods are concerned, there are some alternative solutions.
The method to be preferred depends on the type of data available. We illustrate
two common approaches; for brevity, we do not give formal details (which would
be cumbersome), but we introduce such approaches through two examples. This is
enough to understand how the approximate methods work.

Example 9.7.2. Assume that we are provided with the information regarding the
number of policies entering a given portfolio, on a monthly basis; see Table 9.7.2
for an example. Policies may be newly issued or renewed. All are assumed to have
term one year, and to stay in the portfolio for one year.

Table 9.7.2 Number of policies according to the period of issue or renewal

Number of policies

Month Year t −1 Year t

1/1–31/1 74 75
1/2–28/2 89 82
1/3–31/3 82 87
1/4–30/4 69 75
1/5–31/5 81 75
1/6–30/6 95 90
1/7–31/7 98 95
1/8–31/8 79 83
1/9–30/9 85 90

1/10–31/10 93 90
1/11–30/11 90 98
1/12–31/12 70 80

We can assume that, within each month, policy anniversaries are uniformly
spread. Thus, on average each policy enters in the middle of the relevant month.
Split each year in 24 periods, and let 0 be January 1; then, in each year, the times
of possible issue or renewal of a policy are: 1, 3, . . . , 23. The 74 policies issued or
renewed on January (i.e., at time 1) of year t − 1 spend in the portfolio 23 periods
(over 24) in year t − 1, and 1 (over 24) period in year t; the 89 policies issued (or
renewed) on February (i.e., at time 3) of year t −1 spend in the portfolio 21 periods
(over 24) in year t −1, and 3 (over 24) periods in year t; . . . ; the 80 policies issued
(or renewed) on December (i.e., at time 23) of year t spend in the portfolio 1 pe-
riod (over 24) in year t, and 23 periods (over 24) in year t + 1. See Fig. 9.7.1 for a
graphical representation.

The total time spent by policies in the portfolio in year t (namely, the number of
policy years in year t) can then be calculated as follows:

74× 1
24 +89× 3

24 + · · ·+70× 23
24

+75× 23
24 +82× 21

24 + · · ·+80× 1
24 = 1003.96

(9.7.15)

�
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Fig. 9.7.1 Graphical representation of the time spent by each group of policies in the portfolio

The method described in Example 9.7.2 is called method of the 24-ths. Possible
adjustments can be easily introduced if data on the policy inception times are more
rare (e.g., if they are available bimonthly or quarterly), or if policies have a duration
shorter than one year. In case data are available on a quarterly basis, the method is
called of the 8-ths (as the year would be split into 8 periods, in this case); if they are
available on a bimonthly basis, the year would be split into 12 periods, and then the
method would be called of the 12-ths. In general, if data are available on a k

2 basis,
the method is called of the k-ths (as the year is then split into k periods).

Example 9.7.3. We now give an example of the census method. Assume that data
provide us with the information about the number of policies in-force at some spe-
cific dates; see Table 9.7.3 for an example. Again, we assume that all the policies
are termed one year, and that they remain in the portfolio for one whole year.

Table 9.7.3 Number of policies in-force in year t, on a monthly basis

Time
Number of

policies in-force

1/1 1 200
1/2 1 320
1/3 1 405
1/4 1 380
1/5 1 300
1/6 1 400
1/7 1 450
1/8 1 350
1/9 1 500
1/10 1 650
1/11 1 700
1/12 1 800
31/12 1 750

We can first calculate the average number of policies in-force in each month, as
depicted in Table 9.7.4.
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Table 9.7.4 Average number of policies in-force in year t, on a monthly basis

Month Average number of policies in-force

1/1–31/1 1200+1320
2 = 1260.00

1/2–28/2 1320+1405
2 = 1362.50

1/3–31/3 1405+1380
2 = 1392.50

1/4–30/4 1380+1300
2 = 1340.00

1/5–31/5 1300+1400
2 = 1350.00

1/6–30/6 1400+1450
2 = 1425.00

1/7–31/7 1450+1350
2 = 1400.00

1/8–31/8 1350+1500
2 = 1425.00

1/9–30/9 1500+1650
2 = 1575.00

1/10–31/10 1650+1700
2 = 1675.00

1/11–30/11 1700+1800
2 = 1675.00

1/12–31/12 1800+1750
2 = 1775.00

Each of the groups of policies quoted in Table 9.7.4 spend on average one month
in the portfolio. Thus, the number of policy years can be calculated as follows:

1260× 1
12

+1362.50× 1
12

+ · · ·+1775× 1
12

= 1477.50 (9.7.16)

Note that the number of policy years assessed through (9.7.16) corresponds to the
simple arithmetic mean of the average number of policies in-force in each month,
as each group of policies is assumed to spend the same time (i.e., one month) in the
portfolio.
�

Also the census method may be easily adjusted if data are more rare, or policies
do not spend one whole year in the portfolio.

9.7.4 Updating the risk premium to portfolio experience

The data set expressing the claim experience of the insurer in a given portfolio could
be inadequate for pricing, either because:

a. the portfolio has been recently issued, and thus has not yet gained an adequate
experience;

b. the behavior of claims is not stable in time, but evolves according to some trend
(possibly unknown);

c. data are sparse and the sample of the observed claims is considered to be too
small.
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In case (a) and (c), the problem relates to the size of the sample, which is consid-
ered to be too small. Data for premium calculation are then usually obtained from
other portfolios (possibly belonging to other insurers), taking care that they have
features similar to the portfolio dealt with. In case (b), the problem has a different
nature. The inadequacy of the data base can be traced to the underlying (unknown)
dynamics; experience could be rich enough but, because of the trend, the observed
data reflect old information. Appropriate adjustments are required before such data
can be used for estimating the cost of future claims. The two situations ((a) and (c)
on the one hand, (b) on the other) require a different treatment; a similar method-
ological structure can be designed, but with different implementing profiles. The
dynamic problem can be considered an advanced topic, which for non-life insur-
ance is of particular interest just for some lines of business; given the introductory
character of this Chapter, we do not give details in this regard. In the following, we
refer to a static framework and illustrate the idea of updating in time the pricing
basis to new experience; we make explicit reference to case (a) above.

We refer to an insurer issuing a coverage for which it has no direct experience,
and thus no data. To set the premium, a reference population must be selected, which
has already (or almost) reached a steady state in respect of claim experience, and can
thus provide reliable data. Typically, the reference population is the portfolio of an-
other insurer, who deals with the same or a similar coverage; the relevant experience
is assumed to be consistent with what will emerge from the new portfolio. Hence-
forth, we assume for brevity that policies are homogeneous in respect of the insured
value and that the appropriate exposure unit is the number of policy years.

Let 0 be the time at which the new portfolio is issued and Q0 the risk premium
observed in the reference population. Given that Q0 is the only available informa-
tion, the (equivalence) premium for the new portfolio is set simply as

P0 = Q0 (9.7.17)

At time 1, the new portfolio has gained some experience; let Q1 be the average
claim cost observed in the time-interval (0,1). At time 1, the insurer has to decide
how to set the premium for the next year, say P1. Three choices are available:

1. the premium is not revised, and thus P1 = P0;
2. the premium is revised, accounting for the new information only, i.e. P1 = Q1;
3. the premium is revised according to the new experience, but continuing to ac-

count also for the initial information.

Choice 1 has the advantage of providing stability to the premium, which is good
from a commercial point of view; however, comparing Q0 with Q1 one can perceive
some differences between the claim experience of the new portfolio and the refer-
ence population, which would be better not to disregard. On the other hand, choice
2 has the disadvantage that Q1 may turn out to be exceptionally high or low, for
accidental reasons (e.g.: the portfolio is not yet large enough; the policies issued in
the first year are self-selected, and hence they do not yet express appropriately the
average claim experience of the portfolio; and so on). Choice 3 clearly represents an
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intermediate solution. In particular, a sound way to set the premium for the second
year, i.e. at time 1, is:

P1 = α1 Q1 +(1−α1)Q0 (9.7.18)

where α1, 0 < α1 < 1, is a given proportion expressing the weight assigned to the
new information (the cases α1 = 0 and α = 1 are excluded, as they correspond,
respectively, to choice 1 and choice 2 above). Reasonably α1 is closer to 0 than 1,
given that the experience gained on the new business is not yet stable.

At time 2, the average claim cost can be assessed with reference to the experi-
ence gained in (0,2). We let Q2 denote the ratio (9.7.1) based on the data collected
in (0,2). Such a quantity embeds a wider experience than Q1, but can still be consid-
ered subject to more fluctuations than Q0, as the experience of the insurer is less rich
than that relating to the reference population. Similarly to time 1, the equivalence
premium at time 2 is set as follows

P2 = α2 Q2 +(1−α2)Q0 (9.7.19)

where α2 is the new weight assigned to the portfolio experience. Reasonably, α2 >
α1, but still 0 < α2 < 1. In general, a reasonable rule for setting the premium at time
t is the following:

Pt = αt Qt +(1−αt)Q0 (9.7.20)

where Qt is the average claim cost experienced within the new portfolio in the period
(0, t) and αt is the weight assigned at time t to such information. Reasonably, 0 <
α1 < α2 < · · · < αt ≤ 1.

Remark In Sect. 9.7.1, we have described the risk premium as a quantity based on observations
collected in one year. Clearly, the ratio Q could be referred to a wider time span. The advantage
of increasing the time-interval of observation consists in enlarging the data-set. Conversely, some
disadvantages follow: claim amounts could be subject to inflation; given that policies are termed
one year, the homogeneity of the portfolio may be weakened by new entries (possibly joint to a
reduction of renewals); the claim frequency may be subject to changes in time (due to the devel-
opment of new technologies, the introduction of a new regulation, and so on). Thus, the average
claim amount per policy may be exposed to systematic deviations, which are not detected if the
risk premium is assessed with reference to the average experience over more than one year. When
adopting approach (9.7.20) for premium calculation, clearly one assumes that systematic devia-
tions are either not present or negligible.

