Optimal linear-Vizing relationships for (total) domination in graphs

Michael Henning

mahenning@uj.ac.za

University of Johannesburg

In this talk, we discuss the following two problems, where $\gamma(G)$ and $\gamma_t(G)$ denote the domination and total domination numbers, respectively, of a graph G.

Problem 1. For each $\Delta \geq 3$, find the smallest value, c_{Δ} , such that for every connected graph G of order n, size m, domination number $\gamma(G) = \gamma$, and bounded maximum degree $\Delta(G) \leq \Delta$,

$$m \leq \left(\frac{\Delta + c_{\Delta}}{2}\right) n - \left(\frac{\Delta + c_{\Delta} + 2}{2}\right) \gamma.$$

Problem 2. For each $\Delta \geq 3$, find the smallest value, r_{Δ} , such that for every connected graph G of order $n \geq 3$, size m, total domination number γ_t , and bounded maximum degree $\Delta(G) \leq \Delta$,

$$m \le \frac{1}{2}(\Delta + r_{\Delta})(n - \gamma_t).$$

For all $\Delta \geq 3$, Rautenbach [3] in 1999 showed that $c_{\Delta} \leq \Delta$. For all $\Delta \geq 3$, Shan, Kang, and Henning [1, 4] in 2005 showed that $r_{\Delta} \leq \Delta$. Subsequently, Yeo [5] in 2007 showed that $0.05 \ln(\Delta) < c_{\Delta}$ and $0.1 \ln(\Delta) < r_{\Delta} \leq 2\sqrt{\Delta}$ for all $\Delta \geq 3$, and posed as an open problem to determine "whether r_{Δ} grows proportionally with $\ln(\Delta)$ or $\sqrt{\Delta}$ or some completely different function." In this talk, we determine the growth of r_{Δ} , and show that both c_{Δ} and r_{Δ} are asymptotically $\ln(\Delta)$. This talk is based on joint work with Paul Horn.

- M. A. Henning, A linear Vizing-like relation relating the size and total domination number of a graph. J. Graph Theory 49 (2005), 285–290.
- [2] M. A. Henning and P. Horn, Optimal linear-Vizing relationships for (total) domination in graphs, manuscript.
- [3] D. Rautenbach, A linear Vizing-like relation between the size and the domination number of a graph. J. Graph Theory **31** (1999), 297–302.
- [4] E. Shan, L. Kang, and M. A. Henning, Erratum to: A linear Vizing-like relation relating the size and total domination number of a graph. J. Graph Theory 54 (2007), 350–353.
- [5] A. Yeo, Relationships between total domination, order, size, and maximum degree of graphs. J. Graph Theory 55 (2007), 325–337.