Predavatelj: Valentin Gledel (Lyon, Francija)
Seminar iz diskretne matematike
Predavanja potekajo ob ponedeljkih ob 15:15 v seminarski sobi P1 (Gosposvetska cesta 84, v 4. nadstropju).
Bodoča predavanja
Minula predavanja
Maker-Breaker Domination Game
Vozliščni komplementi posplošenih Fibonaccijevih kock
Predavatelj: Aleksander Vesel
Cestninsko število na krepkem produktu grafov
Predavateljica: Polona Repolusk
Analogies between the crossing number and the tanglegram crossing number
Predavateljica: Éva Czabarka (University of South Carolina, ZDA)
Dominacijska zaporedja in sorodne invariante grafov
Predavatelj: Boštjan Brešar
The Hanoi Graph $H_4^3$
Predavatelj: Andreas M. Hinz (LMU München, Nemčija)
Pakirna barvanja grafov tipa Sierpińskega
Predavateljica: Jasmina Ferme
Splošna lega vozlišč v grafih Sierpińskega
Predavatelj: Iztok Peterin
Stable Kneser graphs: problems and conjectures
Predavatelj: Pablo Torres (Universidad Nacional de Rosario, Argentina)
Množice vozlišč v splošni legi
Predavatelj: Sandi Klavžar
Well-covered Cartesian products
Predavateljica: Kirsti Wash (Trinity College, Harford, ZDA)
A formal approach to operations on polyhedra
Predavatelj: Gunnar Brinkmann (Ghent University, Belgija)
Characterizations and Eulerian Loops
Predavatelj: Paul Gartside (University of Pittsburgh, ZDA)
Marjetične kocke
Predavatelj: Sandi Klavžar
Algoritmični vidiki konveksne dominacije
Predavateljica: Tanja Gologranc
The 3-smooth sequence
Predavatelj: Andreas M. Hinz
Some properties of finite fields and their applications to generalizations of strongly regular graphs
Predavatelj: Vladislav V. Kabanov (Russian Academy of Sciences, Yekaterinburg, Rusija)
Some bounds on the generalised total chromatic number of degenerate graphs
Predavatelj: Gabriel Semanišin (PJŠ University in Košice, Slovaška)
k-path partition and k-path vertex cover
Predavatelj: Rastislav Krivoš-Belluš (PJŠ University in Košice, Slovaška)
Minorji v delnih kockah
Predavatelj: Tilen Marc
Finite sets and the pigeonhole principle
Predavatelj: Andreas M. Hinz
The Star Tower of Hanoi
Predavatelj: Andreas M. Hinz
Grundyjeva celotna dominantna števila: realizacija in algoritmični vidiki
Predavatelj: Tim Kos
Distinguishing trees and subcubic graphs
Predavatelj: Wilfried Imrich
Abstract: Thomas Tucker’s infinite motion conjecture asserts that the vertices of every connected, locally finite graph G can be colored with 2 colors such that the identity automorphism is the only automorphism that respects the coloring under the condition that every automorphism moves infinitely many vertices. We say G is 2-distinguishable if it has infinite motion.
The conjecture is true for many classes of graphs, but it is not known whether it holds for graphs with given maximum degree k, unless k=3.
Such graphs are called subcubic. However, there is evidence that infinite motion is not needed for subcubic graphs and that one can always find a 2-coloring that fixes all vertices with the exception of at most two pairs of interchangeable vertices. We show that this is true for trees, subcubic graphs without small cycles and vertex transitive cubic graphs.
In particular, we show that every subcubic infinite tree is 2-distinguishable and that every finite subcubic tree has a 2-coloring, which fixes all vertices, with the possible exception of two vertices of degree 1 with a common neighbor. We also show that the only vertex or edge-transitive finite or infinite subcubic graphs are the K_4, the K_{3,3} or the cube.
For finite or infinite trees of maximum valence k we show that there is a 2-coloring that fixes all vertices that have no endvertex within distance log_2 k +1 .
Acknowledgement: This joint work with Thomas Lachmann and Gundelinde Wiegel (vertex transitive graphs), Svenja Hüning, Judith Kloas and Hannah Schreiber (trees) and Thomas Tucker.