A premium calculated through (9.7.20) is called experience premium, and the
approach described by (9.7.20) an experience-rating system; more precisely, since
the premium turns out to be updated on the experience gained on a portfolio, the
system is referred to as a collective experience-rating. Fig. 9.7.2 illustrates the pro-
cess of gradually updating the equivalence premium to portfolio experience, which
is realized through (9.7.20).

Formula (9.7.20) is an example of a credibility model, in which information col-
lected from some external source are gradually merged with those collected on a
specific population. The coefficient αt is called a credibility factor and it expresses
the relative reliability (or “credibility”) of the specific information. The wider is the
volume of the specific data relative to the volume of those obtained from the external
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Fig. 9.7.2 Updating the premium according to collective experience-rating

source, the higher is the credibility acknowledged to the former. The relation

α1 < α2 < · · · < αt < .. . (9.7.21)

expresses a (reasonable) increase in time of the credibility acknowledged to the
specific experience, in respect of that witnessed by the reference population. When
αt = 1, full credibility has been reached, and the information obtained from the
external source can be disregarded.

Several theoretical models can support the choice of the credibility factors αt . A
distributional assumption must be adopted for the aggregate claim amount S (see, for
some remarks in this regard, Sect. 9.8). It goes beyond the scope of this presentation
to deal with a detailed stochastic modeling of non-life insurance; thus, we do not
develop such a discussion. We just give some comments. We recall that the average
claim cost Q (Qt , in the discussion above) represents an estimate of the expected
aggregate claim amount, E[S]. One idea is to assign full credibility to Qt when the
probability that the estimate Qt is close enough to the true underlying value of the
aggregate claim amount is at a given (high) level (say, 0.95). The notion of “close
enough” clearly requires to be formalized, as follows

P[(1−a)Qt < S ≤ (1+a)Qt ] = ε (9.7.22)

where a states the width of the band around S (reasonably, a should be low, say 0.01),
and ε is the required probability level (say, 0.95). For an example, see Sect. 9.8.3.
An alternative way, more widely known, to assess the credibility factors involves
Bayesian statistic techniques; for some references, see Sect. 9.13.
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9.8 Stochastic modeling of the aggregate claim amount

Most of the discussion in Sect. 9.7 assumes that the insurer can rely on an appro-
priate data set, in which case assessments can be based on the empirical distribution
of the aggregate claim amount. In some situations, however, calculation are only
possible if a theoretical model is adopted for the random variable S. We stress that,
even when dealing with empirical distributions, assumptions about the probability
distribution of S cannot be avoided. Indeed, in the simple setting of Sect. 9.7, not
invoking a specific choice for the distribution of S, it is anyhow necessary to accept
a compound distribution for S; see also Sect. 9.4.3.

When a theoretical distribution is introduced, several assumptions are accepted;
from a practical point of view, each assumption implies some simplification, which
leads to a representation more or less far away from (or more or less close to) real sit-
uations. Further, dealing with theoretical distributions may require some analytical
expertise (and, because of this, someone may consider that working with empirical
distributions is preferable to the adoption of theoretical models). However, the prop-
erties of theoretical distributions facilitate the analysis of many problems, or even
make such an analysis possible. We also note that a theoretical distribution is sum-
marized by a small number of parameters, while an empirical distribution requires
to work always with a large amount of data.

As mentioned earlier, it goes beyond the aim of this book to deal in details with
the theoretical distribution of the aggregate claim amount. However, we think that
some information, and some examples, may be useful to understand which kind of
analyses may be developed through this approach.

9.8.1 Modeling the claim frequency

From definition (9.4.1) for the aggregate claim amount, it emerges that to model S
we first need to model the number of claims, N. Several choices are possible, some
of which are more interesting (or useful) for practical applications.

We start from an elementary case. If a policy may experience at most one claim
during the coverage period, then N follows a Bernoulli distribution, i.e.

N =

{
0 with probability 1− p

1 with probability p
(9.8.1)

(see Sect. 1.2.3 and 1.4.2), where p is the claim probability. The law has one pa-
rameter, namely p, which should be estimated through the average claim frequency
n̄.

In the non-life insurance business, just for few lines (and, possibly, just under
some restrictive policy conditions) the assumption that each policy may experience
at most one claim is consistent with evidence. In the more realistic case in which a
policy may experience more than one claim, we must first wonder whether claims
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are independent or not. The usual assumption is that they are independent; intu-
itively, this is a reasonable assumption when we refer to claims reported by differ-
ent policies. But now we are referring to one policy, and in this case some form of
correlation among claims may be present; henceforth, we will keep the assumption
of independence among claims also when referring to a policy. If we know that the
maximum number of claims per policy is nmax, and that each claim has the same
probability p to occur, then N follows a Binomial distribution, i.e.

P[N = n] =
(

nmax

n

)
pn (1− p)nmax−n ; n = 0,1, . . . ,nmax (9.8.2)

where nmax and p are the parameters of the law. The choice of nmax should be sug-
gested by the features of the contract (in particular, by its policy conditions); con-
versely, p can be estimated, once again, through the average claim frequency n̄.
Noting that under (9.8.2) we have E[N] = pnmax, the ratio n̄/nmax provides us with
an estimate for p.

A better fitting to empirical data is usually provided by the Poisson distribution,
according to which

P[N = n] = e−λ λ n

n!
; n = 0,1, . . . (9.8.3)

where λ , λ > 0, is the parameter of the law. We recall that the Binomial distribution
with parameters nmax, p is well-approximated by a Poisson distribution with param-
eter λ = pnmax when nmax is large enough and p is small enough. The Poisson law
has been originally developed for rare events; considering that in non-life insurance
most of the insured risks bear a low claim probability, it is not surprising that the
Poisson law turns out to be more appropriate than the Binomial one. The Poisson
law is, for example, more realistic in respect of the maximum number of claims,
which does not need to be stated in advance. We recall that under (9.8.3) we have
E[N] = Var[N] = λ .

The Poisson law offers several analytical advantages. Let Nt be the number of
claims for a policy in a period of t years (t > 0); consistently with the previous
notation, we let N1 = N whenever t = 1. If claims occur independently one from
the other, whatever is the time of their occurrence, from N ∼ Poi(λ ) it follows
Nt ∼ Poi(λ t); indeed, the sum of a given number of independent Poisson random
variables is a Poisson random variable, whose parameter is the sum of the param-
eters of the original random variables. This result is more fruitful when referred to
a portfolio. If N ∼ Poi(λ ) for any policy in the portfolio and if claims reported by
different policies are independent, then N[P] ∼ Poi(λ r) (where N[P] is the total num-
ber of claims in the portfolio in one year and r is the number of policy years for
that year). More generally, if N( j) ∼ Poi(λ ( j)) is the number of claims reported by
policy j in one year, then N[P] ∼ Poi(∑r

j=1 λ ( j)) is the number of claims reported
within the portfolio. Extensions to time-intervals shorter or longer than one year are

straightforward (we would denote by N[P]
t the total number of claims in the portfolio

in a period of t years, t > 0).
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Example 9.8.1. Let N ∼ Poi(0.13) be the number of claims for a policy in one year.
Then N[P] ∼ Poi(13000) is the number of claims in one year for 100 000 homoge-
neous and independent policies. Let us split the year into terms and assume that the
number of claims in each term is independent and identically distributed in respect
of the previous terms; then, for example, the number of claims for the portfolio

in the first term of the year is N[P]
0.25 ∼ Poi(3250). Further examples can be easily

derived.
Once we know the probability distribution of the number of claims, and the rel-

evant parameter as well, the probability of several events of interest can be easily
assessed. For example, if N ∼ Poi(0.13), the probability that a policy reports no
claim in one year is: P[N = 0] = e−0.13 = 0.878; the probability that no claim is
reported in one year by a portfolio consisting of 100 000 independent and homo-
geneous policies is: P[N[P]] = e−13000 ≈ 0. The probability that 13000 = E[N[P]]
claims are reported by the portfolio in one year is: P[N[P] = 13000] = 0.00364.
�

The parameter λ in (9.8.3) represents the expected number of claims per policy:
E[N] = λ . Thus, it can be estimated through the average claim frequency n̄. We
point out that, when calculating this quantity, the underlying (implicit) assumption
is that all risks in the portfolio have the same attitude to report claims, i.e. they are
homogenous in respect of the claim frequency. More realistically, policies may be
(more or less) heterogeneous in this respect: for some policies, we should expect a
claim frequency higher than n̄, while for others the opposite is true. Thus, we should
think that N[P] ∼ Poi(∑r

j=1 λ ( j)) and set an appropriate λ ( j) for each policy. How-
ever, the piece of information commonly available is the average claim frequency

n̄, which expresses an estimate for the whole population, i.e. for
∑r

j=1 λ ( j)

r . In such a
situation, when we model the number of claims per policy, we should consider the
parameter of the Poisson distribution (9.8.3) as a random one. Usually, it is assumed
that λ follows a Gamma distribution, with parameters (ρ, p

1−p ); then it can be shown
that N follows a Negative Binomial distribution, i.e.

