Predavateljica: Polona Repolusk
Predavanje je preloženo na kasnejši termin.
Predavateljica: Polona Repolusk
Predavanje je preloženo na kasnejši termin.
Predavatelj: Jaka Hedžet
Predavatelj: Janko Gravner (UC Davis, ZDA)
Povzetek: In the polluted modified bootstrap percolation model on d-dimensional lattice, sites are independently initially occupied with probability p or closed with probability q. A site becomes occupied at a subsequent step if it is not closed and has at least one occupied nearest neighbor in each of the d coordinates. The main quantity of interest is final density of occupied sites when p and q are both small. This density is expected to change from high to low as q increases over a critical power of p, possibly with logarithmic corrections. In the two-dimensional case, these logarithmic corrections are indeed present in the modified rule, by contrast with the standard rule.
This is joint work with A. Holroyd, S. Lee, and D. Sivakoff.
Predavateljica: Vesna Iršič
Predavatelj: Niko Tratnik
Predavatelj: Jaka Hedžet
Predavanje je bilo preloženo.
Predavatelj: Aleksander Vesel
Predavateljica: Tanja Dravec
Predavatelj: Boštjan Brešar
Predavatelj: Babak Samadi
Predavatelj: Manoj Changat (University of Kerala, Indija)
Predavatelj: Marko Jakovac
Predavateljica: Lara Drožđek
Predavatelj: Hossein Hajiabolhassan (Montanuniversität Leoben)
Predavatelj: Babak Samadi
Predavateljica: Aleksandra Tepeh
Predavatelj: Iztok Peterin
Predavatelj: Boštjan Brešar
Predavatelj: Babak Samadi
Predavatelj: Jaka Hedžet
Predavateljica: Tanja Dravec
Predavatelj: Rafał Kalinowski (AGH University, Krakov, Poljska)
Predavatelj: Alen Vegi Kalamar
Predavateljica: Polona Repolusk
Predavatelj: Alen Vegi Kalamar
Predavatelj: Aleksander Vesel
Predavatelj: Alen Vegi Kalamar
Predavatelj: Sandi Klavžar
Predavateljica: Maria Gracia Cornet (Universidad Nacional de Rosario, Argentina)
Predavatelj: Michael Henning
Predavateljica: Lara Drožđek
Predavateljica: Simona Bonvicini
Predavatelj: Iztok Peterin
Predavateljica: Jing Tian
Predavateljica: Jelena Sedlar
Predavateljica: Eva Zmazek
Predavatelj: Stefan Hammer (TU Graz, Avstrija)
Predavatelj: Marko Jakovac
Predavatelj: Niko Tratnik
Predavatelj: Andrej Taranenko
Predavateljica: Vesna Iršič
Povzetek: Recently, Portier and Versteegen proved the 3/4-conjecture for the total domination game which states that for every graph $G$ without isolated vertices or edges, the game total domination number is at most $\frac{3}{4} |V(G)|$. In this talk, the outline of the proof will be presented.
Predavatelj: Boštjan Brešar
Predavatelj: Sandi Klavžar
Predavatelj: Štefko Miklavič
Predavatelj: Boštjan Brešar
Predavateljica: Tanja Dravec
Predavatelj: Aleksander Vesel
Predavatelj: Jaka Hedžet
Predavatelj: Wilfried Imrich (about joint work with Florian Lehner, Rafal Kalinowski, Monika Pilsniak and Marcin Stawiski)
Povzetek: The talk is a continuation of the seminar talk of November 12, 2018 about automorphism breaking of countable trees. One says a tree, or more generally a graph, is asymmetrizable if there exists a 2-coloring of its vertices that is only preserved by the identity automorphism. The talk outlines a proof that each infinite tree whose degrees are bounded by 2^m, where m is an arbitrary infinite cardinal, is asymmetrizable if all non-identity automorphisms move at least m vertices.
The talk begins with a few remarks about infinite cardinals, successor cardinals, regular and singular cardinals, the Generalized Continuum Hypothesis, results of Babai, Sabidussi and Polat and then presents the main result.