Speaker: Wilfried Imrich and possibly one of the co-authors.
(s,t)-sproščene L(2,1) označitve grafov
Predavatelj: Aleksander Vesel
Varne množice v leksikografskem produktu
Predavatelj: Marko Jakovac
Konstrukcije prekrižno-kritičnih grafov s predpisanimi lastnostmi II
Predavateljica: Mojca Bračič
Konstrukcije prekrižno-kritičnih grafov s predpisanimi lastnostmi I
Predavateljica: Mojca Bračič
Konstrukcije prekrižno-kritičnih grafov s predpisanimi lastnostmi, pregledno
Predavateljica: Mojca Bračič
Cestninsko število kartezičnega in leksikografskega produkta grafov
Predavateljica: Polona Repolusk
Mešana metrična dimenzija grafov
Predavatelj: Aleksander Kelenc
Strukturne lastnosti resonančnih grafov tubulenov in fulerenov, II
Predavatelj: Niko Tratnik
Pakirna barvanja kubičnih grafov
Predavatelj: Boštjan Brešar
Graphs with Disjoint Total Dominating Sets
Predavatelj: Iztok Peterin
Strukturne lastnosti resonančnih grafov tubulenov in fulerenov, I
Predavatelj: Niko Tratnik
Gromov hyperbolicity in graphs
Predavateljica: Veronica Hernandez Martinez (Universidad Carlos III de Madrid, Španija)
Strukturne lastnosti resonančnih grafov tubulenov in fulerenov, pregledno
Predavatelj: Niko Tratnik
b-barvanja regularnih grafov in grafovskih produktov
Predavateljica: Mojca Premzl
Vector connectivity in graphs
Predavatelj: Martin Milanič
In the talk, I will give an overview of known complexity results for the Vector Connectivity problem. In particular, the problem can be solved in polynomial time on split graphs, in addition to cographs and trees. On the other hand, the problem is NP-hard for planar line graphs and for planar bipartite graphs, APX-hard on general graphs, and can be approximated in polynomial time within a factor of ln(n) + 2 on all n-vertex graphs. Vertex covers and dominating sets in a graph G can be easily characterized as hitting sets of derived hypergraphs (of G itself, and of the closed neighborhood hypergraph of G, respectively). Using Menger’s Theorem, a similar characterization of vector connectivity sets can be derived.
Based on joint works with Endre Boros, Ferdinando Cicalese, Pinar Heggernes, Pim van ‘t Hof, and Romeo Rizzi.
Alianse v grafih II
Predavateljica: Tina Zupanc
Alianse v grafih
Predavateljica: Tina Zupanc
Povezanost v produktih grafov
Predavateljica: Sandra Cigula
Varne množice v krepkih mrežah
Predavatelj: Marko Jakovac
Metode reševanja problemov mehkega linearnega programiranja II
Predavateljica: Maja Repnik
O Hausdorffovi razdalji med potmi, cikli in drevesi
Predavatelj: Andrej Taranenko
Metode reševanja problemov mehkega linearnega programiranja I
Predavateljica: Maja Repnik
Cycles and Paths—Finite and Infinite
Predavatelj: Andreas M. Hinz (LMU München, Nemčija)
On incidence colorings of graphs
Predavatelj: Borut Lužar
is a vertex of $G$ and $e$ is an edge of $G$ incident to $v$. Two incidences $(v,e)$ and $(u,f)$ are adjacent if at least one of the
following holds: (1) $v = u$, (2) $e = f$, or (3) $vuin{e,f}$. An incidence coloring of $G$ is a coloring of its incidences assigning distinct colors to adjacent incidences. The originators conjectured
that every graph G admits an incidence coloring with at most Δ(G)+2 colors. The conjecture is false in general, but there are
many classes of graphs for which it holds. We will present the main
results from the field and introduce some of our recent ones. Namely,
we will focus on incidence coloring of Cartesian products of graphs
and subquartic graphs.
Povezavna metrična dimenzija grafov
Predavatelj: Aleksander Kelenc
Vložitve v skoraj centralne grafe polmera 3
Predavatelj: Sandi Klavžar