P[N = n] =
Γ(ρ +n)
n!Γ(ρ)

pρ (1− p)n (9.8.4)

where Γ(s) =
∫ ∞

0 ts−1 e−t dt is the Gamma function, and ρ and p are the parameters
of the Negative Binomial distribution (0 < p < 1 and ρ > 0). The analytical advan-
tages of the Poisson assumption are missed when adopting (9.8.4); however, a better
fitting to data may emerge, in particular in respect of dispersion (we note that for
the Poisson distribution we have to accept necessarily E[N] = Var[N]; conversely,
the Negative Binomial distribution admits Var[N] > E[N], as it emerges in many
empirical distributions).

Example 9.8.2. Tables 9.8.1 and 9.8.2 quote two empirical distributions and the cor-
responding Poisson and Negative Binomial fitted distributions. Both the Poisson
and the Negative Binomial distribution represent appropriately the magnitude of the
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number of claims per policy. However, the Negative Binomial distribution better
captures the dispersion, both in terms of variance and right tail. In portfolio A (see
Table 9.8.1), the heterogeneity of policies is not very strong, so that a Poisson ap-
proximation may be satisfactory. For portfolio B (see Table 9.8.2), adoption of the
Poisson distribution could lead to an underestimate of the extreme cases, i.e. of the
right tail.

Table 9.8.1 Empirical distribution of the number of claims per policy, and two fitted distributions;
portfolio A

Empirical distribution Poisson Negative Binomial

# claims in a year # of policies frequency probability probability

0 87 897 0.87897 0.87810 0.87906
1 11 263 0.11263 0.11415 0.11236
2 785 0.00785 0.00742 0.00812
3 53 0.00053 0.00032 0.00044
4 2 0.00002 0.00001 0.00002
5 0 0 0 0
6 0 0 0 0

7 or more 0 0 0 0

all 100 000 1 1 1
mean 0.13 0.13 0.13

variance 0.13222 0.13 0.13222

Table 9.8.2 Empirical distribution of the number of claims per policy, and two fitted distributions;
portfolio B

Empirical distribution Poisson Negative Binomial

# claims in a year # of policies frequency probability probability

0 88 146 0.88146 0.87810 0.88152
1 10 799 0.10799 0.11415 0.10788
2 973 0.00973 0.00742 0.00976
3 76 0.00076 0.00032 0.00078
4 4 0.00004 0.00001 0.00006
5 1 0.00001 0 0
6 1 0.00001 0 0

7 or more 0 0 0 0

all 100 000 1 1 1
mean 0.13 0.13 0.13

variance 0.1381 0.13 0.1381

�
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9.8.2 Modeling the claim severity

If we accept the assumptions originating a compound probability distribution for S
(see Sect. 9.4.3), in order to define the probability distribution of the aggregate claim
amount, we can separately define the probability distribution of the claim frequency
N (see Sect. 9.8.1) and of the claim severity Y1.

Realistically, the set of possible values of Y1 is limited; however, usually proba-
bility distributions taking value in [0,+∞) are selected. Clearly, continuous distribu-
tions are considered. Common choices include the Gamma, Lognormal, Pareto and
Loggamma distributions. The specific choice is suggested by the particular features
of the line of business dealt with. The Normal distribution can be assumed as a limit
case, if the Central Limit Theorem applies.

The actuarial application of continuous positive probability distributions repre-
senting the claim severity does not raise special issues; some probabilistic and sta-
tistical expertise is clearly required. Of course, the actuarial analyses that can be
performed through the modeling of the claim severity are important for many pur-
poses. Given the introductory character of this Chapter, we are not going into details
in this respect. We just provide some examples.

Example 9.8.3. Table 9.8.3 provides the empirical distribution of the claim severity
for a given portfolio. The distribution is clearly asymmetric. Some investigations
could be performed just through the empirical distribution; for example, we could
assess the probability that the claim size is above a given class among those dis-
played in the table. However, several information are missed (for example, we do
not know neither what is the average size of claims whose amount is higher than 50,
nor the average claim size inside each class).

Table 9.8.3 Empirical distribution of the claim severity

claim size # of claims

0–5 3 116
5–10 6 446

10–20 2 084
20–30 731
30–40 450
40–50 120

50 and over 53

all 13 000
mean 10

variance 76.38

�

Example 9.8.4. Fig. 9.8.1 plots two theoretical distributions, namely a Lognormal
and a Gamma, keeping the same expected value and variance of the empirical dis-
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tribution quoted in Table 9.8.3. While both distributions are asymmetric, differences
in the shape are apparent. Clearly, any theoretical distribution implies some approx-
imations in respect of the observed data. However, with a theoretical distribution we
gain in generality.

As mentioned above, the choice of the theoretical distribution depends on the fea-
tures of the line of business dealt with. The Lognormal and the Gamma distributions
are appropriate in many cases; alternative distributions, already mentioned, are the
Pareto (useful in particular for representing very large claims) and the Loggamma.

1 2 3 4 5 6 7 8 9claim size

Lognormal

Gamma

Fig. 9.8.1 Theoretical distributions (density functions) of the claim severity

�

9.8.3 Modeling the aggregate claim amount

The aggregate claim amount S, as defined through (9.4.1), is a function of the
stochastic process {N,Y1,Y2, . . .}. As stated in Sect. 9.8.1, we assume for S a com-
pound distribution. In particular, if N has a Poisson distribution, then S has a Poisson
compound distribution; if N has a Negative Binomial distribution, then S has a Neg-
ative Binomial compound distribution; and so on.

Investigations which require to deal with the probability distribution of S typi-
cally involve the assessment of the probability that S falls in a given range of values.
See, for example, (9.7.22), concerning the update of the pricing basis to the claim
experience. Another example is given by solvency investigations, in which we are
interested in the probability that the aggregate claim amount of a portfolio (and not
just for one policy) is above a given threshold.
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Analytical results are difficult to obtain. For example, assume that we want to
assess P[S > s], where s is a given value. Let FS(s) be the probability distribution
function of S, namely FS(s) = P[S ≤ s], and FY1(y) be the probability distribution
function of Y1, namely FY1(y) = P[Y1 ≤ y]. Clearly, P[S > s] = 1−FS(s). We have

FS(s) =
+∞

∑
n=0

P[N = n]×P[(Y1 +Y2 + · · ·+Yn) ≤ s|N = n] (9.8.5)

Given that Y1,Y2 . . . ,Yn are assumed to be independent of N, identically distributed
and reciprocally independent, we have

P[(Y1 +Y2 + · · ·+Yn) ≤ s|N = n] = P[(Y1 +Y2 + · · ·+Yn) ≤ s] = F∗(n)
Y1

(s) (9.8.6)

where F∗(n)
Y1

(s) is the n-th convolution of FY1(y) (for n = 0, it is conventionally as-

sumed that F∗(0)
Y1

(s) = 0 if s < 0 and F∗(0)
Y1

(s) = 1 if s ≥ 0). Replacing in (9.8.5), we
find

FS(s) =
+∞

∑
n=0

P[N = n]×F∗(n)
Y1

(s) (9.8.7)

Computing (9.8.7) analytically is hard work; numerical or simulation techniques are
usually adopted.

Example 9.8.5. To provide an example of investigation performed through the prob-
ability distribution of S, we go back to probability (9.7.22), which allows one to
assess whether full credibility can be acknowledged to the portfolio experience. We
recall that in (9.7.22) the quantity Qt expresses an estimate of E[S]. So, we rewrite
as follows

P[(1−a)E[S] < S ≤ (1+a)E[S]] = ε (9.8.8)

or also as follows

P

[
−aE[S]√

Var[S]
<

S−E[S]√
Var[S]

≤ aE[S]√
Var[S]

]
= ε (9.8.9)

where S−E[S]√
Var[S]

is the standardized random variable. When the experience is reason-

ably large, a standard Normal distribution can be assumed for S−E[S]√
Var[S]

. Let a = 0.1

and ε = 0.95. Then
0.1E[S]√

Var[S]
= 1.96 (9.8.10)

from which we get
E[S] = 19.6

√
Var[S] (9.8.11)

When Qt , which estimates E[S], fulfils (9.8.11), then we can assign full credibility
to the portfolio experience.
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A more detailed conclusion can be reached if we assume a specific probability
distribution for the number of claims. Assume that N follows a Poisson distribu-
tion. Then, both the expected number of claims, E[N], and their variance, Var[N],
can be estimated by the average claim frequency n̄, given that for the Poisson law
E[N] = Var[N]. When we plug this into (9.5.8), we obtain the following expression
for Var[S]

Var[S] = E[N] (Var[Y1]+ (E[Y1])2) = n̄(σ2 +(ȳ)2) (9.8.12)

where σ2 denotes the estimate for Var[Y1]. Recalling that we can estimate E[S] as
follows

E[S] = n̄× ȳ (9.8.13)

we can rewrite (9.8.11) as

√
n̄ = 19.6

√
σ2

(ȳ)2 +1 (9.8.14)

expressing the minimum number of expected claims required for full credibility.
The coefficient 19.6 would of course be different if we make choices other than
a = 0.1 and ε = 0.95.
�

We note that (9.8.7) refers to one policy only; if we are dealing with a solvency
investigation, we should rather refer to the aggregate claim amount for the portfolio.
Let S( j) be the aggregate claim amount for policy j, and S[P] the aggregate claim
amount for the portfolio; clearly, S[P] = S(1) + S(2) + · · ·+ S(r), where r is the num-
ber of policies. If policies represent independent risk, and if S( j) has a Poisson com-
pound distribution with Poisson parameter λ ( j) and claim probability distribution
F

Y ( j)
1

(y), then it can be shown that also S[P] has a compound Poisson distribution,

with Poisson parameter λ = λ (1) + λ (2) + · · ·+ λ (r) and claim probability distri-

bution FY1(y) = ∑r
j=1

λ ( j)

λ F
Y ( j)

1
(y). This result contributes to understand the large

preference, in practice, for the adoption of a Poisson distribution for the modeling
of the claim frequency.

Example 9.8.6. Refer to a homogeneous portfolio, consisting of r policies, which
represent independent risks. Each policy may report N claims, in a year, and we
assume N ∼ Poi(0.13) for each policy. The claim amount is fixed to 10; Y1 then has
a degenerate probability distribution. The number of claims in the portfolio, N[P],
has a Poisson distribution with parameter 0.13r. The aggregate claim amount for the
portfolio, S[P], is simply defined as S[P] = 10N[P]. Table 9.8.4 quotes the probability
that the aggregate claim amount is higher than the net premium, i.e. the probability
of loss, for several portfolio sizes. As in Example 9.5.1, we set Π = 1.4. Due to the
assumptions, we have: P[S[P] > r Π ] = P[N[P] > r Π

10 ]. As the number of policies r
increases, such a probability decreases, as a result of the pooling effect.
�
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Table 9.8.4 Probability of loss in a portfolio: P[S[P] > r Π ]

# of policies, r P[S[P] > r Π ]

1 0.12190
10 0.37318

100 0.32487
1 000 0.17791

10 000 0.00292

9.9 Risk classification and experience-rating

In Sect. 9.4–9.7 we dealt with premium calculation assuming that the same premium
rate is applied to each policy; this is justified when policies are similar, i.e. homo-
geneous (except possibly for the sum insured and the time of issue or renewal).
However, as emerged in Sect. 9.8.1, policies always differ for some features; in
some cases, such differences suggest the adoption, within the same line of business,
of specific premium rates.

9.9.1 Risk classes and rating classes

Policies for which the insurer can assume the same attitude to record claims are
usually grouped into a risk class. For example, in fire insurance buildings are clas-
sified according to use (e.g.: domestic, commercial, industrial building), location
(e.g.: urban, industrial, rural area), building materials (e.g.: cement, bricks, wood),
number of floors (e.g.: one, two, three, four, five, six or more). The basics of risk
classification have already been described in Sect. 2.2.6. Policies to which the same
premium rate is applied are grouped into a rating (or premium) class. Usually, pre-
mium classes are fewer than risk classes, for the reasons discussed in Sect. 2.2.6.
The consequences in terms of mutuality and solidarity of a rating system for het-
erogeneous risks were discussed in Sect. 2.2.7. In this Section we focus on some
implementing aspects of risk classification, with specific reference to the non-life
business.

The definition of a risk class is based on:

• risk factors, i.e. the features of a risk which prove to explain the claim experience
(in the example above, the risk factors are: use, location, building materials and
number of floors);

• the outcomes (or modes) of each risk factor, which can be either qualitative or
quantitative (in the example, the possible outcomes of the risk factor use are:
domestic, commercial, industrial).
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The selection of the risk factors and their outcomes is based on a statistical in-
vestigation, which we do not discuss. We just describe how the selected risk factors
can be accounted for in order to define differentiated (or specific) premium rates.

At issue, some risk factors are observable, while others are unobservable. Some
information in respect of the latter emerge from the specific claim story of the pol-
icy. Observable risk factors originate a specific premium rate at issue; in respect of
unobservable risk factors, an individual experience-rating system can be adopted,
through which the premium rate is updated in time according to the individual claim
experience of the policy.

9.9.2 Risk classification at issue

We first focus on the possibility to differentiate premium rates at issue, consistently
with the risk factors observable at that time. We refer to the example of fire insur-
ance, and consider the four risk factors mentioned above:

• occupation, with c1 = 3 possible modes, i.e. domestic, commercial and industrial
building;

• location, with c2 = 3 possible modes, i.e. urban, industrial and rural area;
• building materials, with c3 = 3 possible modes, i.e. cement, bricks and wood;
• number of floors, with c4 = 6 possible modes, i.e. one, two, three, four, five and

six or more.

Combining the possible outcomes of the four risk factors, we can define c = c1 ×
c2 × c3 × c4 = 162 risk classes. Possibly due to some inconsistencies among some
modes of the risk factors (e.g.: industrial building in wood), the actual number of
risk classes could be c′ < c. In what follows, we assume that rating classes coincide
with risk classes.

At issue, as a part of the underwriting process, the policy (or, better, the risk) is
selected and assigned to an appropriate risk class; thus, an a-priori risk classification
is determined. The risk class is identified by the outcome of each risk factor (e.g.,
domestic building, located in an urban area, built in bricks, with one floor). Shortly,
we denote the risk class by (i, j,h,k) (each index referring to an outcome of the
relevant risk factor). Experience gained in risk class (i, j,h,k) allows the insurer
to estimate a risk premium Qi, j,h,k or a risk premium rate θi, j,h,k, specific of that
risk class. The insurer can further summarize the average experience in the portfolio
through the risk premium Q or the risk premium rate θ , calculated accounting for the
experience of the whole portfolio. For some risk classes, it will turn out Qi, j,h,k <
Q (or θi, j,h,k < θ ), while for others Qi, j,h,k > Q (or θi, j,h,k > θ ). The problem we
want to focus on concerns the calculation of the premium to be applied to risks
assigned to class (i, j,h,k), considering the information provided by the specific
and the average risk premium (rate). We note that while the premium rate is the
same for all the policies belonging to the same risk class, the premium amount may
be different because of a different insured value. To shorten the notation, we refer
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to the calculation of premium rates only; with pi, j,h,k we denote the equivalence
premium rate applied to policies in risk class (i, j,h,k).

Retracing what discussed in Sect. 9.7, the equivalence premium rate pi, j,h,k for
class (i, j,h,k) should be estimated through the risk premium rate θi, j,h,k. However,
due to the low number of policies in some classes, some risk premium rates θi, j,h,k

could be unreliable, because too heavily subject to random fluctuations. Conversely,
the information provided by θ should be stable enough, given that it is collected
over the whole portfolio. So it is wiser to assess pi, j,h,k as a function of θ . Common
choices are as follows:

pi, j,h,k = θ +ai +b j +dh +gk (9.9.1)

known as the additive (or linear) rule, and

pi, j,h,k = θ αi β j δh γk (9.9.2)

known as the multiplicative (or exponential) rule. The parameters ai,b j,dh,gk in
(9.9.1), αi, β j, δh, γk in (9.9.2) are the so-called relativities: they relate the premium
rate of a class to the features of that class. Apart from the advantage provided by θ
(in respect of θi, j,h,k), rules (9.9.1) and (9.9.2) require a lower number of parameters
than what would be required by estimating pi, j,h,k just through θi, j,h,k. In this latter
case, the number of parameters would be c (i.e., one risk premium rate θi, j,h,k for
each risk class; we recall that c = 162 in our example); when adopting (9.9.1) or
(9.9.2) the number of parameters reduces to c1 + c2 + c3 + c4 + 1 (i.e., 16 in our
example): one for each mode of the four risk factors, and one represented by the av-
erage risk premium rate θ . Each of the relativities in (9.9.1) and (9.9.2) is estimated
on a wider data set than θi, j,h,k; for example, ai must be estimated on all the risk
classes in which the first risk factor takes outcome i. Addressing one risk factor at
a time, however, could result in disregarding some possible correlations among the
risk factors.

9.9.3 Risk classification at renewal times: individual experience
rating

When an individual experience-rating system is adopted, the insurer is willing to
reduce the premium for a policy if its claim experience is below the average; con-
versely, the insured must be willing to accept a premium increase if her claim expe-
rience is above the average. Such an arrangement is very common for motor insur-
ance.

Premium rates for new policies are the same for all policies, unless observable
risk factors suggest the application of some relativities (see Sect. 9.9.2). Accord-
ing to the individual experience, year by year the premium rate is updated, either
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increased or decreased, so that at renewal the policy is applied a specific premium
rate. Thus, an a-posteriori risk classification is determined.

Let pt be the premium rate applied to a policy after t years since issue. Further, let
p denote a reference premium rate, typically representing the premium rate applied
at issue. Individual experience could be reported in terms either of the number of
claims or the claim amounts. Usually, reference is to the number of claims. More
specifically, if pt−1 is the premium rate applied at time t −1, then the premium rate
at time t is defined as

pt = f (pt−1,nt) (9.9.3)

where nt is the number of claims reported in year (t − 1, t) and f is an increasing
function of nt . This is how a Bonus-Malus (BM) system, possibly the most well-
known individual experience rating arrangement, works. We point out that, instead
of changing the premium rate, the individual experience could result in a revision
of policy conditions. For example, the deductible could be decreased if no claim
occurs, or increased in the opposite case, thus rewarding the insureds who report
less claims.

It is worthwhile to give some information on a Bonus-Malus system, due to its
wide application, in the motor insurance business in particular. The risk class to
which a risk is assigned, in relation to the number of claims occurred previous to
the current year, is called merit class. The premium rate is revised each year as a
function of the number of claims reported in the latest year and the current merit
class. In more detail, the items of a BM system are the following.

• The set {1,2, . . . ,m} of merit classes.
• The reference premium rate p (possibly, a net premium rate, π , namely including

a safety loading).
• The premium coefficient γ( j) for merit class j, j = 1,2, . . . ,m. The premium ap-

plied to policies in class j is defined as pγ( j). For some classes, the so-called
bonus classes, γ( j) < 1; for others, the so-called malus classes, γ( j) > 1. Typ-
ically, bonus and malus classes are defined so that γ(1) < γ(2) < · · · < γ(m).
Thus, classes with a low ranking are bonus classes (a premium discount is ap-
plied), while those with a high ranking are malus classes (a premium increase is
applied).

• The entry class i, 1 < i ≤ m, to which new policies (for which no previous expe-
rience is available) are assigned. The premium coefficient is set so that γ(i) ≥ 1.

• The matrix of the transition rules, stating the new merit class c j,nt for a risk
previously in merit class j, which has reported nt claims in the latest year (see
also Table 9.9.1).

The premium rate to be applied at time t to a policy coming from class j is
defined as follows: pt = pγ(c j,nt ).

In some systems, γ( j) < 1 for j = 1,2, . . . ,m− 1, while γ(m) = 1. In this case,
there is only one malus class, where the full premium is required. The arrangement
is called No-Claim Discount (NCD) system: policies which receive a discount are
those that did not report any claim in the latest year. The longer is the period free of
claims, the higher is the discount applied to the premium.
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Table 9.9.1 Matrix of the transition rules
# claims in current year

0 1 2 . . .

pr
ev

io
us

m
er

it
cl

as
s

1 c1,0 c1,1 c1,2 . . .
2 c2,0 c2,1 c2,2 . . .

. . . . . . . . . . . . . . .
i ci,0 ci,1 ci,2 . . .

. . . . . . . . . . . . . . .
m cm,0 cm,1 cm,2 . . .

Example 9.9.1. Table 9.9.2 describes the matrix of the transition rules of a BM sys-
tem, and the relevant premium coefficients (the example is not taken from a real BM
system, but anyhow it reflects a realistic arrangement). There are 9 merit classes;
briefly, the transition rule is defined as follows:

c j,nt =

{
max{ j−1,1} if nt = 0

min{ j +2nt ,9} if nt > 0
(9.9.4)

A policy in the highest class is applied a premium which is more than 4 times that
required to a policy in the lowest class.

Table 9.9.2 Matrix of the transition rules for a BM system

# claims in current year merit class premium coefficient
0 1 2 3 4 . . . j γ( j)

pr
ev

io
us

m
er

it
cl

as
s

1 1 3 5 7 9 . . . 1 35%
2 1 4 6 8 9 . . . 2 50%
3 2 5 7 9 9 . . . 3 55%
4 3 6 8 9 9 . . . 4 70%
5 4 7 9 9 9 . . . 5 85%
6 5 8 9 9 9 . . . 6 100%
7 6 9 9 9 9 . . . 7 110%
8 7 9 9 9 9 . . . 8 130%
9 8 9 9 9 9 . . . 9 150%

Table 9.9.3 describes the matrix of the transition rules of a NCD system, and the
relevant premium coefficients (neither in this case the example is taken from real
data). There are 6 merit classes; briefly, the transition rule is defined as follows:

c j,nt =

{
max{ j−1,1} if nt = 0

6 if nt > 0
(9.9.5)

A policy in the highest class is applied a premium which is 2.5 times that required
to a policy in the lowest class.
�
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Table 9.9.3 Matrix of the transition rules for a NCD system

# claims in current year merit class premium coefficient
0 1 or more j γ( j)

pr
ev

io
us

m
er

it
cl

as
s 1 1 6 1 40%

2 1 6 2 75%
3 2 6 3 80%
4 3 6 4 85%
5 4 6 5 90%
6 5 6 6 100%

The ultimate goal of a BM or a NCD system is to define specific premium rates;
however, one can guess that some heterogeneity remains among the policies as-
signed to the same merit class. For example, referring to the NCD system in Ta-
ble 9.9.3, policies in class 6 may have reported just one claim in the latest year, or
two claims, or may have reported one claim in each of the latest two years. Thus,
some form of solidarity is anyhow present. Further, solidarity effects may occur
among different classes; indeed, the BM or NCD premium system follow the idea
described by (2.2.15) (or (2.2.16); see Sect. 2.2.4). Choices in respect of the number
of merit classes, the transition rules, the premium coefficient do affect such solidar-
ity effects. Intuitively the solidarity effects are stronger in face of a lower number of
merit classes, a narrower range of variation of the premium coefficients, a faster tran-
sition backward to the lowest classes. As noted in Sect. 2.2.7, solidarity effects may
originate adverse selection; on the other hand, a strong personalization of premiums
may reduce the mutuality effect inside each class (given that we should expect a
lower number of policies in each class), or also lead to unsustainable premium rates
for the worst risks. When designing a BM or a NCD discount system, such aspects
require careful consideration.

Remark A further aspect which is investigated when designing a BM or a NCD system is the
so-called stationary distribution, i.e. the composition of the portfolio (in terms of the number of
policies in each class, as a percentage of the total number of policies in the portfolio) when the
portfolio itself reaches a steady state. The premium coefficients should be defined considering that
under the stationary distribution the insurer should be on balance (see (2.2.15) in Sect. 2.2.4).
The stationary distribution depends on the claim frequency and on the transition rules. Refer, for
example, to the NCD system in Example 9.9.1, and let r j be the percentage of policies in class j
when the stationary distribution is reached. The following conditions must be fulfilled in the steady
state:

r1 + r2 + · · ·+ r6 = 1
r1 = r1 P[N = 0]+ r2P[N = 0]
r2 = r3 P[N = 0]
. . .
r6 = (r1 + r2 + · · ·+ r6)P[N > 0]

(9.9.6)

If we assume, for example, that the number of claims for a policy in one year follows a Poisson
distribution with parameter λ , then the probabilities P[N = 0] and P[N > 0] in (9.9.6) are easy to
assess (namely, P[N = 0] = e−λ , P[N > 0] = 1− e−λ ). Solving the linear system (9.9.6) is then
little algebra. We stress, however, that the steady state is a notional scenario, in particular due to
the possibility of adverse selection.
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9.10 Technical reserves: an introduction

In this Section we discuss a simple dynamic model which allows us to introduce the
fundamentals of the technical annual management of a non-life portfolio. We refer
to a homogeneous portfolio (say, fire insurance or motor insurance), consisting of
policies holding the same policy year. The investigation is developed with reference
to the policy year (0,1), where t = 0 is the (first) time of issue of the policies.

Let Π [T][P] be the total amount of the expense-loaded premiums cashed from the
policies at time 0. With such an amount of money, the insurer faces:

• the initial commission, to be paid at time 0;
• annual expenses (overhead and other administrative expenses), to be paid during

the year;
• the cost of claims occurring during the year.

We assume that α Π [T][P] is the amount of the initial commission at time 0, while
β Π [T][P] is the total amount of the annual expenses. Such expenses are paid gradu-
ally in time; it is usually acceptable to assume that their payment is uniformly spread

over the year, so that t β Π [T][P] is the total amount paid in (0, t). Finally, by S[P]
t we

denote the aggregate claim amount reported within the portfolio in (0, t).
The quantity

Π [T][P] (1−α −β t) (9.10.1)

represents the residual amount of premiums, once expenses up to time t, 0 < t ≤ 1,
have been paid. Fig. 9.10.1 plots the typical behavior of such a quantity. Note that
we are disregarding the time-value of money (so that no accrual due to interest
gained on investments is accounted for); this is justified by the short-term nature of
the non-life business (and by the fact that we are referring to one year only).

0 time t

Π [T][P]

1

Π [T][P] (1−α) expenses, Π [T][P](α +β t)

premiums net of expenses, Π [T][P] (1−α −β t)

Fig. 9.10.1 Premium amount net of expenses

We define the portfolio assets at time t as the amount
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At = Π [T][P](1−α −β t)−S[P]
t (9.10.2)

Once more, we point out that we are disregarding investment perspectives; we are
further disregarding specific capital allocation to the portfolio; thus, At simply rep-
resents the residual amount of the premiums cashed by the insurer, once claims and
expenses have been paid. Fig. 9.10.2 provides an example (left panel), in which it
is assumed that claims (in terms both of frequency and amount) occur continuously
and uniformly in time (right panel). It is further assumed that claims are immediately
settled. Reasonably, claims do not occur uniformly in time; Fig. 9.10.3 suggests a
more realistic path for the aggregate claim amount, assuming that claims occur just
at some (random) times during the year, and in an amount which is not always the
same.

0 time t

Π [T][P]

1

Π [T][P] (1−α)

claims settled, S[P]
t

assets, At

0 time t

claims settled, S[P]
t

Fig. 9.10.2 Portfolio assets (left panel) and portfolio aggregate claim amount (right panel); uni-
form distribution of the aggregate claim amount

0 time t

Π [T][P]

1

Π [T][P] (1−α)

claims settled, S[P]
t

assets, At

0 time t1

claims settled, S[P]
t

Fig. 9.10.3 Portfolio assets (left panel) and portfolio aggregate claim amount (right panel); discrete
distribution of the aggregate claim amount

At any time t, 0 ≤ t < 1, a share of the assets At must be reserved to face future
claims and expenses, i.e. those possibly emerging in (t,1). Future expenses consist
of the annual expenses (not yet paid), which as stated above are assumed to emerge
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uniformly in time. For future claims, we can make an assumption similar to that
accepted when calculating the premium (see Sect. 9.4), i.e. that they also occur
uniformly in time. The reserve set up to meet future claims and expenses, which is
called (unearned) premium reserve, is a proportion 1− t (i.e., the time to maturity
of the policies) of the premiums, net of the initial expenses (which were fully paid

at time 0). Thus, the (unearned) premium reserve, R[Π ]
t , is defined as follows:

R[Π ]
t = (1− t)Π [T][P] (1−α) (9.10.3)

The behavior in time is clearly linear, as sketched in Fig. 9.10.4. For some lines of
business claim occurrence may be affected by cyclical or seasonal effects; in this
case, the proportion of the initial premium set aside would be other than 1− t.

0 time t

Π [T][P]

1

Π [T][P] (1−α)

premium reserve, R[Π ]
t

Fig. 9.10.4 Portfolio assets and (unearned) premium reserve

We point out that (9.10.3) defines a portfolio reserve. When policies hold differ-
ent policy years, the calculation of the premium reserve may be performed exactly
for each policy; then, the portfolio reserve can be obtained by summing up the rel-
evant individual values. An alternative consists in grouping policies whose policy
anniversary falls in a given period of the year (e.g., in January) and then, follow-
ing the method of the k-ths described in Sect. 9.7.3, estimating for each group the
average time to maturity.

As mentioned in Sect. 9.4.2, usually claims are not immediately settled (see the
example provided in Fig. 9.4.1). In Fig. 9.10.5 it is assumed that claims occurring
at the second claim occurrence are not immediately settled. A reserve must be set
up, given that the insurer’s obligation has become due; uncertainty may remain in
respect of the amount to be settled and the time of payment. The relevant reserve

is called the claim reserve, which we denote by R[S]
t , and its amount is given by the

estimated amount of the claims which have already occurred, but have not yet been
settled.
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0 time t

Π [T][P]

1

Π [T][P] (1−α)
claims settled, S[P]

t

assets, At

claim reserve, R[S]
t

Fig. 9.10.5 Portfolio assets and claim reserve

When calculating the claim reserve, the time between claim occurrence and claim
settlement must be accounted for. The approximate assumption adopted for pre-
mium calculation (namely, claims occur on average in the middle of the year, and
are immediately settled) is no longer acceptable. Statistical procedures, either de-
terministic or stochastic, are available. Deterministic models, in particular (which
we briefly describe in Sect. 9.12) are typically satisfactory for lines of business with
frequent claims. Ad hoc estimates may be required for very specific claims, in par-
ticular when extreme events occur.

The term claim reserve is somewhat generic, and can be better specified. The
outstanding claim reserve refers to claims which have been reported to the insurer,
but have not yet been settled (referring to Fig. 9.4.1, the outstanding claim reserve
is calculated at some time between t2 and t3); the calculation can be based either
on experience or specific estimates. The IBNR (Incurred But Not Reported) claim
reserve refers, instead, to claims which are expected to have already occurred, but
have not yet been reported to the insurer (referring to Fig. 9.4.1, this reserve is as-
sessed at some time between t1 and t2, time t1 being unknown to the insurer). It
is anyhow appropriate to set up a reserve, whose calculation can just be based on
experience. The outstanding and the IBNR reserves are the most important items of
claim reserves. Further items are: the IBNER (Incurred But Not Enough Reported)
claim reserve, which concerns claims which have already been notified, but whose
damage has just been partially reported to the insurer; the reopened claim reserve,
which concerns claims which need to be reopened (after a first settlement), possi-
bly because of litigation or further information gained after settlement; the notified
(open) claim reserve, which refers to claims which have already been reported, but
have not yet received an accurate assessment by the insurer; other items are possible,
depending on market practice.

Turning to expenses, there is clearly a time-lag between the income of the ex-
pense loading and the payment of expenses. The premium reserve already accounts
for future expenses, namely overhead and other administrative expenses and pro-
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cessing expenses for claims which have not yet occurred. Depending on the way
the claim cost is assessed (either inclusive or not of settlement expenses), the claim
reserve may (or not) already account for processing expenses relating to claims al-
ready occurred. If the claim reserve does not include claim settlement expenses, or
if it is felt that the amount of expenses is underestimated within current reserves,
a specific reserve may be set up, usually named the provision for claim handling
costs.

Finally, we mention the contingent reserves. Such reserves are usually set up
to provide additional funds should the emerging claim experience differ adversely
from the assumptions underlying the main claim reserve. The idea is to set aside
money in years in which the claim experience is favorable, to face adverse fluctu-
ations in some years. Examples of contingent reserves are the catastrophe reserve
and the claim equalization reserve. The underlying idea is to spread the cost of
large claims not just on the year of occurrence, but on more than one year. This way,
contingent reserves provide a smoothing of the annual economic results obtained
through the management of a non-life portfolio. Indeed, in many countries they are
treated as capital reserve (for example, for tax purposes).

9.11 Earned premiums, incurred claim amounts and profit
assessment

In this Section we examine the role of technical reserves on the emergence of an-
nual profits, i.e on profit timing. We make reference to the premium reserve and,
generically, to the claim reserve.

Consider Fig. 9.11.1, which summarizes the example discussed in Sect. 9.10,
introducing the premium and the claim reserve.

0 time t

Π [T][P]

1

Π [T][P] (1−α)
Π [T][P] (1−α −β )

At

R[S]
t

R[Π ]
t

1/2

Fig. 9.11.1 Portfolio assets, premium reserve and claim reserve
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Still considering the same policy year for policies in the portfolio, we can rea-
sonably assume that time 0 falls in the middle of the calendar year, i.e. that policies
enter on average in the middle of the year. Let τ be the calendar year. At the end of
the calendar year τ , i.e. at time 1

2 in the picture, the annual profit must be reported
in the balance sheet. Intuitively

A1/2 −R[Π ]
1/2 −R[S]

1/2 (9.11.1)

represents the annual profit for this cohort in calendar year τ , i.e. in the calendar
year of issue. Replacing (9.10.2) into (9.11.1), we find

Π [T][P] (1−α −β
1
2
)−S[P]

1/2 −R[Π ]
1/2 −R[S]

1/2 (9.11.2)

where

• the quantity Π [T][P]−R[Π ]
1/2, the so-called earned premiums, represents the amount

of premiums contributing to profit in year τ;

• the quantity S[P]
1/2 +R[S]

1/2, the so-called incurred claim amount, represents the cost
of claims occurred in year τ , either settled or not;

• the quantity Π [T][P] (α +β 1
2 ) represents the expenses incurred in year τ .

We stress that the premium reserve R[Π ]
1/2 represents the amount of premiums cashed

in year τ that will contribute to profit in year τ +1; similarly, the claim reserve R[S]
1/2

represents the amount of claims which will be settled in the future, but whose cost
contributes to profit in year τ .

We now generalize the definitions of earned premiums, incurred claim amount
and annual profit, introduced above. We refer to a calendar year, which we denote
as year (t − 1, t), in which policies enter at different times (thus, we now address
the more realistic case in which policies do not hold the same policy year). Let

Π [T][P]
t be the total amount of premiums cashed in year (t −1, t), also called written

premiums. Such premiums do not contribute entirely to profit in year t, and thus
they must be reduced by the premium reserve at time t. Further, some of the policies
in-force during year t paid the relevant premium in the previous year; the part of
such premiums contributing to profit in current year is measured by the premium
reserve at time t −1. Thus, we define earned premiums in year t the quantity

Π [P][earned]
t = Π [P]

t +R[Π ]
t−1 −R[Π ]

t (9.11.3)

As far as claims are concerned, we first note that a part of the claim amount

settled in year t, S[P]
t , refers to claims incurred in previous years; the estimate of

their cost was included in the claim reserve at time t − 1. Further, claims incurred
in year t but not settled are accounted for in the claim reserve at time t. Thus, we
define incurred claim amount in year t the quantity

S[P][incurred]
t = S[P]

t +R[S]
t −R[S]

t−1 (9.11.4)
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Remark We can now give a general definition of the risk premium Q (see Sect. 9.7.1). In general
terms, with reference to a given calendar year, the risk premium is defined as follows:

Q =
incurred claim amount

units of earned exposure
(9.11.5)

The units of earned exposure can consist of the number of policy years, the total amount of the
insured value in the year, and so on.

In (9.11.4), it is interesting to note that if a claim which occurred in the past
is settled in the current year, the possible difference between the settled and the
reserved amount contributes to the incurred claim amount in the year of settlement.
Similarly, if a claim has occurred previous to time t −1 and has not yet been settled
at time t, it is accounted for in the claim reserve both at time t − 1 and at time t.
In principle, such a claim must not contribute to the incurred claim amount of the
current year (as the amount set up in the reserve at the end of the year, i.e. the final
reserve, should be offset by the relevant allocation in the reserve at the beginning of
the year, i.e. the initial reserve); however, if the estimate of the cost of the claim is
updated in the final reserve, either because of new information or simply because of
a different methodology for the calculation of the claim reserve, the update to the
cost contributes to the incurred claim amount of the current year. The calculation of
the claim reserve should then be maintained stable in time, so to avoid unnecessary
updates to the cost of claims, and then biased assessments of the annual profit.

The annual profit (or loss) can be expressed as follows

PL[P]
t = Π [P][earned]

t −S[P][incurred]
t −EXt (9.11.6)

or more explicitly as

PL[P]
t = Π [P]

t −S[P]
t +R[Π ]

t−1 +R[S]
t−1 −R[Π ]

t −R[S]
t −EXt (9.11.7)

In both cases, EXt represents the expenses paid during year t.

Remark The annual profit defined above is also named industrial profit, as it originates from
the “industrial activity” of the insurer, consisting in the creation of a pool of individual risks (see
Sect. 1.6.3). It is interesting to compare expression (9.11.7) to (6.4.9) for life insurance. The two
quantities consist of similar terms: premiums received, benefits paid, change in the reserve value.
In the case of life insurance, also incomes on the investment of the reserve are considered. Indeed,
while for a life insurer the investment activity is considered part of the obligation taken in respect
of the policyholder, for a non-life insurer only the transfer of individual risks is addressed as the
main task of the insurer.

Several indexes are usually calculated, in order to give a summary of the perfor-
mance of the portfolio. The claim ratio (or loss ratio) is defined as follows

LRt =
S[P][incurred]

t

Π [P][earned]
t

(9.11.8)
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A ratio lower than 1 informs us that the claim costs incurred in the year have been
covered by the earned premiums.

Remark We note that the term loss ratio is more common than claim ratio, as suggested also by
the notation adopted. Contrarily to the choice made so far to refer to the payout of the insurer as to
the claim amount (see also Sect. 9.3), in the following we will then refer to ratio (9.11.8) as to the
loss ratio.

The expense ratio is defined as follows

ERt =
EXt

Π [P][earned]
t

(9.11.9)

and represents the part of the earned premiums which must be used to cover ex-
penses. The combined ratio, defined as follows

CRt =
S[P][incurred]

t +EXt

Π [P][earned]
t

(9.11.10)

summarizes the industrial profitability of the portfolio; for example, a combined
ratio lower than 1 would detect a situation of positive industrial profit.

9.12 Deterministic models for claim reserves

As mentioned in Sect. 9.10, the claim reserve is originated by the delay between
claim occurrence and claim settlement. Depending on the line of business, such a
delay may run from some weeks (e.g., in property insurance and for small claims)
to several years (e.g. in liability insurance, and in general if the claim is large).
Reasons of the delay are to be found in the time required for processing the claim,
the need for ascertaining the responsibility and the size of the damage, the delayed
reporting of the claim, litigation, and so on. For the largest claims, a custom estimate
is usually worked out; for the other claims, statistical assessments are performed. In
this Section we address statistical methods.

Deterministic methods for claim reserves are based on an average assessment
of the time-pattern of a claim; conversely, stochastic methods make explicit refer-
ence to its randomness. Deterministic methods offer the advantage of simplicity, and
thus their implementation is straightforward; at the same time, they are simplified
in many respects, and hence they may lead to a biased assessment. Overall, a con-
siderable degree of judgment is required for claim reserves; in many situations it is
appropriate to compare several methods to get to a reasonable estimate of the claim
reserve. In this Section, a description of the main deterministic methods is provided,
so to introduce the main issues involved in the calculation of the claim reserve; for
stochastic methods, some references are quoted in Sect. 9.13.
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9.12.1 Run-off triangles

A run-off triangle collects data on outstanding claims, classifying the available in-
formation in respect of both the year of claim occurrence and the year of claim set-

tlement. Table 9.12.1 provides an example, where S[P]
i, j is the aggregate claim amount

paid up to j years since occurrence for claims originating in year i. Alternatively, the

run-off triangle could quote the incremental claim amounts (namely, S[P]
i, j − S[P]

i−1, j),

the number N[P]
i, j of claims reported up to year j for claims incurred in year i, or other

information. In the following, we just refer to run-off triangles with information as
those provided in Table 9.12.1.

Table 9.12.1 Run-off triangle

time to settlement (or development year)
0 1 . . . j . . . τ − i . . . τ −1 τ

ye
ar

of
or

ig
in

(o
r

ac
ci

de
nt

ye
ar

) 0 S[P]
0,0 S[P]

0,1 . . . S[P]
0, j . . . S[P]

0,τ−i . . . S[P]
0,τ−1 S[P]

0,τ

1 S[P]
1,0 S[P]

1,1 . . . S[P]
1, j . . . S[P]

1,τ−i . . . S[P]
1,τ−1

. . . . . . . . .

i S[P]
i,0 S[P]

i,1 . . . S[P]
i, j . . . S[P]

i,τ−i
. . . . . .

τ S[P]
τ ,0

Assume that within τ years since occurrence all claims are fully settled. In Ta-

ble 9.12.1, which is filled in at time τ , the quantity S[P]
0,τ represents the ultimate

aggregate claim amount for claims originating in year 0; for such claims, we do not
expect to have further settlements in the future. For year i, i = 1,2, . . . ,τ , the amount

S[P]
i,τ−i is provisional, as further settlements are expected in the next i years. Let Ui be

the ultimate aggregate claim amount estimated according to an appropriate method.
The claim reserve set up at time τ is

R[S]
τ =

τ

∑
i=1

(Ui −S[P]
i,τ−i) (9.12.1)

In the following, we describe some approaches to the estimate of the ultimate
aggregate claim amount Ui.

Example 9.12.1. In the next Sections, numerical examples are based on the run-off
triangle quoted in Table 9.12.2, where we have also reported the premium amount
earned in the various years of origin of claims. We assume that all claims are settled

within 4 years since occurrence; thus, S[P]
0,4 = 2627 is the ultimate aggregate claim

amount for claims occurred in year 0. A reserve must be set up for claims occurred
in year i, i = 1,2,3,4, as further settlements are expected in the next i years. Thus,

the reserve at time 4 is: R[S]
4 = ∑4

i=1(Ui −S[P]
i,4−i).

�
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Table 9.12.2 Run-off triangle and earned premiums

time to settlement year earned premiums

0 1 2 3 4 i Π [P][earned]
i

ye
ar

of
or

ig
in 0 790 1 422 2 275 2 502 2 627 0 3 400

1 910 1 729 2 680 2 921 1 4 000
2 995 1 841 3 038 2 4 300
3 1 200 2 100 3 5 200
4 1 100 4 5 000

9.12.2 The Expected Loss Ratio method

Assume that a block of business was initiated setting a given target for the loss (or
claim) ratio, i.e. for the ratio between the incurred claim amount and the earned
premium (see (9.11.8)). Such a target is referred to as the expected loss ratio; we

will denote it as ELR. If Π [P][earned]
i represents the amount of premiums earned in

year i, then the ultimate aggregate claim amount for claims originating in year i can
be estimated as follows

U [ELR]
i = ELR×Π [P][earned]

i (9.12.2)

Example 9.12.2. Refer to data in Table 9.12.2, and assume that the expected loss
ratio is 75%. For each year i of origin, i = 0,1, . . . ,4, Table 9.12.3 quotes the ultimate

aggregate claim amount estimated according to the expected loss ratio, U [ELR]
i =

0.75Π [P][earned]
i , the amount to be reserved, U [ELR]

i − S[P]
i,4−i, and the claim reserve

at time 4 assessed through the ELR approach, R[S][ELR]
4 . Note that for year 0 the

difference U [ELR]
i − S[P]

0,4 has been set to 0, also in face of U [ELR]
i �= S[P]

0,4; having
assumed that claims are fully settled within 4 years since occurrence, no reserve

needs to be set up for claims occurred in year 0. More in general, should U [ELR]
i <

S[P]
i,4−i, the difference U [ELR]

i −S[P]
i,4−i must be set to 0, as it is not possible to contribute

to the reserve with a negative term.

Table 9.12.3 Expected ultimate aggregate claim amount and claim reserve through the ELR
method

year i U [ELR]
i U [ELR]

i −S[P]
i,4−i

0 2550.00 0.00
1 3000.00 79.00
2 3225.00 187.00
3 3900.00 1800.00
4 3750.00 2650.00

R[S][ELR]
4 4716.00
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As it emerges also from Example 9.12.2, the ELR method is very simple and
requires few data. Disadvantages are given by the subjectivity of the assessment of
ELR and the static nature of the model; the development of claim amounts may
suggest that the quantity ELR is more and more unlikely, but no update to such a
quantity is implied by the methodology. In particular, the estimated ultimate aggre-

gate claim amount, U [ELR]
i , depends only on the year of origin, and not on the time

j passed since then. The approach may be useful when dealing with a new business,
for which no previous experience is available on the likely time-pattern of claims.

9.12.3 The Chain-Ladder method

The chain-ladder (CL) method assumes that the time-pattern of claims is stable in
time, apart from possible random fluctuations. In particular, the following assump-
tion is accepted

S[P]
i, j+1 = S[P]

i, j d j i = 0,1, . . .τ; j = 0,1, . . . ,τ −1 (9.12.3)

where d j (d j ≥ 1) is the development factor of the cumulative aggregate claim
amount from year j to year j + 1 since claim occurrence. The development fac-
tors d j are also known as link ratios. Note that they do not depend on the year of
origin i, but just on the time to settlement j. Assuming that claims are fully settled
within τ years since occurrence, it turns out dt = 1 for t = τ,τ +1, . . . .

Example 9.12.3. With reference to data in Table 9.12.2, Table 9.12.4 quotes the ob-

served development factors, i.e. the experienced ratios
S[P]

i, j+1

S[P]
i, j

. For any j, the observed

development factors seem to be subject to random fluctuations only; taking their av-
erage, such random fluctuations should then be smoothed away.

Table 9.12.4 Observed development factors

time to settlement
0 1 2 3 4

ye
ar

of
or

ig
in 0 1422

790 = 1.800 2275
1422 = 1.600 2502

2275 = 1.100 2627
2502 = 1.050

1 1729
910 = 1.900 2680

1729 = 1.550 2921
2680 = 1.090

2 1841
995 = 1.850 3038

1841 = 1.650
3 2100

1200 = 1.750
4

average 1.821 1.601 1.094 1.050

The last row of Table 9.12.4 quotes the average observed development ratio, for
each year j since occurrence. More precisely, it is a weighted average of the annual



9.12 Deterministic models for claim reserves 445

development ratios, with weights given by the current cumulative aggregate claim
amounts; for example:

1.821 =
1.800×790+1.900×910+1.850×995+1.750×1200

790+910+995+1200
(9.12.4)

Replacing into (9.12.4) the expression of the observed development factors, we find
quite easily

1.821 =
1422+1729+1841+2100

790+910+995+1200
(9.12.5)

which is the usual way to estimate the link ratios.
�

According to data in the run-off triangle, the development factor for year j is
estimated as follows (see Example 9.12.3):

d̄ j =
∑τ−1− j

i=0 S[P]
i, j+1

∑τ−1− j
i=0 S[P]

i, j

(9.12.6)

The development factor d j describes, for any origin year i, the increase of the
cumulative aggregate claim amount from time j to time j +1 since occurrence. We
further define f j as the development factor to the full settlement of a claim, i.e.

f j = d j ×d j+1 ×·· ·×dτ−1 (9.12.7)

with ft = 1 for t = τ,τ + 1, . . . . Clearly, the factor f j is estimated through the esti-
mated development factor d̄ j+h; we will denote by f̄ j the estimated value of f j. The
ultimate aggregate claim amount for claims originated in year i once j year have
passed since occurrence is estimated as follows through the chain-ladder approach:

U [CL]
i, j = S[P]

i, j f̄ j (9.12.8)

Note that U [CL]
i, j is proportional to the accumulated aggregate claim amount observed

to date, and then depends both on the year of origin and the time passed since then.

Example 9.12.4. Refer to data in Table 9.12.2. For each year i of origin, i =
0,1, . . . ,4, Table 9.12.5 quotes the estimated development factor to full develop-
ment, f̄4−i, the ultimate aggregate claim amount estimated according to the chain-

ladder approach, U [CL]
i,4−i = f̄4−1 S[P]

i,4−i, the amount to be reserved, U [CL]
i,4−i −S[P]

i,4−i, and

the claim reserve at time 4 assessed through the chain-ladder approach, R[S][CL]
4 .

Note that, contrarily to the ELR approach, U [CL]
i,4−i − S[P]

i,4−i ≥ 0 and in particular

U [CL]
0,4 −S[P]

0,4 = 0.
�
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Table 9.12.5 Expected ultimate aggregate claim amount and claim reserve through the CL method

year i factor f̄4−i U [CL]
i,4−i U [CL]

i,4−i −S[P]
i,4−i

0 1.000 2627.00 0.00
1 1.050 3066.93 145.93
2 1.149 3491.05 453.05
3 1.840 3863.88 1763.88
4 3.350 3685.17 2585.17

R[S][CL]
4 4948.04

When comparing the findings in Examples 9.12.2 and 9.12.4, we might conclude
that the chain-ladder approach leads to a more accurate assessment of the ultimate
aggregate claim amount than what is the case for the expected loss ratio method.
In some respects, this is the appropriate conclusion; certainly, for each year of ori-
gin, through the chain-ladder method the estimate of the ultimate aggregate claim
amount is updated to the information collected so far, as the estimate is expressed
as a proportion of the current accumulated amount (see (9.12.8)). However, the
assumptions underlying the chain-ladder approach may be unsatisfactory in some
cases. The basic assumption concerns the time-pattern of each accident year, as-
sumed to be stable in time; on the contrary, the development in time of claims may
change. The estimate of the ultimate aggregate claim amount may be distorted by a
different dynamics of the claim payment patterns; for example, if the administrative
processing of claims is speeded up, the total claim amount is overestimated. In the
extreme case that no claim has been settled to date, the method predicts a total claim
amount which is 0. Further, the claim amounts could be affected by inflation, which
would imply a trend in the behavior of the cumulative aggregate claim amount; this
problem, however, can be easily dealt with, by adjusting appropriately the observed
aggregate claim amounts.

Overall, the chain-ladder method is simple and practicable, and has been largely
used in practice. In this Section, we have described the basic version; many ex-
tensions have been proposed, so to overcome some of the main limitations of the
approach. See Sect.9.13 for some references.

9.12.4 The Bornhuetter-Ferguson method

The Bornhuetter-Ferguson (BF) method merges the findings of the expected loss
ratio with those of a projected method, such as the chain-ladder method.

First refer to (9.12.8), from which we obtain

S[P]
i, j = U [CL]

i, j
1

f̄ j

(9.12.9)
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If we accept that f̄ j is a good indicator of how the aggregate claim amount should
evolve in time, then Eq. (9.12.9) shows us that the coefficient 1/ f̄ j represents the
share of the ultimate aggregate claim amount that have already been settled to date.

We note that S[P]
i, j represents the liability reported to date.

Now take U [ELR]
i , which represents the ultimate liability that we expect at the

beginning of the year of origin of claims, i.e. at issue. After j years since issue (or,
since the year of origin of claims), the quantity

U [ELR]
i ×

(
1− 1

f̄ j

)
(9.12.10)

represents the liability still to emerge for claims originated in year i.
The Bornhuetter-Ferguson method estimates the ultimate aggregate claim amount

as the sum of the reported and the emerging liability, namely

U [BF]
i, j = S[P]

i, j +U [ELR]
i ×

(
1− 1

f̄ j

)
(9.12.11)

Replacing (9.12.9) into (9.12.11), we obtain the alternative expression

U [BF]
i, j = U [CL]

i, j × 1

f̄ j

+U [ELR]
i ×

(
1− 1

f̄ j

)
(9.12.12)

which shows us that U [BF]
i, j is the weighted average of the ultimate aggregate claim

amount estimated through the chain-ladder and the expected loss ratio approach.
Since f̄ j decreases in time, the higher is j, the higher is the weight assigned to claim
information data (i.e., to the estimate obtained through the chain-ladder method).
The Bornhuetter-Ferguson method then uses the initial ELR estimate as long as
claims are not paid or reported. Further, it assumes that past experience is not fully
representative of the future.

Example 9.12.5. Still referring to data in Table 9.12.2, for each year i of origin,
i = 0,1, . . . ,4, Table 9.12.6 quotes the ultimate aggregate claim amount estimated
according to the expected loss ratio, the chain-ladder and the Bornhuetter-Ferguson
approach, and the amount to be reserved according to the three methods. Note that

when few years have passed since the year of origin, the quantity U [BF]
i, j is closer

to U [ELR]
i than to U [CL]

i, j ; vice versa when many years have already passed. As it
emerges from Table 9.12.6, alternative methods result in different estimates of the
claim reserve. After having investigated the reasons of the differences and consid-
ered the specific features of the line of business dealt with, a final value should be
assessed by the reserving actuary. In particular, we point out that the actuary could
find it is necessary to set up a reserve for claims still to be settled after τ years since
occurrence; personal judgement is required in this case, as data are not available (or
are not statistically reliable).
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Table 9.12.6 Expected ultimate aggregate claim amount and claim reserve through the ELR, CL
and BF methods

year i factor f̄4−i U [ELR]
i U [CL]

i −S[P]
i,4−i U [CL]

i,4−i U [CL]
i,4−i −S[P]

i,4−i U [BF]
i,4−i U [BF]

i,4−i −S[P]
i,4−i

0 1.000 2550.00 0.00 2627.00 0.00 2627.00 0.00
1 1.050 3000.00 79.00 3066.93 145.93 3063.75 142.75
2 1.149 3225.00 187.00 3491.05 453.05 3456.53 418.53
3 1.840 3900.00 1800.00 3863.88 1763.88 3880.37 1780.37
4 3.350 3750.00 2650.00 3685.17 2585.17 3730.65 2630.65

R[S][ELR]
4 4716.00 R[S][CL]

4 4948.04 R[S][BF]
4 4972.29

�

9.12.5 Further aspects

As mentioned in Sect. 9.12, the methods examined above for the calculation of
claim reserves are deterministic; indeed, no explicit assumption about the stochastic
path of the aggregate claim amount is introduced. Formal statistical models could
be adopted, whose presentation goes beyond the purpose of this book.

In the previous discussion, the data referred to concern the aggregate claim
amount. However, the patterns of the claim settlement may behave differently than
the pattern of the number of claims. The average cost per claim method, which is
deterministic, considers two run-off triangles: one for the number of the incurred
claims and one for the average payment per claim. The chain-ladder method, pos-
sibly with extensions, is applied separately to the two run-off triangles; then, the
ultimate aggregate claim amount is estimated by multiplying the ultimate number
of claims and the ultimate average cost per claim (thus following the splitting in
(9.4.3)).

In the example referred to above, four years are required to reach the full settle-
ment of claims. In practice, the time-pattern of claims could require a longer time.
From an economic point of view, it would make sense to allow for the value of time,
i.e. to discount future liabilities consistently with the timing of their emergence. We
note that, for example, the chain-ladder method allows us to estimate such a timing;

indeed, the quantities S[P]
i, j (d j − 1), S[P]

i, j (d j+1 − d j), . . . represent (respectively) the
amounts estimated to be settled in 1,2,. . . years from now for claims originated in
year i. However, in many legislations it is not admitted to discount future liabilities
when estimating the claim reserve, which must be rather assessed according to the
ultimate cost; clearly, an implicit safety-loading is thus embedded in the valuation.
In general, the investment activity is not considered to fall within the traditional busi-
ness of a non-life insurer. For example, contrarily to the life insurance business, the
annual industrial profit (see (9.11.7) and the remark following such Equation) does
not include investment earnings. Clearly, this does not mean that non-life insurers
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do not make investments. Assets backing the claim reserve must be appropriately
invested, and they originate financial earnings which are reported within the annual
general profit (or loss) of the insurance company.

9.13 References and suggestions for further reading

A number of actuarial textbooks deal with the technical aspects of non-life insur-
ance. Textbook [12] provides a general introduction to ratemaking and reserving,
while [31] describes several aspects of actuarial practice for non-life insurance. Sev-
eral practical aspects of health insurance are provided by [7], dealing also with life
insurance.

Risk classification and experience-based ratemaking, in particular bonus-malus
systems, are dealt with by [19] and [36]. Basic ratemaking concepts and techniques
are described in [56]. The calculation of reserves is addressed by [53], [59], [23].

A simple introduction to stochastic models for non-life insurance is provided
by [8] and [33]. Loss distributions are described in [32], while [39] makes use of
stochastic processes.

Finally, we mention [27] for historical remarks on the development of actuarial
science, including contributions to the actuarial technique for non-life insurance.
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